最新更新时间: ,
doi: 10.6052/1000-0992-23-007
透明陶瓷兼具有优秀的透光性能和抗冲击破坏性能, 是武器装备透明部分性能优异的防护材料之一, 在军事装备、航天等国防领域具有良好的应用前景. 冲击载荷下材料的加载响应特性对掌握材料破坏机制至关重要, 能为透明复合材料设计提供依据. 文章从透明陶瓷材料的抗冲击响应实验研究, 包括实验技术、应变率效应、裂纹扩展速度、材料破坏特征等方面, 对静、动态加载下透明陶瓷的冲击响应特性研究进行了较为系统地回顾; 同时结合陶瓷材料冲击破坏实验阐明了透明陶瓷材料的冲击破坏机制, 以此为基础阐述透明陶瓷冲击破坏的损伤模型、强度准则及冲击响应动态本构模型; 最后分析了透明陶瓷复合装甲抗冲击响应特性以及数值模拟技术的研究现状, 探讨了陶瓷材料抗冲击响应特性研究的发展趋势. 针对现今透明陶瓷冲击响应研究的不足, 提出了关于未来研究方向的建议.
最新更新时间: ,
doi: 10.6052/1000-0992-23-009
介电高弹体的力−电耦合循环变形和疲劳失效行为目前在相关功能器件的设计和寿命评估中得到了越来越多的关注. 因此, 为了促进软体机器人等领域的发展, 文章对介电高弹体的力−电耦合循环变形和疲劳失效行为的实验和理论研究现状进行了较为全面地综述: 首先, 对介电高弹体VHBTM材料在单一力场和力−电耦合作用下的循环变形行为及其演化特征进行了评述, 重点总结了该材料在循环载荷作用下表现出的循环软化、棘轮行为和疲劳失效行为及其力−电耦合效应; 然后, 对已有的、描述介电高弹体单一力场和力−电耦合变形行为的本构模型进行综述, 评述了已有的超弹性、黏−超弹性和黏−超弹性−塑性本构模型对介电高弹体循环变形行为及其力−电耦合效应的描述能力; 最后, 对介电高弹体的力−电耦合失效行为研究现状进行了评述, 特别关注了介电高弹体在力−电耦合大变形作用下的低周疲劳失效行为. 基于已有研究现状的评述, 文章还对相关领域的未来研究方向进行了展望, 力求促进相关研究领域的发展.
最新更新时间: ,
doi: 10.6052/1000-0992-22-051
高性能计算流体力学 (computational fluid dynamic, CFD) 模拟可以与高超飞行试验、高焓地面设备实验研究相互印证, 在热化学非平衡效应研究以及未来高超声速飞行器研制中将发挥更重要的作用. 本文回顾了国内外在热化学非平衡流动CFD研究方面的进展, 概述了相关热化学模型、数值格式研究以及CFD软件研制方面的现状和发展趋势, 最后指出了今后在基础研究、软件开发、模拟应用等方面需要关注的问题. (1) 在热化学模型方面, 常用温度模型并不完全精确, 多振动温度模型具有发展潜力但工程应用受限, 态−态模型更精确但模拟技术尚不成熟, 更为精确的热力学输运模型、有限速率化学反应模型、振动−离解耦合模型以及表面效应模型等是提升热化学非平衡模拟精度的重要物理模型, 值得深入研究; (2) 在数值方法方面, 多物理场耦合模拟是高超热化学非平衡流动CFD研究的热点和趋势, 对CFD方法的鲁棒性和收敛性提出了更高的要求, 值得重点关注和研究, 此外常用数值格式需要针对热化学非平衡流动特征进行适应性改造, RANS方法在热化学非平衡湍流模拟中的计算可靠性仍有待验证; (3) 在数值软件方面, 基于结构/非结构混合网格的数值求解器更加符合工业应用需求, 未来高超数值软件需要具备稳定、鲁棒的多学科、多物理场耦合求解功能, 且能够适应更大网格规模大尺度复杂外形的模拟需求; (4) 可综合应用多种加速技术手段提升热化学非平衡流动数值模拟的计算效率, 计算刚性是热化学非平衡流动数值模拟方法研究的共性基础问题, 刚性消除方法仍需进一步研究和发展.
