留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风-列车-桥梁耦合振动研究进展

韩艳 胡朋 王力东 刘汉云 蔡春声

韩艳, 胡朋, 王力东, 刘汉云, 蔡春声. 风-列车-桥梁耦合振动研究进展. 力学进展, 待出版 doi: 10.6052/1000-0992-24-032
引用本文: 韩艳, 胡朋, 王力东, 刘汉云, 蔡春声. 风-列车-桥梁耦合振动研究进展. 力学进展, 待出版 doi: 10.6052/1000-0992-24-032
Han Y, Hu P, Wang L D, Liu H Y, Cai C S. Research Advances in Wind-Train-Bridge Coupling Vibration. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-032
Citation: Han Y, Hu P, Wang L D, Liu H Y, Cai C S. Research Advances in Wind-Train-Bridge Coupling Vibration. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-032

风-列车-桥梁耦合振动研究进展

doi: 10.6052/1000-0992-24-032 cstr: 32046.14.1000-0992-24-032
详细信息
    作者简介:

    韩艳, 工学博士, 教授, 博导, 长沙理工大学卓越工程师学院院长, 教育部长江学者特聘教授, 中国青年科技奖获得者, 国家自然科学基金优秀青年基金获得者. 主要从事桥梁风振与智能防控、基础设施智慧运维与工业软件开发、机器视觉与智能防灾以及新能源结构抗风设计等方向的研究. 发表学术论文200余篇, 出版专著4部, 授权发明专利30余项, 研究成果应用于30余座重大工程; 获国家科技进步二等奖(排2)、湖南省科技进步一等奖(排3)、教育部自然科学二等奖(排3)、中国公路学会科学技术一等奖(排1、排2)等. 邮箱: ce_hanyan@163.com

    通讯作者:

    ce_hanyan@163.com

  • 中图分类号: [U24]

Research Advances in Wind-Train-Bridge Coupling Vibration

More Information
  • 摘要: 开展风-列车-桥梁 (简称风-车-桥) 耦合振动研究是保障强风下桥上列车安全运行的重要手段之一. 近二十年来, 国内外学者在该领域进行了大量研究, 积累了丰硕的研究成果. 风-车-桥耦合振动研究主要包括三个方面, 即车-桥系统气动特性、风-车-桥系统动力响应计算和行车安全评估与防控. 首先, 车-桥系统气动特性研究的主要目的是分析车-桥系统气动干扰机理以及准确获取作用在车辆和桥梁上的风荷载. 根据桥上车辆是否移动, 可分为静止车辆和移动车辆两种情形. 其次, 在获得车-桥系统风荷载的基础上, 需求解风-车-桥系统以获得车辆通过桥梁全过程的动力响应时程曲线. 该方面研究主要包括车-桥系统建模方法、风-车-桥系统动力计算理论以及高效计算方法. 再次, 基于已获得的动力响应, 最终目的是评估强风下桥上车辆的行车安全性以及提出防控措施. 该方面主要包括行车安全评估指标和方法, 以及强风下保障列车行车安全的主要防控手段. 最后, 结合风-车-桥耦合振动领域目前存在的主要问题与新技术发展, 对未来重点研究方向进行了展望, 以促进本研究领域的发展.

     

  • 图  1  列车气动力系数随风偏角变化情况

    图  2  列车气动力系数拟合结果图

    图  3  雷暴冲击风模拟装置

    图  4  龙卷风模拟装置

    图  5  西南交通大学研制的移动列车装置

    图  6  中南大学研制的U形滑道装置

    图  7  风洞内风场及试验装置照片

    图  8  计算域和列车模型网格: (a)计算域整体网格; (b)列车表面及边界层网格

    图  9  不同风偏角下移动列车阻力系数预测结果与试验结果的对比: (a)阻力系数, (b)升力系数, (c)扭矩系数

    图  10  车-桥耦合振动模型发展历程

    图  11  法向接触找点与竖向接触找点对比示意图

    图  12  动态轮重减载率大于0.6的最大超越时间

    图  13  轮轨相对位移参考点示意图

    图  14  行车安全指标随车速变化规律(李小珍 等 2022)

    图  15  不同车速下风速阈值曲线(Montenegro P A et al. 2022)

    图  16  行车安全评估指标概率密度分布函数

    图  17  列车通过部分风屏障破坏 (区域Ⅲ) 的大跨桥梁时行车安全评估指标时程曲线

    图  18  桥上风屏障类型

    表  1  我国行车安全评估指标限值

    评估指标 高速、城际铁路 客货共线铁路 重载铁路
    机车 货车
    脱轨系数(Q/P) ≤0.8 ≤0.8 ≤0.8 ≤1.0
    轮重减载率(∆P/P) ≤0.6
    轮对横向水平力Q(kN) ≤10 + P0/3 ≤80 ≤0.90(15 + (Pst1 + Pst2)/2) ≤0.85(15 + (Pst1 + Pst2)/2)
    注: 表中Q为车轮作用于钢轨上的横向力, 单位kN; ∆P为轮重减载量, 单位kN; P为车轮作用于钢轨上的垂直力, 单位kN; P0Pst1Pst2为车轮静轮重, 单位kN.
    下载: 导出CSV
  • [1] 操金鑫, 秦宇辉, 曹曙阳, 等. 2021. 考虑高架桥和风屏障影响的高速列车龙卷风荷载特性研究. 工程力学, 38(04): 150-158 + 178 (Cao J X, Qin Y H, Cao S Y, et al. 2021. Tornado wind load characteristics of a high-speed train considering the effect of the viaduct and wind screen. Engineering Mechanics, 38(04): 150-158 + 178)). doi: 10.6052/j.issn.1000-4750.2020.05.0281

    Cao J X, Qin Y H, Cao S Y, et al. 2021. Tornado wind load characteristics of a high-speed train considering the effect of the viaduct and wind screen. Engineering Mechanics, 38(04): 150-158 + 178). doi: 10.6052/j.issn.1000-4750.2020.05.0281
    [2] 曾庆元, 田志奇, 杨毅, 等. 1985. 桁梁行车空间振动计算的桁段有限元法. 桥梁建设, (04)1-17 (Zeng Q Y, Tian Z Q, Yang Y, et al. 1985. Beam-section finite element method for vibration calculation of beam-truss traveling space. Bridge Construction, (04)1-17)).

    Zeng Q Y, Tian Z Q, Yang Y, et al. 1985. Beam-section finite element method for vibration calculation of beam-truss traveling space. Bridge Construction, (04)1-17).
    [3] 曾庆元, 杨平. 1986. 形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法. 铁道学报, (02): 48-59 ((Zeng Y Q, Yang P 1986. The "seat assignment" rule for forming a matrix and the truss element finite element method for truss space analysis. Bridge Construction, (02): 48-59)).

    (Zeng Y Q, Yang P 1986. The "seat assignment" rule for forming a matrix and the truss element finite element method for truss space analysis. Bridge Construction, (02): 48-59).
    [4] 曾宇清, 文彬, 于卫东, 等. 2012. 基于投影轮廓的轮轨三维接触几何计算研究. 中国铁道科学, 33(06): 51-59 (Zeng Q Y, Wen B, Yu W D, et al. 2012. Research on 3D contact geometry of wheel-rail based on projection profile. China Railway Sci Ence, 33(06): 51-59)). doi: 10.3969/j.issn.1001-4632.2012.06.09

    Zeng Q Y, Wen B, Yu W D, et al. 2012. Research on 3D contact geometry of wheel-rail based on projection profile. China Railway Sci Ence, 33(06): 51-59). doi: 10.3969/j.issn.1001-4632.2012.06.09
    [5] 陈皓, 程晓卿, 俞秀莲, 等. 2013. 列车脱轨系数的精确预测方法研究. 计算机仿真, 30(07): 142-146 (Cheng H, Cheng X Q, Yu X L, et al. 2013. Research on accurate prediction method of train derailment coefficient. Computer Simulation, 30(07): 142-146)). doi: 10.3969/j.issn.1006-9348.2013.07.032

    Cheng H, Cheng X Q, Yu X L, et al. 2013. Research on accurate prediction method of train derailment coefficient. Computer Simulation, 30(07): 142-146). doi: 10.3969/j.issn.1006-9348.2013.07.032
    [6] 陈宁, 游星呈, 汪维安, 等. 2023. 突变阵风对列车动力响应及行车安全性的影响. 工程力学, 40(08): 224-234 (Cheng N, You X C, Wang W A, et al. 2023. The effect of sudden gusts on the dynamic responses and driving safety of trains. Engineering Mechanics, 40(08): 224-234)).