最新更新时间: ,
doi: 10.6052/1000-0992-22-045
湍流控制涉及流体力学和控制理论, 对航空航天、运载工具、风力发电等众多领域具有重要的科学意义和应用价值. 由于湍流的复杂性, 传统控制方法在湍流控制领域面临很多瓶颈, 人工智能技术的发展为突破这些瓶颈提供了工具. 本文简要综述了文献报道的有模型和无模型的人工智能控制湍流的进展, 总结了研究中采用的典型的人工智能控制系统、算法、在不同湍流控制应用中取得的突出成果. 作者所在团队在国际上首次尝试对人工智能控制系统产生的海量数据进行分析, 从而挖掘出重要的信息乃至发现控制相似律. 对面临的挑战和未来的展望进行了分析.
最新更新时间: ,
doi: 10.6052/1000-0992-22-050
实验观测、理论研究以及数值模拟是包括流体力学在内很多学科的基本研究范式. 21世纪以来, 大数据驱动下的人工智能成为引领新一轮科技革命和产业变革的重要驱动力, 也被称为数据密集型科学研究范式, 即第四范式. 同样, 数据驱动的机器学习方法也成为流体力学的新兴方向, 并助推智能流体力学方向的发展. 然而, 与面向社会依赖“互联网 + 大数据”的数据密集型范式相比, 流体力学智能化研究有其特有的背景. 例如有限工程样本中产生的海量流动数据, 与流动状态、几何边界条件的高维度以及复杂流动固有的高维、跨尺度、随机、非线性特征相比, 数据驱动的流体力学研究面临着大数据小样本问题. 经典流体力学虽然有三大研究范式, 但融合度很低, 工程设计师通常只能对不同来源的数据进行拼凑使用或简单修正. 多源数据融合一定程度上可缓解单一样本量来源少、建模难, 以及低精度样本利用不充分等困境, 但仍未能实现基本范式中的理论模型或者专家知识和经验的充分利用. 因此, 在人工智能技术支撑的第四范式架构下, 有机融合实验、理论模型以及数值模拟三大手段, 发展“数据 + 知识”双驱动的流体力学多范式融合方法, 成为解决重大实际工程研制问题的迫切需求, 也是新时代流体力学学科内涵、特色发展的迫切需求.
最新更新时间: ,
doi: 10.6052/1000-0992-22-043
现代工程系统往往是以复杂结构/机械系统为主体, 融合热、流、电磁等若干子系统的多场耦合系统. 此类系统动力学建模复杂、计算难度大, 给系统动态特性高效精确评估与设计优化带来前所未有的挑战, 有关其高效精确动力学仿真方法的研究愈发受到关注. 本文详细回顾了复杂工程系统多场耦合动力学仿真方法研究成果和进展, 包括: 多场耦合动力学建模与数值求解基本策略、网格变形处理方法、耦合数据交换技术、数值计算效率等问题, 在此基础上详细讨论了单一和混合不确定性条件下多场耦合系统不确定性分析及可靠性评估方法, 以期为相关研究提供有益的借鉴和参考.
最新更新时间: ,
doi: 10.6052/1000-0992-22-047
非线性随机动力学是力学、数学、工程等多个领域关注的热点, 在航空航天、机械工程、生物生态等领域有广泛的应用. 多稳态动力系统作为其最重要的研究对象, 在随机扰动下具有丰富的动力学行为, 如随机分岔、随机共振等, 尤其是随机共振, 已经被应用于机械故障诊断、微弱信号检测和振动能量俘获等工程实际问题中. 本文主要综述了多稳态动力系统中的随机共振理论、方法及工程应用. 首先, 通过几类典型的非线性随机动力学系统, 介绍了随机共振的经典理论和度量指标; 其次, 重点阐述了多稳态动力学系统, 尤其是三稳态和周期势系统, 在各类噪声激励下的随机共振现象, 分析了其诱发机理、演化规律和研究方法; 最后, 介绍了多稳态动力系统中随机共振的几类应用实例, 并进一步给出了随机共振当前面临的难题和未来的发展趋势等开放性问题.
最新更新时间: ,
doi: 10.6052/1000-0992-23-002
多孔夹芯结构是一类由薄而刚硬的面板和多孔材料芯材构成的复合结构, 具有高比刚度、高比强度、缓冲吸能效果优异、可设计性强等特性, 在航空航天、交通运输、结构防护等诸多领域引起了广泛关注, 且已有诸多成功的工程应用案例, 是一类极具潜力的先进轻质高强多功能一体化结构. 为阐明轻质多孔夹芯结构的抗侵彻特性与耗能机理, 进一步拓展轻质多孔夹芯结构的工程应用范围, 对轻质多孔夹芯结构弹道侵彻行为的研究成果进行了系统的综述和展望, 依据轻质多孔夹芯结构的结构特征及类型, 分别评述了不同类型多孔夹芯结构的抗弹道侵彻破坏机制、能量耗散机理及轻量化设计等方面的研究, 展望了未来多孔夹芯结构在抗弹道侵彻研究领域面临的问题和挑战.
最新更新时间: ,
doi: 10.6052/1000-0992-22-048
振动问题与人类日常生活和科技发展紧密相关. 振动不但会干扰人类的生活、影响人类健康, 也会造成建筑物、机械设备和精密仪器无法正常使用甚至损坏. 于是, 在航空航天、汽车工程、船舶工程、大型结构及精密仪器加工等领域, 人们利用弹性元件或控制装置形成有效的振动隔离或消除装备, 有效的隔振能够提高人员和装备的安全性、稳定性、可控性和舒适性. 现代结构的大型化和复杂化发展, 对隔振和消振器的宽频抑振效果提出了新挑战. 然而, 基于线性理论的设计优化方法在分析和应用中出现了无法调和的矛盾, 即, 如果要拓宽隔振频带, 就必须降低隔振结构的刚度, 这导致结构承载能力下降. 本文对典型的非线性隔振器高静低动设计方法、动力学建模、动力学分析进行了详细的综述, 阐明不同机理下呈现的恢复力本构和准零刚度设计准则, 在面向航空航天、精密加工、汽车船舶等领域的不同需求时, 能够从动力学特征上进行选型; 另外, 关注到基于仿生和超结构的隔振和消振设计方法, 在非线性恢复力本构的力学机理解释和调控上产生了新的问题和挑战, 引发出变刚度、大变形动力学分析及其控制新方法、新策略和实验新技术的研究; 最后, 随着结构零部件向着轻质化和柔性化的方向发展, 运动部件末端的隔振效果受限于部件的柔性, 即使通过耦合多层准零刚度结构也难以实现被隔结构在空间上的快速定位, 关注到时滞控制的调幅调频机理, 本文对时滞抑振原理及设计方法进行讨论, 提供时滞抑制柔性低频振动成功案例, 为极端工况下的有效、简单、快速的主动隔振消振提供了可能性. 未来, 基于大数据时代的数据密集型研究范式, 非线性隔振和消振技术将面向复杂工况实现更精确、更智能的控制效果, 在精密仪器、航空航天等国家重大需求领域实现泛化应用.
2023, 53(1): 1-47.
doi: 10.6052/1000-0992-22-024
摘要:
热湍流 (浮力驱动湍流) 作为一种典型的湍流现象, 广泛存在于自然界和工程应用中. Rayleigh-Bénard (RB) 湍流是从众多自然现象中抽象出来研究热湍流的经典模型, RB湍流的典型特征是系统中存在大尺度环流和羽流等不同尺度的湍流结构, 这些结构通过作用于边界层, 影响RB湍流的输运效率. 因此, 明确不同尺度湍流结构的生成、演化和作用机理, 对理解RB湍流的输运特性至关重要, 也是通过控制湍流结构调控输运效率的科学基础. 本文重点从湍流结构的时空演化规律、输运特性、湍流调控和热湍流在其他领域的拓展四个方面评述近十年来RB湍流研究所取得的新进展, 并对今后的研究方向做出展望.