    Cheng N, You X C, Wang W A, et al. 2023. The effect of sudden gusts on the dynamic responses and driving safety of trains. Engineering Mechanics, 40(08): 224-234).
    [7] 崔圣爱, 刘品, 晏先娇, 等. 2020. 横风环境下跨海大桥列车-桥梁系统耦合振动仿真研究. 铁道学报, 42(06): 93-101 (Cui S A, Liu P, Yan X J, et al. 2020. Simulation Study on Coupled Vibration of Train-bridge System of Cross-sea Bridge under Crosswind Condition. Journal of the China Railw Society, 42(06): 93-101)). doi: 10.3969/j.issn.1001-8360.2020.06.013

    Cui S A, Liu P, Yan X J, et al. 2020. Simulation Study on Coupled Vibration of Train-bridge System of Cross-sea Bridge under Crosswind Condition. Journal of the China Railw Society, 42(06): 93-101). doi: 10.3969/j.issn.1001-8360.2020.06.013
    [8] 邓露, 段林利, 何维, 等. 2018. 中国公路车-桥耦合振动车辆模型研究. 中国公路学报, 31(07): 92-100 (Deng L, Duan L L, He W, et al. 2018. Study on vehicle model for vehicle-bridge coupling vibration of highway bridges in China. China J. High w. Transp., 31(07): 92-100)). doi: 10.3969/j.issn.1001-7372.2018.07.007

    Deng L, Duan L L, He W, et al. 2018. Study on vehicle model for vehicle-bridge coupling vibration of highway bridges in China. China J. High w. Transp., 31(07): 92-100). doi: 10.3969/j.issn.1001-7372.2018.07.007
    [9] 邓露, 凌天洋, 何维, 等. 2022. 用于公路车-桥系统振动分析的精细化轮胎模型. 中国公路学报, 35(04): 108-116 (Deng L, Lin T Y, He W, et al. 2022. Refined tire model for analysis of highway vehicle-bridge system vibration. China J. High w. Transp., 35(04): 108-116)). doi: 10.3969/j.issn.1001-7372.2022.04.008

    Deng L, Lin T Y, He W, et al. 2022. Refined tire model for analysis of highway vehicle-bridge system vibration. China J. High w. Transp., 35(04): 108-116). doi: 10.3969/j.issn.1001-7372.2022.04.008
    [10] 翟婉明. 2008. 专著《车辆轨道耦合动力学》第三版出版. 铁道学报, (02): 33 ((Zhai W M 2008. 《Vehicle Track Coupling Dynamics》. Journal of the China Railw Society, (02): 33)).

    (Zhai W M 2008. 《Vehicle Track Coupling Dynamics》. Journal of the China Railw Society, (02): 33).
    [11] 翟婉明, 陈果. 2001. 根据车轮抬升量评判车辆脱轨的方法与准则. 铁道学报, (02): 17-26 ((Zhai W M, Cheng G 2001. Method and criteria for evaluation of wheel derailment based on wheel vertical rise. Journal of the China Railw Society, (02): 17-26)).

    (Zhai W M, Cheng G 2001. Method and criteria for evaluation of wheel derailment based on wheel vertical rise. Journal of the China Railw Society, (02): 17-26).
    [12] 段青松. 2018. 横向紊流风中列车气动力特性研究. 西南交通大学学报, (Q S 2018. Investigation on the aerodynamic forces characteristics of railway vehicles in turbulent crosswinds. Southwest Jiao tong University).
    [13] 冯志鹏. 2011. 高速列车气动性能与外形设计. 西南交通大学学报, (Feng Z P 2011. Aerodynamic performance of high-speed train with the train shape design. Southwest Jiao tong University).
    [14] 高广军. 2008. 强侧风作用下列车运行安全性研究 (Gao G J 2008. Research on train operation safety under strong side wind)).

    Gao G J 2008. Research on train operation safety under strong side wind).
    [15] 高浩, 戴焕云, 倪平涛. 2012. 考虑轮对弹性的轮轨接触点算法. 铁道学报, 34(05): 26-31 ((Gao H, Dai H Y, Ni P T 2012. Algorithm of Wheel-rail Contact Point for Flexible Wheelset. Journal of the China Railw Society, 34(05): 26-31)).

    (Gao H, Dai H Y, Ni P T 2012. Algorithm of Wheel-rail Contact Point for Flexible Wheelset. Journal of the China Railw Society, 34(05): 26-31).
    [16] 高宿平, 何旭辉, 邹云峰, 等. 钢桁梁断面型式对公铁两桥上列车气动特性影响. 铁道学报: 1-12 ((Gao S P, He X H, Zhou Y F, et al. Influence of Steel Truss Girder Section Type on Aerodynamic Characteristics of Trains on Rail-cum-road Bridge. Journal of the China Railway Society: 1-12)).

    (Gao S P, He X H, Zhou Y F, et al. Influence of Steel Truss Girder Section Type on Aerodynamic Characteristics of Trains on Rail-cum-road Bridge. Journal of the China Railway Society: 1-12).
    [17] 郭薇薇, 夏禾, 徐幼麟. 2006. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析. 工程力学, (02): 103-110 ((Guo W W, Xia H, Xu Y L 2006. Dynamic response of long span suspension bridge and running safety of train under wind action. Engineering Mechanics, (02): 103-110)).

    (Guo W W, Xia H, Xu Y L 2006. Dynamic response of long span suspension bridge and running safety of train under wind action. Engineering Mechanics, (02): 103-110).
    [18] 郭薇薇, 夏禾, 张田. 2015. 桥梁风屏障的气动效应及其对高速列车运行安全的影响分析. 工程力学, 32(08): 112-119 + 128 ((Guo W W, Xia H, Zhang T 2015. Analysis on aerodynamic effects of bridge wind barrier and its influence on running safety of a high-speed train. Engineering Mechanics, 32(08): 112-119 + 128)).

    (Guo W W, Xia H, Zhang T 2015. Analysis on aerodynamic effects of bridge wind barrier and its influence on running safety of a high-speed train. Engineering Mechanics, 32(08): 112-119 + 128).
    [19] 郭文华, 张佳文, 项超群. 2015. 桥梁对高速列车气动特性影响的风洞试验研究. 中南大学学报(自然科学版), 46(08): 3151-3159 ((Guo W H, Zhang J W, Xiang C Q 2015. Wind tunnel test of aerodynamic characteristics of high-speed train on bridge. Journal of Central South University (Science and Technology), 46(08): 3151-3159)).

    (Guo W H, Zhang J W, Xiang C Q 2015. Wind tunnel test of aerodynamic characteristics of high-speed train on bridge. Journal of Central South University (Science and Technology), 46(08): 3151-3159).
    [20] 郭向荣, 何玮, 朱志辉, 等. 2016. 横风作用下货物列车通过大跨度铁路斜拉桥的走行安全性研究. 中国铁道科学, 37(02): 41-47 (Guo X R, He W, Zhu Z H, et al. 2016. Running Safety of Freight Train Passing Long-Span Cable-Stayed Railway Bridge under Cross Wind. China Railway Science, 37(02): 41-47)). doi: 10.3969/j.issn.1001-4632.2016.02.06

    Guo X R, He W, Zhu Z H, et al. 2016. Running Safety of Freight Train Passing Long-Span Cable-Stayed Railway Bridge under Cross Wind. China Railway Science, 37(02): 41-47). doi: 10.3969/j.issn.1001-4632.2016.02.06
    [21] 郭向荣, 邹欣杭. 2024. 导风栏杆参数对钢桁梁桥风车桥耦合振动影响研究. 铁道科学与工程学报, 21(03): 1068-1078 ((Guo X R, Zhou X H 2024. Influence of wind guide railing parameters on wind-vehicle-bridge coupling vibration of steel truss bridge. Journal of Railway Science and Engineering, 21(03): 1068-1078)).

    (Guo X R, Zhou X H 2024. Influence of wind guide railing parameters on wind-vehicle-bridge coupling vibration of steel truss bridge. Journal of Railway Science and Engineering, 21(03): 1068-1078).
    [22] 韩旭, 向活跃, 李镇, 等. 2023. 考虑四肢桥塔遮风效应的常泰长江大桥风-车-桥耦合振动研究. 桥梁建设, 53(4): 8-15 (Hang X, Xiang H Y, Li Z, et al. 2023. Study of Wind-Vehicle-Bridge Coupling Vibration of Chang tai Changjiang River Bridge Considering Wind Shielding Effect of Four-Column Pylon Bridge Construction, Vol. 53, 53(4): 8-15)).