热湍流 (浮力驱动湍流) 作为一种典型的湍流现象, 广泛存在于自然界和工程应用中. Rayleigh-Bénard (RB) 湍流是从众多自然现象中抽象出来研究热湍流的经典模型, RB湍流的典型特征是系统中存在大尺度环流和羽流等不同尺度的湍流结构, 这些结构通过作用于边界层, 影响RB湍流的输运效率. 因此, 明确不同尺度湍流结构的生成、演化和作用机理, 对理解RB湍流的输运特性至关重要, 也是通过控制湍流结构调控输运效率的科学基础. 本文重点从湍流结构的时空演化规律、输运特性、湍流调控和热湍流在其他领域的拓展四个方面评述近十年来RB湍流研究所取得的新进展, 并对今后的研究方向做出展望.
2023, 53(1): 48-153.
doi: 10.6052/1000-0992-22-029
摘要:
细胞膜是细胞与外部环境进行物质与能量交换的界面, 是调节细胞正常生命活动的重要结构基础. 细胞膜上力敏感受体可通过力学作用方式参与并影响细胞的力信号转导等功能. 整合素和钙黏素是细胞膜上典型的力敏感受体, 可介导细胞与细胞周围基质或邻近细胞发生力学作用, 并将力学刺激信号转导为生化信号, 进而激活细胞内一系列应答反应, 最终影响细胞生长、分化、增殖、凋亡和迁移等功能. 力敏感受体介导细胞功能调控研究已成为探索细胞主动响应外界复杂力学微环境的力学生物学机制的关键, 为进一步深入认识生理和病理状态下细胞功能变化规律, 为揭示疾病的发生、发展机制提供重要的力学生物学理论与实验依据. 本文总结了力敏感受体介导细胞功能调控的国内外研究进展; 介绍了黏附界面处典型力敏感受体的结构和功能; 总结了这些力敏感受体参与的细胞力信号感知与响应的数理模型; 概述了细胞通过力敏感受体进行力学信号转导的过程; 介绍了黏附介导细胞功能调控的力学生物学过程和机制; 简述了体外构建模拟细胞力学微环境中细胞−细胞外基质和细胞−细胞力学相互作用的技术; 指出了力敏感受体介导细胞功能调控的力学生物学研究发展趋势和未来方向.
细胞膜是细胞与外部环境进行物质与能量交换的界面, 是调节细胞正常生命活动的重要结构基础. 细胞膜上力敏感受体可通过力学作用方式参与并影响细胞的力信号转导等功能. 整合素和钙黏素是细胞膜上典型的力敏感受体, 可介导细胞与细胞周围基质或邻近细胞发生力学作用, 并将力学刺激信号转导为生化信号, 进而激活细胞内一系列应答反应, 最终影响细胞生长、分化、增殖、凋亡和迁移等功能. 力敏感受体介导细胞功能调控研究已成为探索细胞主动响应外界复杂力学微环境的力学生物学机制的关键, 为进一步深入认识生理和病理状态下细胞功能变化规律, 为揭示疾病的发生、发展机制提供重要的力学生物学理论与实验依据. 本文总结了力敏感受体介导细胞功能调控的国内外研究进展; 介绍了黏附界面处典型力敏感受体的结构和功能; 总结了这些力敏感受体参与的细胞力信号感知与响应的数理模型; 概述了细胞通过力敏感受体进行力学信号转导的过程; 介绍了黏附介导细胞功能调控的力学生物学过程和机制; 简述了体外构建模拟细胞力学微环境中细胞−细胞外基质和细胞−细胞力学相互作用的技术; 指出了力敏感受体介导细胞功能调控的力学生物学研究发展趋势和未来方向.