    Hang X, Xiang H Y, Li Z, et al. 2023. Study of Wind-Vehicle-Bridge Coupling Vibration of Chang tai Changjiang River Bridge Considering Wind Shielding Effect of Four-Column Pylon Bridge Construction, Vol. 53, 53(4): 8-15).
    [23] 韩旭, 向活跃, 罗扣, 等. 2022. 三主桁断面车-桥气动特性的风洞试验研究. 振动与冲击, 41(07): 268-275 (Hang X, Xiang H Y, Luo K, et al. 2022. Wind tunnel tests of aerodynamic characteristics of vehicle-bridge with 3-main truss section coupled system. Vibration and Impact, 41(07): 268-275)).

    Hang X, Xiang H Y, Luo K, et al. 2022. Wind tunnel tests of aerodynamic characteristics of vehicle-bridge with 3-main truss section coupled system. Vibration and Impact, 41(07): 268-275).
    [24] 韩艳, 胡揭玄, 蔡春声, 等. 2013. 横风作用下考虑车辆运动的车桥系统气动特性的数值模拟研究. 工程力学, 30(02): 318-325 (Hang Y, Hu J X, Cai C S, et al. 2013. Numerical simulation on aerodynamic characteristics of vehicles and bridges under cross winds with the consideration of vehicle moving. Engineering Mechanics, 30(02): 318-325)).

    Hang Y, Hu J X, Cai C S, et al. 2013. Numerical simulation on aerodynamic characteristics of vehicles and bridges under cross winds with the consideration of vehicle moving. Engineering Mechanics, 30(02): 318-325).
    [25] 韩艳, 胡揭玄, 蔡春声, 等. 2014. 横风下车桥系统气动特性的风洞试验研究. 振动工程学报, 27(01): 67-74 (Hang Y, Hu J X, Cai C S, et al. 2014. Wind tunnel measurement on aerodynamic characteristics of vehicles and bridges under cross winds. Journal of Vibration Engineering, 27(01): 67-74)). doi: 10.3969/j.issn.1004-4523.2014.01.010

    Hang Y, Hu J X, Cai C S, et al. 2014. Wind tunnel measurement on aerodynamic characteristics of vehicles and bridges under cross winds. Journal of Vibration Engineering, 27(01): 67-74). doi: 10.3969/j.issn.1004-4523.2014.01.010
    [26] 韩艳, 刘叶, 胡朋. 2020. 非定常气动荷载对桥上列车行驶安全舒适性影响分析. 铁道科学与工程学报, 17(01): 118-128 (Hang Y, Liu Y, Hu P 2020. Impact analysis of unsteady aerodynamic loads on the safety and comfort of trains running on bridges. Journal of Railway Science and Engineering, 17(01): 118-128)).

    Hang Y, Liu Y, Hu P 2020. Impact analysis of unsteady aerodynamic loads on the safety and comfort of trains running on bridges. Journal of Railway Science and Engineering, 17(01): 118-128).
    [27] 何佳骏. 2022. 大跨度公铁平层布置桥梁风—车—桥耦合振动分析及控制研究 (He J J 2022. Wind-vehicle-bridge Coupled Vibration Analysis and Control of Single-level Rail-cum-road Bridge. Southwest Jiao tong University)).

    He J J 2022. Wind-vehicle-bridge Coupled Vibration Analysis and Control of Single-level Rail-cum-road Bridge. Southwest Jiao tong University).
    [28] 何佳骏, 向活跃, 龙俊廷, 等. 2021. 桥隧过渡段高速列车行车抗风安全分析. 西南交通大学学报, 56(05): 1056-1064 (He J J, Xiang H Y, Long J T, et al. 2021. Wind-Resistant Safety Analysis of High-Speed Trains Passing Through Bridge-Tunnel Transition. Journal of Southwest Jiao tong University, 56(05): 1056-1064)).

    He J J, Xiang H Y, Long J T, et al. 2021. Wind-Resistant Safety Analysis of High-Speed Trains Passing Through Bridge-Tunnel Transition. Journal of Southwest Jiao tong University, 56(05): 1056-1064).
    [29] 何玮, 郭向荣, 朱志辉, 等. 2017. 风屏障高度对城轨专用斜拉桥车桥系统气动特性的影响. 中南大学学报(自然科学版), 48(08): 2238-2244 ((He W, Guo X R, Zhu Z H, et al. 2017. Effect of wind barrier’s height on train-bridge system aerodynamic characteristic of cable-stayed bridge for urban railway transportation. Journal of Central South University (Science and Technology) 48(08): 2238-2244)).

    (He W, Guo X R, Zhu Z H, et al. 2017. Effect of wind barrier’s height on train-bridge system aerodynamic characteristic of cable-stayed bridge for urban railway transportation. Journal of Central South University (Science and Technology) 48(08): 2238-2244).
    [30] 何玮, 郭向荣, 邹云峰, 等. 2016. 风屏障透风率对侧风下大跨度斜拉桥车-桥耦合振动的影响. 中南大学学报(自然科学版), 47(05): 1715-1721 ((He W, Guo X R, Zou Y F, et al. 2016. Effect of wind barrier porosity on coupled vibration of train-bridge system for long-span cable-stayed bridge in crosswind. Journal of Central South University (Science and Technology) 47(05): 1715-1721)).

    (He W, Guo X R, Zou Y F, et al. 2016. Effect of wind barrier porosity on coupled vibration of train-bridge system for long-span cable-stayed bridge in crosswind. Journal of Central South University (Science and Technology) 47(05): 1715-1721).
    [31] 何旭辉, 谭凌飞, 顾建华, 等. 2022. 考虑非平稳横风作用的列车-大跨斜拉桥耦合系统动力响应. 湖南大学学报(自然科学版), 49(05): 92-100 (He X H, Tan L F, Gu J H, et al. 2022. Dynamic Response of Train-Long Span Cable-stayed Bridge Coupling System Considering Nonstationary Crosswind. Journal of Hunan University(Natural Sciences), 49(05): 92-100)).

    He X H, Tan L F, Gu J H, et al. 2022. Dynamic Response of Train-Long Span Cable-stayed Bridge Coupling System Considering Nonstationary Crosswind. Journal of Hunan University(Natural Sciences), 49(05): 92-100).
    [32] 何旭辉, 邹云峰, 周佳, 等. 2015. 运行车辆风环境参数对其气动特性与临界风速的影响. 铁道学报, 37(05): 15-20 ((He X H, Zou Y F, Zhou J, et al. 2015. Effect of Wind Environment Parameters on Aerodynamic Characteristics and Critical Wind Velocity of Vehicle Operation Journal of The China Railway Society, 37(05): 15-20)).

    (He X H, Zou Y F, Zhou J, et al. 2015. Effect of Wind Environment Parameters on Aerodynamic Characteristics and Critical Wind Velocity of Vehicle Operation Journal of The China Railway Society, 37(05): 15-20).
    [33] 何旭辉, 左太辉, 邹云峰, 等. 2021. 风向角对CRH2列车气动特性的影响研究. 铁道科学与工程学报, 18(02): 277-286 (He X H, Zuo T H, Zou Y F, et al. 2021. Numerical simulation on the influence of wind direction angle on CRH2 train aerodynamic characteristics. Journal of Railway Science and Engineering, 18(02): 277-286)).

    He X H, Zuo T H, Zou Y F, et al. 2021. Numerical simulation on the influence of wind direction angle on CRH2 train aerodynamic characteristics. Journal of Railway Science and Engineering, 18(02): 277-286).
    [34] 胡朋, 张非, 韩艳, 等. 2021. 车辆气动力展向相关性传递函数及其对桥上运动车辆响应的影响. 中国公路学报, 34(04): 140-151 (Hu P, Zhang F, Hang Y, et al. 2021. Transfer Function of Spanwise Correlation of Vehicle Aerodynamic Forces and Its Effects on the Responses of a Vehicle Forces and Its Effects on the Responses of a Vehicle Running on a Bridge. China J. High w. Transp., 34(04): 140-151)). doi: 10.3969/j.issn.1001-7372.2021.04.012

    Hu P, Zhang F, Hang Y, et al. 2021. Transfer Function of Spanwise Correlation of Vehicle Aerodynamic Forces and Its Effects on the Responses of a Vehicle Forces and Its Effects on the Responses of a Vehicle Running on a Bridge. China J. High w. Transp., 34(04): 140-151). doi: 10.3969/j.issn.1001-7372.2021.04.012
    [35] 胡朋, 张非, 韩艳, 等. 2024. 静止型雷暴冲击风作用下列车气动导纳函数试验研究. 土木工程学报, 57(10): 33-46 (Hu P, Zhang F, Hang Y, et al. 2024. Experimental study on aerodynamic admittance functions of the train under the stationary thunderstorm downburst wind. Journal of Civil Engineering, 57(10): 33-46)).