2023, 53(1): 154-197.
doi: 10.6052/1000-0992-22-040
摘要:
随着21世纪折纸工程学的发展, 折纸不再仅仅是一项民间艺术, 一方面数学家前期的大量工作随之浮出水面, 另一方面工程应用对折纸结构折叠过程的描述与分析都提出了新的挑战. 同时, 折纸的对象也不再局限于简单的纸张, 工程中存在大量的厚度不可忽略的平板结构, 他们的折叠展开问题一直困扰着相关的工程应用. 近几年超材料的发展给模块化折纸带来了一次从玩具到高科技的飞跃, 然而如何协调地安排这些折纸模块使得整体结构展现出超常且可变化调控的性能是折纸领域的新热点. 由此可见, 折纸运动学在诸多应用与探索方面都起到了决定性的基础作用. 本文重点介绍了已有的机构学理论与方法及其在各种折纸结构分析设计中的应用, 旨在为折纸工程学的发展提供坚实的理论技术基础.
随着21世纪折纸工程学的发展, 折纸不再仅仅是一项民间艺术, 一方面数学家前期的大量工作随之浮出水面, 另一方面工程应用对折纸结构折叠过程的描述与分析都提出了新的挑战. 同时, 折纸的对象也不再局限于简单的纸张, 工程中存在大量的厚度不可忽略的平板结构, 他们的折叠展开问题一直困扰着相关的工程应用. 近几年超材料的发展给模块化折纸带来了一次从玩具到高科技的飞跃, 然而如何协调地安排这些折纸模块使得整体结构展现出超常且可变化调控的性能是折纸领域的新热点. 由此可见, 折纸运动学在诸多应用与探索方面都起到了决定性的基础作用. 本文重点介绍了已有的机构学理论与方法及其在各种折纸结构分析设计中的应用, 旨在为折纸工程学的发展提供坚实的理论技术基础.
2023, 53(1): 198-238.
doi: 10.6052/1000-0992-22-030
摘要:
狭义的运动生物力学特指人体运动中的生物力学, 主要解决竞技体育领域中如何提高运动成绩和减少运动损伤的问题. 随着相关学科的融合和发展, 当前运动生物力学的研究已扩展到与人类运动相关的生物学、医学、力学等学科领域. 近年来, 智能测试、大数据分析、人工智能等技术快速发展, 对运动生物力学实验、仿真方法产生了重要的影响, 在不断拓展和深化着该学科的研究内容和方向的同时, 也对运动生物力学发展提出了新的挑战. 本文综述了近年来运动生物力学领域的研究现状, 并指出了相关研究方向的关键问题及发展趋势: 在理论建模和模拟仿真计算方面, 肌肉本构理论及肌肉力计算准确性是重点和难点; 实验测试的新技术在竞技体育运动项目中的应用研究中扮演重要角色, 其中基于深度学习的人体关键点检测算法在解决竞技体育的非接触测量方面有突破性进展; 对于骨、韧带、软骨、肌肉等组织的宏观损伤机制认识不断清晰, 但对于其早期损伤预测以及跨尺度损伤发生机制的研究仍有待深入; 智能可穿戴装备、人工智能等新技术开始应用于运动生物力学研究及实践, 成为目前运动生物力学领域最具活力的研究方向之一. 本文的综述表明当前运动生物力学研究越来越向智能化、个体化、定量化发展, 并正在与相关学科不断交叉融合, 持续推进着体育、健康、医疗等领域的科技创新发展.
狭义的运动生物力学特指人体运动中的生物力学, 主要解决竞技体育领域中如何提高运动成绩和减少运动损伤的问题. 随着相关学科的融合和发展, 当前运动生物力学的研究已扩展到与人类运动相关的生物学、医学、力学等学科领域. 近年来, 智能测试、大数据分析、人工智能等技术快速发展, 对运动生物力学实验、仿真方法产生了重要的影响, 在不断拓展和深化着该学科的研究内容和方向的同时, 也对运动生物力学发展提出了新的挑战. 本文综述了近年来运动生物力学领域的研究现状, 并指出了相关研究方向的关键问题及发展趋势: 在理论建模和模拟仿真计算方面, 肌肉本构理论及肌肉力计算准确性是重点和难点; 实验测试的新技术在竞技体育运动项目中的应用研究中扮演重要角色, 其中基于深度学习的人体关键点检测算法在解决竞技体育的非接触测量方面有突破性进展; 对于骨、韧带、软骨、肌肉等组织的宏观损伤机制认识不断清晰, 但对于其早期损伤预测以及跨尺度损伤发生机制的研究仍有待深入; 智能可穿戴装备、人工智能等新技术开始应用于运动生物力学研究及实践, 成为目前运动生物力学领域最具活力的研究方向之一. 本文的综述表明当前运动生物力学研究越来越向智能化、个体化、定量化发展, 并正在与相关学科不断交叉融合, 持续推进着体育、健康、医疗等领域的科技创新发展.
2023, 53(1): 239-255.
doi: 10.6052/1000-0992-22-041
摘要:
国家火星探测任务是建设航天强国进程中的重大标志性工程, 是中国航天走向更远深空的里程碑工程. 智能材料这种集材料、结构和功能于一体的先进材料将会对火星探测任务有所助力. 形状记忆聚合物及其复合材料作为一种典型的智能材料, 可在有效减轻载荷的同时实现自主变形, 已经在地球同步轨道航天器的应用中崭露头角. 因此有必要研究这种新型环氧基形状记忆聚合物复合材料应用于火星探测工程的可能性. 首先, 针对“天问一号”火星探测器的任务需求, 设计了一个具有自释放功能的着陆平台国旗装置. 其中的锁紧释放装置由碳纤维增强的形状记忆聚合物复合材料制成, 分别从静态拉伸力学性能、动态热机械性能和形状记忆性能三个角度评估了空间辐照和长期存储对形状记忆聚合物复合材料的影响. 其中, 空间辐照包括γ射线和紫外射线, 辐照剂量分别为5 × 105 rad和23.6 kCal. 长期存储分为低温−196℃、室温25℃和高温85℃存储30天, 和低温−196℃存储457天两组实验. 最后, 从“祝融号”火星车所携带相机拍摄的照片可以看到五星红旗被成功释放, 旗面平整、图案清晰. 这说明所研究的环氧基形状记忆聚合物复合材料可成功应用于火星探测任务, 未来有望以多种结构形式助力我国的火星采样返回乃至其它深空探测任务.
国家火星探测任务是建设航天强国进程中的重大标志性工程, 是中国航天走向更远深空的里程碑工程. 智能材料这种集材料、结构和功能于一体的先进材料将会对火星探测任务有所助力. 形状记忆聚合物及其复合材料作为一种典型的智能材料, 可在有效减轻载荷的同时实现自主变形, 已经在地球同步轨道航天器的应用中崭露头角. 因此有必要研究这种新型环氧基形状记忆聚合物复合材料应用于火星探测工程的可能性. 首先, 针对“天问一号”火星探测器的任务需求, 设计了一个具有自释放功能的着陆平台国旗装置. 其中的锁紧释放装置由碳纤维增强的形状记忆聚合物复合材料制成, 分别从静态拉伸力学性能、动态热机械性能和形状记忆性能三个角度评估了空间辐照和长期存储对形状记忆聚合物复合材料的影响. 其中, 空间辐照包括γ射线和紫外射线, 辐照剂量分别为5 × 105 rad和23.6 kCal. 长期存储分为低温−196℃、室温25℃和高温85℃存储30天, 和低温−196℃存储457天两组实验. 最后, 从“祝融号”火星车所携带相机拍摄的照片可以看到五星红旗被成功释放, 旗面平整、图案清晰. 这说明所研究的环氧基形状记忆聚合物复合材料可成功应用于火星探测任务, 未来有望以多种结构形式助力我国的火星采样返回乃至其它深空探测任务.