    Hu P, Zhang F, Hang Y, et al. 2024. Experimental study on aerodynamic admittance functions of the train under the stationary thunderstorm downburst wind. Journal of Civil Engineering, 57(10): 33-46).
    [36] 黄志祥, 陈立, 蒋科林. 2011. 高速列车空气动力学特性的风洞试验研究. 铁道车辆, 49(12): 1-6 ((Huang Z X, Cheng L, Jiang K L 2011. The wind tunnel test and research on aerodynamics characteristics of highspeed trains. Railway vehicles, 49(12): 1-6)).

    (Huang Z X, Cheng L, Jiang K L 2011. The wind tunnel test and research on aerodynamics characteristics of highspeed trains. Railway vehicles, 49(12): 1-6).
    [37] 金曈宇, 叶小岭, 熊雄, 等. 2021. 高铁沿线大风预测技术研究. 铁道科学与工程学报, 18(03): 615-622 ((Jin T Y, Ye X L, Xiong X, et al. 2021. Research on prediction technology of high wind along high-speed railway. Journal of Railway Science and Engineering 18(03): 615-622)).

    (Jin T Y, Ye X L, Xiong X, et al. 2021. Research on prediction technology of high wind along high-speed railway. Journal of Railway Science and Engineering 18(03): 615-622).
    [38] 晋智斌. 2007. 车—线—桥耦合系统及车—桥随机振动 (Jin Z B 2007. Car-line-bridge coupling system and car-bridge random vibration. Southwest Jiao tong University)).

    Jin Z B 2007. Car-line-bridge coupling system and car-bridge random vibration. Southwest Jiao tong University).
    [39] 郎天翼, 王浩, 张寒, 等. 2023. 龙卷风作用下列车-桥梁系统气动特性数值研究. 铁道学报, 45(02): 146-153 (Lang T Y, Wang H, Zhang H, et al. 2023. Numerical Study on Aerodynamic Characteristics of Train-bridge System Subjected to Tornado. Journal of the China Railway Society, 45(02): 146-153)). doi: 10.3969/j.issn.1001-8360.2023.02.016

    Lang T Y, Wang H, Zhang H, et al. 2023. Numerical Study on Aerodynamic Characteristics of Train-bridge System Subjected to Tornado. Journal of the China Railway Society, 45(02): 146-153). doi: 10.3969/j.issn.1001-8360.2023.02.016
    [40] 李波, 陈文龙, 杨庆山, 等. 2021. 下击暴流作用下高速列车运行安全性能评估. 工程力学, 38(10): 248-256 (Li B, Cheng W L, Yang Q S, et al. 2021. Evaluating the safety of high-speed trains at the action of downburst. Engineering Mechanics, 38(10): 248-256)). doi: 10.6052/j.issn.1000-4750.2020.09.0640

    Li B, Cheng W L, Yang Q S, et al. 2021. Evaluating the safety of high-speed trains at the action of downburst. Engineering Mechanics, 38(10): 248-256). doi: 10.6052/j.issn.1000-4750.2020.09.0640
    [41] 李鹏, 李波, 田玉基, 等. 2023. 线路类型及射流倾角对下击暴流作用下高速列车运行安全性影响研究. 工程力学: 1-11 ((Li P, Li B, Tian Y J, et al. 2023. Investigation on influence of line type and jet tilt on running safety of high-speed trains under downburst. Engineering Mechanics: 1-11)).

    (Li P, Li B, Tian Y J, et al. 2023. Investigation on influence of line type and jet tilt on running safety of high-speed trains under downburst. Engineering Mechanics: 1-11).
    [42] 李奇, 吴定俊, 邵长宇. 2011. 考虑车体柔性的车桥耦合系统建模与分析方法. 振动工程学报, 24(01): 41-47 ((Li Q, Wu D J, Shao C Y 2011. Modeling and dynamic analysis method of vehicle-bridge coupling system considering car-body flexibility. Journal of Vibration Engineering, 24(01): 41-47)).

    (Li Q, Wu D J, Shao C Y 2011. Modeling and dynamic analysis method of vehicle-bridge coupling system considering car-body flexibility. Journal of Vibration Engineering, 24(01): 41-47).
    [43] 李若琦, 李波, 杨庆山, 等. 2021. 龙卷风作用下高速列车的运行安全性评估. 土木工程学报, 54(12): 12-20 (Li R Q, Li B, Yang Q S, et al. 2021. Evaluation of the safety of high-speed trains in a tornado. China Civil Engineering Journal, 54(12): 12-20)).

    Li R Q, Li B, Yang Q S, et al. 2021. Evaluation of the safety of high-speed trains in a tornado. China Civil Engineering Journal, 54(12): 12-20).
    [44] 李小珍, 李星星, 尹东亚, 等. 2022. 常泰长江大桥桥塔区列车行车安全分析. 铁道标准设计, 66(06): 62-67 (Li X Z, Li X X, Yin D Y, et al. 2022. Safety analysis of train running in the bridge tower area of chang tai chang jiang river bridge. Railway Standard Design, 66(06): 62-67)).

    Li X Z, Li X X, Yin D Y, et al. 2022. Safety analysis of train running in the bridge tower area of chang tai chang jiang river bridge. Railway Standard Design, 66(06): 62-67).
    [45] 李小珍, 秦羽, 刘德军. 2018. 侧风作用下五峰山长江大桥列车行车安全控制. 铁道工程学报, 35(07): 58-64 ((Li X Z, Qin Y, Jun D 2018. The safety control of train running on the Wu Feng Mountain Yangtze River bridge under crosswind. Journal of Railway Engineering Society, 35(07): 58-64)).

    (Li X Z, Qin Y, Jun D 2018. The safety control of train running on the Wu Feng Mountain Yangtze River bridge under crosswind. Journal of Railway Engineering Society, 35(07): 58-64).
    [46] 李小珍, 唐庆, 吴金峰, 等. 2019. 桥塔遮风效应对移动列车气动参数及行车安全的影响. 中国公路学报, 32(10): 191-199 (Li X Z, Tang Q, Wu J F, et al. 2019. Influence of the bridge tower shielding effect on aerodynamic parameters and running safety of moving train. China J. High w. Transp., 32(10): 191-199).

    Li X Z, Tang Q, Wu J F, et al. 2019. Influence of the bridge tower shielding effect on aerodynamic parameters and running safety of moving train. China J. High w. Transp., 32(10): 191-199
    [47] 李永乐, 胡朋, 张明金, 等. 2012. 侧向风作用下车-桥系统的气动特性−移动车辆模型风洞试验系统. 西南交通大学学报, 47(01): 50-56 (Li Y L, Hu P, Zhang M J, et al. 2012. Aerodynamic characteristics of vehicle-bridge system under cross wind: wind tunnel test system with moving vehicle model. Journal of Southwest Jiao tong University, 47(01): 50-56)). doi: 10.3969/j.issn.0258-2724.2012.01.009

    Li Y L, Hu P, Zhang M J, et al. 2012. Aerodynamic characteristics of vehicle-bridge system under cross wind: wind tunnel test system with moving vehicle model. Journal of Southwest Jiao tong University, 47(01): 50-56). doi: 10.3969/j.issn.0258-2724.2012.01.009
    [48] 李永乐, 李鑫, 向活跃, 等. 2012. 大跨度钢桁梁斜拉桥风-车-桥系统耦合振动. 交通运输工程学报, 12(05): 22-27 (Li Y L, Li X, Xiang H Y, et al. 2012. Coupling vibration of wind-vehicle-bridge system for long-span steel truss cable-stayed bridge. Journal of Traffic and Transportation Engineering, 12(05): 22-27)). doi: 10.3969/j.issn.1671-1637.2012.05.003

    Li Y L, Li X, Xiang H Y, et al. 2012. Coupling vibration of wind-vehicle-bridge system for long-span steel truss cable-stayed bridge. Journal of Traffic and Transportation Engineering, 12(05): 22-27). doi: 10.3969/j.issn.1671-1637.2012.05.003
    [49] 李永乐, 强士中, 廖海黎. 2005. 风-车-桥系统空间耦合振动研究. 土木工程学报, (07): 61-64 + 70 ((Li Y L, Qiang S Z, Liao H L 2005.3D coupled vibration of wind-vehicle-bridge system. Journal of Civil Engineering, (07): 61-64 + 70)).

    (Li Y L, Qiang S Z, Liao H L 2005.3D coupled vibration of wind-vehicle-bridge system. Journal of Civil Engineering, (07): 61-64 + 70).
    [50] 李永乐, 向活跃, 侯光阳, 等. 2013. 车桥组合状态下CRH2客车横风气动特性研究. 空气动力学学报, 31(05): 579-582 (Li Y L, Xiang H Y, Hou G Y, et al. 2013. Aerodynamic characteristics of CRH2 train in combination of vehicle-bridge with cross wind action. Acta Aerodynamics Sinica, 31(05): 579-582)). doi: 10.7638/kqdlxxb-2011.0127

    Li Y L, Xiang H Y, Hou G Y, et al. 2013. Aerodynamic characteristics of CRH2 train in combination of vehicle-bridge with cross wind action. Acta Aerodynamics Sinica, 31(05): 579-582). doi: 10.7638/kqdlxxb-2011.0127
    [51] 李永乐, 向活跃, 强士中. 2018. 风-列车-桥系统耦合振动研究综述. 中国公路学报, 31(07): 24-37 ((Li Y L, Xiang H Y, Qiang S Z 2018. Review on coupling vibration of wind-vehicle-bridge systems. China J. High w. Transp. , 31(07): 24-37)).

    (Li Y L, Xiang H Y, Qiang S Z 2018. Review on coupling vibration of wind-vehicle-bridge systems. China J. High w. Transp. , 31(07): 24-37).
    [52] 李永乐, 徐昕宇, 郭建明, 等. 2016. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究. 工程力学, 33(04): 130-135 (Li Y L, Xu X Y, Guo J M, et al. 2016. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge. Engineering Mechanics, 33(04): 130-135)).

    Li Y L, Xu X Y, Guo J M, et al. 2016. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge. Engineering Mechanics, 33(04): 130-135).
    [53] 刘汉云, 余志武, 国巍, 等. 2021. 基于OpenSEES的车-轨-桥快速仿真分析技术. 铁道科学与工程学报, 18(04): 957-965 ((Liu H Y, Yu Z W, Guo W, et al. 2021. A rapid simulation technique of the train-track-bridge interaction based on OpenSEES. Journal of Railway Science and Engineering 18(04): 957-965)).

    (Liu H Y, Yu Z W, Guo W, et al. 2021. A rapid simulation technique of the train-track-bridge interaction based on OpenSEES. Journal of Railway Science and Engineering 18(04): 957-965).
    [54] 刘金明, 高鸿瑞, 刘堂红. 2022. 大风环境下列车气动载荷变化规律实车试验研究. 中国铁道科学, 43(06): 131-139 ((Liu J M, Gao H D, Liu T H 2022. Full-scale test on variation laws of train aerodynamic load under strong winds. China Railway Science, 43(06): 131-139)).

    (Liu J M, Gao H D, Liu T H 2022. Full-scale test on variation laws of train aerodynamic load under strong winds. China Railway Science, 43(06): 131-139).
    [55] 刘庆宽. 2010. 强风环境下列车运行安全保障体系的初步研究. 工程力学, 27(S1): 305-310 ((Liu Q K 2010. Study on the system to ensure train operation safety under strong wind. Engineering Mechanics, 27(S1): 305-310)).

    (Liu Q K 2010. Study on the system to ensure train operation safety under strong wind. Engineering Mechanics, 27(S1): 305-310).
    [56] 刘庆宽, 杜彦良, 乔富贵. 2008. 日本列车横风和强风对策研究. 铁道学报, (01): 82-88 ((Liu Q K, Du Y L, Qiao F G 2008. Train-crosswind and strong wind countermeasure research in Japan. Journal of the China Rail Ways Society (01): 82-88)).

    (Liu Q K, Du Y L, Qiao F G 2008. Train-crosswind and strong wind countermeasure research in Japan. Journal of the China Rail Ways Society (01): 82-88).
    [57] 刘祥, 蒋丽忠, 向平, 等. 2022. 地震下高速铁路简支桥梁行车安全指标研究. 土木工程学报, 55(07): 66-76 (Liu X, Jiang L Z, Xiang P, et al. 2022. Study on running safety indexes for highspeed railway simply-supported bridge under earthquake. China Civil Engineering Journal, 55(07): 66-76)).

    Liu X, Jiang L Z, Xiang P, et al. 2022. Study on running safety indexes for highspeed railway simply-supported bridge under earthquake. China Civil Engineering Journal, 55(07): 66-76).
    [58] 吕娜, 刘伟, 谢海清, 等. 2022. 叶片式导风屏障挡风性能优化研究. 高速铁路技术, 13(01): 78-82 + 88 (Lu N, Liu W, Xie H Q, et al. 2022. Study on optimization of wind-proof performance of vane-type wind deflector. High Speed Railway Technology, 13(01): 78-82 + 88)). doi: 10.12098/j.issn.1674-8247.2022.01.014

    Lu N, Liu W, Xie H Q, et al. 2022. Study on optimization of wind-proof performance of vane-type wind deflector. High Speed Railway Technology, 13(01): 78-82 + 88). doi: 10.12098/j.issn.1674-8247.2022.01.014
    [59] 缪新乐, 李明, 姚勇, 等. 2012. 高速列车头车外形结构优化风洞试验研究. 铁道科学与工程学报, 9(02): 94-98 (Miu X L, Li M, Yao Y, et al. 2012. Wind tunnel test investigation on the shape optimization of head car of the highspeed train. Journal of Railway Science and Engineering, 9(02): 94-98)). doi: 10.3969/j.issn.1672-7029.2012.02.018

    Miu X L, Li M, Yao Y, et al. 2012. Wind tunnel test investigation on the shape optimization of head car of the highspeed train. Journal of Railway Science and Engineering, 9(02): 94-98). doi: 10.3969/j.issn.1672-7029.2012.02.018
    [60] 潘丽莎, 程晓卿, 秦勇, 等. 2012. 基于NARX神经网络的轮重减载率预测. 铁道车辆, 50(09): 4-7 + 1 (Pan L S, Cheng X Q, Qing Y, et al. 2012. Prediction of reduction rate of wheel load based on NARX network. Railway vehicles, 50(09): 4-7 + 1)). doi: 10.3969/j.issn.1002-7602.2012.09.002

    Pan L S, Cheng X Q, Qing Y, et al. 2012. Prediction of reduction rate of wheel load based on NARX network. Railway vehicles, 50(09): 4-7 + 1). doi: 10.3969/j.issn.1002-7602.2012.09.002
    [61] 任尊松. 2011. 轮轨多点接触计算方法研究. 铁道学报, 33(01): 25-30 ((Ren Z S 2011. Study on wheel-rail multi-point contact calculation. Journal of the China Rail Way Society, 33(01): 25-30)).

    (Ren Z S 2011. Study on wheel-rail multi-point contact calculation. Journal of the China Rail Way Society, 33(01): 25-30).
    [62] 苏成, 钟春意, 周立成. 2017. 车桥耦合系统随机振动的时域显式解法. 应用数学和力学, 38(01): 99-108 ((Su C, Zhong C Y, Zhou L C 2017. Random vibration analysis of coupled vehicle-bridge systems with the explicit time-domain method. Applied Mathematics and Mechanics, 38(01): 99-108)).

    (Su C, Zhong C Y, Zhou L C 2017. Random vibration analysis of coupled vehicle-bridge systems with the explicit time-domain method. Applied Mathematics and Mechanics, 38(01): 99-108).
    [63] 苏洋, 李永乐, 陈宁, 等. 2015. 分离式公铁双层桥面桥梁-列车-风屏障系统气动效应风洞试验研究. 土木工程学报, 48(12): 101-108 (Su Y, Li Y L, Cheng N, et al. 2015. Study on aerodynamic effects of the separate-type highway-railway double-deck bridge-vehicle-wind screen system by wind tunnel tests. China Civil Engineering Journal, 48(12): 101-108)).

    Su Y, Li Y L, Cheng N, et al. 2015. Study on aerodynamic effects of the separate-type highway-railway double-deck bridge-vehicle-wind screen system by wind tunnel tests. China Civil Engineering Journal, 48(12): 101-108).
    [64] 田红旗. 2010. 中国恶劣风环境下铁路安全行车研究进展. 中南大学学报(自然科学版), 41(06): 2435-2443 ((Tian H Q 2010. Research progress in railway safety under strong wind condition in China. Journal of Central South University (Science and Technology) 41(06): 2435-2443)).

    (Tian H Q 2010. Research progress in railway safety under strong wind condition in China. Journal of Central South University (Science and Technology) 41(06): 2435-2443).
    [65] 田红旗. 2015. 中国高速轨道交通空气动力学研究进展及发展思考. 中国工程科学, 17(04): 30-41 ((Tian H Q 2015. Development of research on aerodynamics of high-speed rails in China. Chinese Engineering Science, 17(04): 30-41)).