“最新录用”文章为经过审稿人和编委会评审并已接受录用准备发表的文章. 请您注意:这些文章并未经过排版, 也未经编辑及作者校对. 编辑、排版和校对可能会造成文章的内容变动
当前状态:
, 最新更新时间: ,
doi: 10.6052/1000-0992-23-012
摘要:
计算流体力学 (CFD) 在重大工程领域发挥了日益重要的作用, 可信度是制约其进一步大规模工程应用的关键因素. 国内外普遍认同验证与确认是CFD可信度评价和保证的必经途径. 通过系统的验证与确认, 可以有效识别代码中潜在的编程错误, 保证数值求解的可靠性, 客观评价模型在预期用途内的适用性, 在必要时提高模型的预测能力. 本文围绕着什么是验证与确认, 怎么做验证与确认的这两个核心问题, 从基本概念、实施流程、主要方法、标模试验和平台工具等角度介绍了国内外在CFD验证与确认领域的研究进展, 重点对误差估计和不确定度量化方法展开介绍. 文章最后对现阶段验证与确认研究解决实际工程问题的不足进行了评述和总结, 对未来重点研究方向进行了展望.
计算流体力学 (CFD) 在重大工程领域发挥了日益重要的作用, 可信度是制约其进一步大规模工程应用的关键因素. 国内外普遍认同验证与确认是CFD可信度评价和保证的必经途径. 通过系统的验证与确认, 可以有效识别代码中潜在的编程错误, 保证数值求解的可靠性, 客观评价模型在预期用途内的适用性, 在必要时提高模型的预测能力. 本文围绕着什么是验证与确认, 怎么做验证与确认的这两个核心问题, 从基本概念、实施流程、主要方法、标模试验和平台工具等角度介绍了国内外在CFD验证与确认领域的研究进展, 重点对误差估计和不确定度量化方法展开介绍. 文章最后对现阶段验证与确认研究解决实际工程问题的不足进行了评述和总结, 对未来重点研究方向进行了展望.
- 2022 Vol. 4
- 2022 Vol. 3
- 2022 Vol. 2
- 2022 Vol. 1
- 2021 Vol. 4
- 2021 Vol. 3
- 2021 Vol. 2
- 2021 Vol. 1
- 2020 Vol. 1
- 2019 Vol. 1
- 2018 Vol. 1
- 2017 Vol. 1
- 2016 Vol. 1
- 2015 Vol. 1
- 2014 Vol. 1
- 2013 Vol. 6
- 2013 Vol. 5
- 2013 Vol. 4
- 2013 Vol. 3
- 2013 Vol. 2
- 2013 Vol. 1
- 2012 Vol. 6
- 2012 Vol. 5
- 2012 Vol. 4
- 2012 Vol. 3
- 2012 Vol. 2
- 2012 Vol. 1
- 2011 Vol. 6
- 2011 Vol. 5
- 2011 Vol. 4
- 2011 Vol. 3
- 2011 Vol. 2
- 2011 Vol. 1
- 2010 Vol. 6
- 2010 Vol. 5
- 2010 Vol. 4
- 2010 Vol. 3
- 2010 Vol. 2
- 2010 Vol. 1
- 2009 Vol. 6
- 2009 Vol. 5
- 2009 Vol. 4
- 2009 Vol. 3
- 2009 Vol. 2
- 2009 Vol. 1
- 2008 Vol. 6
- 2008 Vol. 5
- 2008 Vol. 4
- 2008 Vol. 3
- 2008 Vol. 2
- 2008 Vol. 1
- 2007 Vol. 4
- 2007 Vol. 3
- 2007 Vol. 2
- 2007 Vol. 1
- 2006 Vol. 4
- 2006 Vol. 3
- 2006 Vol. 2
- 2006 Vol. 1
- 2005 Vol. 4
- 2005 Vol. 3
- 2005 Vol. 2
- 2005 Vol. 1
- 2004 Vol. 4
- 2004 Vol. 3
- 2004 Vol. 2
- 2004 Vol. 1
- 2003 Vol. 4
- 2003 Vol. 3
- 2003 Vol. 2
- 2003 Vol. 1
- 2002 Vol. 4
- 2002 Vol. 3
- 2002 Vol. 2
- 2002 Vol. 1