    (Tian H Q 2015. Development of research on aerodynamics of high-speed rails in China. Chinese Engineering Science, 17(04): 30-41).
    [66] 铁道第三勘察设计院. 2005. 铁路桥涵设计基本规范. TB 10002.1-2005: 246P; A245 (Yuan T D D S K C S J 2005. Basic Specification for Design of Railway Bridge and Culvert. 行业标准-铁道, TB 10002.1-2005: 246P; A245).
    [67] 铁道技术监督编辑部. 2015. 国家铁路局批准发布《高速铁路设计规范》. 铁道技术监督, 43(01): 31 (Journal E D o T 2015.43(01): 31)).

    Journal E D o T 2015.43(01): 31).
    [68] 铁道学报编辑部. 2012. 专著《列车-轨道-桥梁动力相互作用理论与工程应用》出版. 铁道学报, 34(05): 19 ((Bu B K B J 2012. "Theory and Engineering Application of Power Interaction between Train, Track and Bridge". Railway Journal, 34(05): 19)).

    (Bu B K B J 2012. "Theory and Engineering Application of Power Interaction between Train, Track and Bridge". Railway Journal, 34(05): 19).
    [69] 汪震, 邹云峰, 何旭辉, 等. 2022. 主桥与引桥断面形式差异对大跨桥上列车气动特性的影响. 中南大学学报(自然科学版), 53(10): 3936-3947 (Wang Z, Zou Y F, He X H, et al. 2022. Influence of section type difference between main span and approach span on aerodynamic characteristics of trains on long-span bridge. Journal of Central South University (Science and Technology), 53(10): 3936-3947)).

    Wang Z, Zou Y F, He X H, et al. 2022. Influence of section type difference between main span and approach span on aerodynamic characteristics of trains on long-span bridge. Journal of Central South University (Science and Technology), 53(10): 3936-3947).
    [70] 王开文. 1984. 车轮接触点迹线及轮轨接触几何参数的计算. 西南交通大学学报, (01): 89-99 ((Wang K W 1984. Calculation of wheel-rail contact geometry parameters and wheel-rail contact trace line. Journal of Southwest Jiao tong University, (01): 89-99)).

    (Wang K W 1984. Calculation of wheel-rail contact geometry parameters and wheel-rail contact trace line. Journal of Southwest Jiao tong University, (01): 89-99).
    [71] 王铭, 李小珍, 沙海庆, 等. 2018. 侧风下钢桁梁对移动高速列车气动特性影响的风洞试验. 中国公路学报, 31(07): 84-91 (Wang M, Li X Z, Sha H Q, et al. 2018. Wind tunnel test of the aerodynamic characteristics of a high-speed train running on a steel truss bridge under crosswind. China J. High w. Transp., 31(07): 84-91)). doi: 10.3969/j.issn.1001-7372.2018.07.006

    Wang M, Li X Z, Sha H Q, et al. 2018. Wind tunnel test of the aerodynamic characteristics of a high-speed train running on a steel truss bridge under crosswind. China J. High w. Transp., 31(07): 84-91). doi: 10.3969/j.issn.1001-7372.2018.07.006
    [72] 王维民, 陈楚龙, 刘叶, 等. 2023. 竖弯涡振作用下桥上列车行车安全舒适性研究. 桥梁建设, 53(S1): 38-45 (Wang W M, Cheng C L, Liu Y, et al. 2023. Research on train traveling safety and comfortable bridge under vertical vortex-induced vibrations. Bridge Construction, 53(S1): 38-45)).

    Wang W M, Cheng C L, Liu Y, et al. 2023. Research on train traveling safety and comfortable bridge under vertical vortex-induced vibrations. Bridge Construction, 53(S1): 38-45).
    [73] 王英杰. 2011. 考虑车体柔性的车—桥动力响应分析及行车舒适性影响因素研究 (Wang Y J 2011. Analysis of vehicle-bridge dynamic response considering body flexibility and research on influencing factors of driving comfort)).

    Wang Y J 2011. Analysis of vehicle-bridge dynamic response considering body flexibility and research on influencing factors of driving comfort).
    [74] 王争鸣. 2015. 兰新高铁穿越大风区线路选线及防风措施设计. 铁道工程学报, 32(01): 1-6 + 60 ((Wang Z M 2015. Design of route selection and windproof measures for strong wind-hit section of second double line of Lanzhou-Xinjiang railway. Journal of Railway Engineer Ring Society, 32(01): 1-6 + 60)).

    (Wang Z M 2015. Design of route selection and windproof measures for strong wind-hit section of second double line of Lanzhou-Xinjiang railway. Journal of Railway Engineer Ring Society, 32(01): 1-6 + 60).
    [75] 王祖祥, 陈其强, 曾甲华, 等. 2022. 塔梁交汇区风场效应及对行车安全的影响. 铁道建筑, 62(11): 6-11 (Wang Z X, Cheng Q Q, Zeng J H, et al. 2022. Wind field effect in tower girder intersection area and its influence on driving safety. Railway Engineering, 62(11): 6-11)). doi: 10.3969/j.issn.1003-1995.2022.11.02

    Wang Z X, Cheng Q Q, Zeng J H, et al. 2022. Wind field effect in tower girder intersection area and its influence on driving safety. Railway Engineering, 62(11): 6-11). doi: 10.3969/j.issn.1003-1995.2022.11.02
    [76] 郗艳红. 2012. 横风作用下的高速列车气动特性及运行安全性研究 (Xi Y H 2012. Study on aerodynamic characteristics and running safety of highspeed train under crosswinds)).

    Xi Y H 2012. Study on aerodynamic characteristics and running safety of highspeed train under crosswinds).
    [77] 夏禾. 车辆与结构动力相互作用 (Xia H Vehicle and structure dynamic interaction)).

    Xia H Vehicle and structure dynamic interaction).
    [78] 向活跃, 陈绪黎, 李永乐. 2022. 基于ARMAX代理模型的车-桥耦合系统可靠性研究. 西南交通大学学报, 57(06): 1217-1223 + 1232 ((Xiang H Y, Cheng X L, Li Y L 2022. Reliability analysis of coupled train-bridge systems based on ARMAX surrogate model. Journal of Southwest Jiao tong University, 57(06): 1217-1223 + 1232)).

    (Xiang H Y, Cheng X L, Li Y L 2022. Reliability analysis of coupled train-bridge systems based on ARMAX surrogate model. Journal of Southwest Jiao tong University, 57(06): 1217-1223 + 1232).
    [79] 向活跃, 李永乐, 张明金, 等. 2017. 侧风作用下移动车辆模型气动特性的试验方法. 振动工程学报, 30(06): 976-982 (Xiang H Y, Li Y L, Zhang M J, et al. 2017. Test methods on aerodynamic characteristic of moving vehicle model under crosswinds. Journal of Vibration Engineering, 30(06): 976-982)).

    Xiang H Y, Li Y L, Zhang M J, et al. 2017. Test methods on aerodynamic characteristic of moving vehicle model under crosswinds. Journal of Vibration Engineering, 30(06): 976-982).
    [80] 熊小慧, 梁习锋, 高广军, 等. 2006. 兰州-新疆线强侧风作用下车辆的气动特性. 中南大学学报(自然科学版), (06): 1183-1188 (Xiong X H, Liang X F, Gao G J, et al. 2006. Train aerodynamic characteristics in strong cross-wind on Lanzhou-Xinjian grail way line. J. Cent. South Univ (Science and Technology), (06): 1183-1188)).

    Science and Technology), (06): 1183-1188).
    [81] 胥红敏, 张鹏, 郭湛. 2019. 大风作用下高速列车运行安全性研究综述. 中国铁路, (05): 17-26 (Xu H M, Zhang P, Guo Z 2019. Study review on operation safety of highspeed train in gales (05): 17-26 (Xu H M, Zhang P, Guo Z 2019. Study review on operation safety of highspeed train in gales. (05): 17-26)).

    05): 17-26 (Xu H M, Zhang P, Guo Z 2019. Study review on operation safety of highspeed train in gales. (05): 17-26).
    [82] 徐曼, 曾滨, 乔宏, 等. 2021. 沪苏通大桥风-车-桥耦合系统非线性动力响应研究. 工程力学, 38(10): 83-89 + 133 (Xu M, Zeng B, Qiao H, et al. 2021. Nonlinear dynamic response analysis of wind-train-bridge coupling system of Hu-Su-Tong bridge. Engineering Mechanics, 38(10): 83-89 + 133)). doi: 10.6052/j.issn.1000-4750.2020.09.0679

    Xu M, Zeng B, Qiao H, et al. 2021. Nonlinear dynamic response analysis of wind-train-bridge coupling system of Hu-Su-Tong bridge. Engineering Mechanics, 38(10): 83-89 + 133). doi: 10.6052/j.issn.1000-4750.2020.09.0679
    [83] 徐昕宇, 李永乐, 陈星宇, 等. 2021. 风屏障的突风效应对桥上列车走行性的影响. 西南交通大学学报, 56(05): 1050-1055 + 1093 (Xu X Y, Li Y L, Cheng X Y, et al. 2021. Impact of sudden change of wind loads on running performance of vehicle on bridge with wind barriers. Journal of Southwest Jiao tong University, 56(05): 1050-1055 + 1093)).

    Xu X Y, Li Y L, Cheng X Y, et al. 2021. Impact of sudden change of wind loads on running performance of vehicle on bridge with wind barriers. Journal of Southwest Jiao tong University, 56(05): 1050-1055 + 1093).
    [84] 许平. 2009. 青藏铁路大风监测预警与行车指挥系统研究 (Xu P 2009. Study on wind warning and monitoring and driving command system of Qinghai-Tibet railway)).

    Xu P 2009. Study on wind warning and monitoring and driving command system of Qinghai-Tibet railway).
    [85] 许慰平, 程庆国. 1989. 大跨度铁路桥梁车桥空间耦合振动研究. 中国铁道科学, (02): 12-26 ((Xu P W, Cheng Q G 1989. Study on coupled vibration of vehicle-bridge space in railway bridges with large span. China Railway Science, (02): 12-26)).

    (Xu P W, Cheng Q G 1989. Study on coupled vibration of vehicle-bridge space in railway bridges with large span. China Railway Science, (02): 12-26).
    [86] 严乃杰, 吴韬, 臧瑜, 等. 2021. 既有桥梁对相邻车-桥系统气动力的影响分析. 振动与冲击, 40(04): 51-57 + 65 (Yan N J, Wu T, Zan Y, et al. 2021. A study on the effect of an existing bridge on the aerodynamic forces of an adjacent vehicle-bridge system. Journal OF Vibration AND SHOCK, 40(04): 51-57 + 65)).

    Yan N J, Wu T, Zan Y, et al. 2021. A study on the effect of an existing bridge on the aerodynamic forces of an adjacent vehicle-bridge system. Journal OF Vibration AND SHOCK, 40(04): 51-57 + 65).
    [87] 杨新文. 2010. 高速铁路轮轨噪声理论计算与控制研究 (Yang X W 2010. Theoretical calculation and control of wheel-rail noise in high speed railway)).

    Yang X W 2010. Theoretical calculation and control of wheel-rail noise in high speed railway).
    [88] 姚志勇. 2020. 横风下车桥系统气动特性与列车运行可靠性研究 (Yao Z Y 2020. Aerodynamic characteristics of train-bridge systems and running reliability of trains in cross winds)).

    Yao Z Y 2020. Aerodynamic characteristics of train-bridge systems and running reliability of trains in cross winds).
    [89] 姚志勇, 张楠, 夏禾, 等. 2018. 基于重叠网格的三维车桥系统气动特性研究. 工程力学, 35(02): 38-46 (Yao Z Y, Zhang N, Xia H, et al. 2018. Study on aerodynamic performance of three-dimensional train-bridge system based on overset mesh. Engineering Mechanics, 35(02): 38-46)).

    Yao Z Y, Zhang N, Xia H, et al. 2018. Study on aerodynamic performance of three-dimensional train-bridge system based on overset mesh. Engineering Mechanics, 35(02): 38-46).
    [90] 于梦阁, 张继业, 张卫华. 2013. 基于可靠性的高速列车横风安全性分析. 振动与冲击, 32(20): 90-96 ((Yu M G, Zhang J Y, Zhang W H 2013. Reliability-based operating safety analysis for high-speed trains under cross stochastic winds. Journal of Vibration and Shock 32(20): 90-96)).

    (Yu M G, Zhang J Y, Zhang W H 2013. Reliability-based operating safety analysis for high-speed trains under cross stochastic winds. Journal of Vibration and Shock 32(20): 90-96).
    [91] 张楠, 夏禾, 郭薇薇, 等. 2009. 京沪高速铁路南京大胜关长江大桥风—车—桥耦合振动分析. 中国铁道科学, 30(01): 41-48 ((Zhang N, Xia H, Guo W W, et al. 2009. Analysis on the wind-vehicle-bridge coupling vibration for Nanjing Da Sheng Guan yangtze river bridge of Beijing-Shanghai high-speed railway. China Rail Way Science 30(01): 41-48)).

    (Zhang N, Xia H, Guo W W, et al. 2009. Analysis on the wind-vehicle-bridge coupling vibration for Nanjing Da Sheng Guan yangtze river bridge of Beijing-Shanghai high-speed railway. China Rail Way Science 30(01): 41-48).
    [92] 张骞, 高芒芒, 于梦阁, 等. 2018. 沪通长江大桥主桥风—车—桥动力响应研究. 中国铁道科学, 39(01): 31-38 ((Zhang Q, Gao M M, Yu M G, et al. 2018. Research on wind-train-bridge dynamic response of main bridge of Shanghai-Nantong yangtze river bridge. China Railway Science 39(01): 31-38)).

    (Zhang Q, Gao M M, Yu M G, et al. 2018. Research on wind-train-bridge dynamic response of main bridge of Shanghai-Nantong yangtze river bridge. China Railway Science 39(01): 31-38).
    [93] 张田, 张楠, 王少钦, 等. 2019. 基于可靠度理论的桥上列车横风安全性分析. 振动与冲击, 38(17): 226-231 ((Zhang T, Zhang N, Wang S Q, et al. 2019. Crosswind safety analysis for a train running on abridge based on reliability theory. Journal of Vibration and Shock 38(17): 226-231)).

    (Zhang T, Zhang N, Wang S Q, et al. 2019. Crosswind safety analysis for a train running on abridge based on reliability theory. Journal of Vibration and Shock 38(17): 226-231).
    [94] 张卫华. 2006. 空间状态轮轮(轨)接触点计算方法. 中国铁道科学, (04): 76-79 ((Zhang W H 2006. Calculation Method of Wheel / Roller(Rail) Spatial Contact Point. CHINA RAILWAYSCIENCE, (04): 76-79)).

    (Zhang W H 2006. Calculation Method of Wheel / Roller(Rail) Spatial Contact Point. CHINA RAILWAYSCIENCE, (04): 76-79).
    [95] 张迅, 王力东, 韩艳, 等. 2022. 龙卷风作用下大跨度桥梁车-轨-桥耦合振动及行车安全性. 湖南大学学报(自然科学版), 49(09): 51-61 (Zhang X, Wang L D, Hang Y, et al. 2022. Train-track-bridge coupling vibration and train running safety of long span bridge under tornado. Journal of Hunan University(Natural Sciences), 49(09): 51-61)).

    Zhang X, Wang L D, Hang Y, et al. 2022. Train-track-bridge coupling vibration and train running safety of long span bridge under tornado. Journal of Hunan University(Natural Sciences), 49(09): 51-61).
    [96] 张宇, 李韶华, 任剑莹. 2024. 参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用. 力学学报, 56(01): 258-272 ((Zhang Y, Li S H, Ren J Y 2024. Parameter freezing precise exponential integrator and its application in nonlinear vehicle-bridge coupled vibration. Chinese Journal of Theoretical and Applied Mechanics, 56(01): 258-272)).

    (Zhang Y, Li S H, Ren J Y 2024. Parameter freezing precise exponential integrator and its application in nonlinear vehicle-bridge coupled vibration. Chinese Journal of Theoretical and Applied Mechanics, 56(01): 258-272).
    [97] 张志超. 2010. 车桥系统耦合振动和地震响应的随机分析 (Zhang Z C 2010. Random analysis of coupled vibration and seismic response of vehicle suspension system)).

    Zhang Z C 2010. Random analysis of coupled vibration and seismic response of vehicle suspension system).
    [98] 周旭, 李的平, 何旭辉, 等. 2020. 公铁同层桥梁列车轨道优化布置风洞试验研究. 武汉理工大学学报(交通科学与工程版), 44(01): 126-129 (Zhou X, Li D P, He X H, et al. 2020. Wind Tunnel Test Research on Optimal Train Track Arrangement the Highway and Railway Combined Bridge. Journal of Wuhan University of Technology (Transportation Science & Engineering), 44(01): 126-129)).

    Zhou X, Li D P, He X H, et al. 2020. Wind Tunnel Test Research on Optimal Train Track Arrangement the Highway and Railway Combined Bridge. Journal of Wuhan University of Technology (Transportation Science & Engineering), 44(01): 126-129).
    [99] 周子骥, 张楠, 孙琪凯. 2022. 基于虚拟激励法列车脱轨系数概率统计研究. 工程力学, 39(01): 219-227 ((Zhou Z J, Zhang N, Sun Q K 2022. The probability statistics of train derailment coefficients based on the pseudo-excitation method. Engineering Mechanics, 39(01): 219-227)).