- 2001 Vol. 4
- 2001 Vol. 3
- 2001 Vol. 2
- 2001 Vol. 1
- 2000 Vol. 4
- 2000 Vol. 3
- 2000 Vol. 2
- 2000 Vol. 1
- 1999 Vol. 4
- 1999 Vol. 3
- 1999 Vol. 2
- 1999 Vol. 1
- 1998 Vol. 4
- 1998 Vol. 3
- 1998 Vol. 2
- 1998 Vol. 1
- 1997 Vol. 4
- 1997 Vol. 3
- 1997 Vol. 2
- 1997 Vol. 1
- 1996 Vol. 4
- 1996 Vol. 3
- 1996 Vol. 2
- 1996 Vol. 1
- 1995 Vol. 4
- 1995 Vol. 3
- 1995 Vol. 2
- 1995 Vol. 1
- 1994 Vol. 4
- 1994 Vol. 3
- 1994 Vol. 2
- 1994 Vol. 1
- 1993 Vol. 4
- 1993 Vol. 3
- 1993 Vol. 2
- 1993 Vol. 1
- 1992 Vol. 4
- 1992 Vol. 3
- 1992 Vol. 2
- 1992 Vol. 1
- 1991 Vol. 4
- 1991 Vol. 3
- 1991 Vol. 2
- 1991 Vol. 1
- 1990 Vol. 4
- 1990 Vol. 3
- 1990 Vol. 2
- 1990 Vol. 1
- 1989 Vol. 4
- 1989 Vol. 3
- 1989 Vol. 2
- 1989 Vol. 1
- 1988 Vol. 4
- 1988 Vol. 3
- 1988 Vol. 2
- 1988 Vol. 1
- 1987 Vol. 4
- 1987 Vol. 3
- 1987 Vol. 2
- 1987 Vol. 1
- 1986 Vol. 4
- 1986 Vol. 3
- 1986 Vol. 2
- 1986 Vol. 1
- 1985 Vol. 4
- 1985 Vol. 3
- 1985 Vol. 2
- 1985 Vol. 1
- 1984 Vol. 4
- 1984 Vol. 3
- 1984 Vol. 2
- 1984 Vol. 1
- 1983 Vol. 4
- 1983 Vol. 3
- 1983 Vol. 2
- 1983 Vol. 1
- 1982 Vol. 4
- 1982 Vol. 3
- 1982 Vol. 2
- 1982 Vol. 1
- 1981 Vol. 4
- 1981 Vol. 3
- 1981 Vol. 2
- 1981 Vol. 1
- 1980 Vol. 4
- 1980 Vol. 2~3
- 1980 Vol. 1
- 1979 Vol. 4
- 1979 Vol. 3
- 1979 Vol. 2
- 1979 Vol. 1
- 1978 Vol. 2
- 1978 Vol. 1
- 1977 Vol. 2
- 1977 Vol. 1
- 1976 Vol. 4
- 1976 Vol. 3
- 1976 Vol. 2
- 1976 Vol. 1
- 1975 Vol. 2
- 1975 Vol. 1
- 1974 Vol. 2
- 1974 Vol. 1
- 1973 Vol. 6
- 1973 Vol. 5
- 1973 Vol. 4
- 1973 Vol. 3
- 1973 Vol. 2
- 1973 Vol. 1
- 1972 Vol. 12
- 1972 Vol. 11
- 1972 Vol. 10
- 1972 Vol. 9
- 1972 Vol. 8
- 1972 Vol. 7
- 1972 Vol. 6
- 1972 Vol. 5
- 1972 Vol. 4
- 1972 Vol. 3
- 1972 Vol. 2
- 1972 Vol. 1
- 1971 Vol. 6
- 1971 Vol. 5
- 1971 Vol. 4
- 1971 Vol. 3
- 1971 Vol. 2
- 1971 Vol. 1
新闻公告More >
引用排行
下载排行
浏览排行
相关链接More >

扫描二维码关注微信公众号