    (Zhou Z J, Zhang N, Sun Q K 2022. The probability statistics of train derailment coefficients based on the pseudo-excitation method. Engineering Mechanics, 39(01): 219-227).
    [100] 朱志辉, 王力东, 龚威, 等. 2017. 多种垂向轮轨关系的对比及改进的车-线-桥系统迭代模型的建立. 中南大学学报(自然科学版), 48(06): 1585-1593 ((Zhu Z H, Wang L D, Gong W, et al. 2017. Comparative analysis of several types of vertical wheel/rail relationship and construction of an improved iteration model for train−track−bridge system. Journal of Central South University (Science and Technology) 48(06): 1585-1593)).

    (Zhu Z H, Wang L D, Gong W, et al. 2017. Comparative analysis of several types of vertical wheel/rail relationship and construction of an improved iteration model for train−track−bridge system. Journal of Central South University (Science and Technology) 48(06): 1585-1593).
    [101] 朱志辉, 王力东, 杨乐, 等. 2016. 轨道不平顺短波分量对列车-简支梁桥耦合振动的影响. 湖南大学学报(自然科学版), 43(01): 53-60 (Zhu Z H, Wang L D, Yang L, et al. 2016. Effect of short-wavelength components in rail irregularity on the coupled dynamic responses of train and simple-supported bridge. Journal of Human University (Natural Sciences), 43(01): 53-60)).

    Zhu Z H, Wang L D, Yang L, et al. 2016. Effect of short-wavelength components in rail irregularity on the coupled dynamic responses of train and simple-supported bridge. Journal of Human University (Natural Sciences), 43(01): 53-60).
    [102] 朱志辉, 杨乐, 王力东, 等. 2017. 地震作用下铁路斜拉桥动力响应及行车安全性研究. 工程力学, 34(04): 78-87 + 100 ((Zhu Z H, Yang L, Dong D L, et al. 2017. Dynamic responses and train running safety of railway cable-stayed bridge under earthquakes. Engineering Mechanics 34(04): 78-87 + 100)).

    (Zhu Z H, Yang L, Dong D L, et al. 2017. Dynamic responses and train running safety of railway cable-stayed bridge under earthquakes. Engineering Mechanics 34(04): 78-87 + 100).
    [103] 邹云峰, 何旭辉, 郭向荣, 等. 2017. 横风下流线箱型桥-轨道交通车辆气动干扰风洞实验研究. 振动与冲击, 36(05): 95-101 ((Zou Y F, He X H, Guo X R, et al. 2017. Wind tunnel tests for aerodynamic interference between streamline type box bridges and rail vehicles under cross wind. Journal of Vibration and Shock 36(05): 95-101)).

    (Zou Y F, He X H, Guo X R, et al. 2017. Wind tunnel tests for aerodynamic interference between streamline type box bridges and rail vehicles under cross wind. Journal of Vibration and Shock 36(05): 95-101).
    [104] 邹云峰, 何旭辉, 邹思敏, 等. 2018. 一种测试移动列车-桥梁系统气动特性的U形滑道和方法. 铁道科学与工程学报, 15(07): 1747-1753 ((Zou Y F, He X H, Ming Z S, et al. 2018. A U-shape launching ramp and method for aerodynamic characteristic testing of running train-bridge system. Journal of Railway Science and Engineering 15(07): 1747-1753)).

    (Zou Y F, He X H, Ming Z S, et al. 2018. A U-shape launching ramp and method for aerodynamic characteristic testing of running train-bridge system. Journal of Railway Science and Engineering 15(07): 1747-1753).
    [105] 左太辉, 何旭辉, 邹云峰, 等. 2019. 紊流影响下车-桥系统气动力特性风洞试验. 中国公路学报, 32(10): 178-190 (Zuo T H, He X H, Zou Y F, et al. 2019. Wind tunnel test of aerodynamic force characteristics on train-bridge system in the presence of turbulence. China J. High W. Transp., 32(10): 178-190)).

    Zuo T H, He X H, Zou Y F, et al. 2019. Wind tunnel test of aerodynamic force characteristics on train-bridge system in the presence of turbulence. China J. High W. Transp., 32(10): 178-190).
    [106] Au F T K, Cheng Y S, Cheung Y K. 2001. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles. Computers & Structures, 79: 853-872.
    [107] Augusti G. 1996. Dynamics of structures: Theory and applications to earthquake engineering. Meccanica, 31: 719-720. doi: 10.1007/BF00426980
    [108] Baker C, Dalley S, Johnson T, et al. 2001. The slipstream and wake of a high-speed train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit , 215: 83-99.
    [109] Cai C S, Hu J, Chen S, et al. 2015. A coupled wind-vehicle-bridge system and its applications: a review. Wind and Structures, 20: 117-142. doi: 10.12989/was.2015.20.2.117
    [110] Carrarini A. 2007. Reliability based analysis of the crosswind stability of railway vehicles. Journal of Wind Engineering and Industrial Aerodynamics, 95: 493-509. doi: 10.1016/j.jweia.2006.10.001
    [111] Carter F W. 1926. On the action of a locomotive driving wheel. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences , 112: 151-157.
    [112] Çavdar Ö, Bayraktar A, Altunişik A. 2015. Stochastic seismic analysis of Kömürhan Highway Bridge with varying material properties. Civil Engineering and Environmental Systems, 32: 1-13. doi: 10.1080/10286608.2015.1025387
    [113] Cheli F, Ripamonti F, Rocchi D, et al. 2010. Aerodynamic behaviour investigation of the new EMUV250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics, 98: 189-201. doi: 10.1016/j.jweia.2009.10.015
    [114] Chen G, Zhai W M. 2004. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics, 41: 301-322. doi: 10.1080/00423110412331315178
    [115] Chen Z, Liu T, Jiang Z, et al. 2018. Comparative analysis of the effect of different nose lengths on train aerodynamic performance under crosswind. Journal of Fluids and Structures, 78: 69-85. doi: 10.1016/j.jfluidstructs.2017.12.016
    [116] Conte J. 2012. Random vibration analysis of dynamic vehicle-bridge interaction due to road unevenness. Journal of Engineering Mechanics, 138: 816-825.
    [117] Cooper R K. 1981. The effect of cross-winds on trains. Journal of Fluids Engineering, 103: 170-178. doi: 10.1115/1.3240768
    [118] Dorigatti F, Sterling M, Baker C J, et al. 2015. Crosswind effects on the stability of a model passenger train—A comparison of static and moving experiments. Journal of Wind Engineering and Industrial Aerodynamics, 138: 36-51. doi: 10.1016/j.jweia.2014.11.009
    [119] Duan Y F, Wang S M, Yau J D. 2019. Vector form intrinsic finite element method for analysis of train–bridge interaction problems considering the coach-coupler effect. International Journal of Structural Stability and Dynamics, 19: 1950014. doi: 10.1142/S0219455419500147
    [120] Duan Y, Wang S, Wang R, et al. 2018. Vector form intrinsic finite-element analysis for train and bridge dynamic interaction. Journal of Bridge Engineering, 23: 04017126. doi: 10.1061/(ASCE)BE.1943-5592.0001171
    [121] Gallagher M, Morden J, Baker C, et al. 2018. Trains in crosswinds – Comparison of full-scale on-train measurements, physical model tests and CFD calculations. Journal of Wind Engineering and Industrial Aerodynamics, 175: 428-444. doi: 10.1016/j.jweia.2018.03.002
    [122] Ge C, Tan C A, Lin K, et al. 2021. On the efficacy and accuracy of freezing technique for the response analysis of time-varying vehicle-bridge interaction systems. Journal of Sound and Vibration, 514: 116453. doi: 10.1016/j.jsv.2021.116453
    [123] Gong W, Zhu Z, Wang K, et al. 2020. A real-time co-simulation solution for train–track–bridge interaction. Journal of Vibration and Control , 27: 107754632094663.
    [124] González A, Rattigan P, Obrien E J, et al. 2008. Determination of bridge lifetime dynamic amplification factor using finite element analysis of critical loading scenarios. Engineering Structures, 30: 2330-2337. doi: 10.1016/j.engstruct.2008.01.017
    [125] Gonzalez A, Rowley C, Obrien E. 2008. A general solution to the identification of moving vehicle forces on a bridge. International Journal for Numerical Methods in Engineering, 75: 335-354. doi: 10.1002/nme.2262
    [126] Gou H, Chen X, Bao Y. 2021. A wind hazard warning system for safe and efficient operation of high-speed trains. Automation in Construction, 132: 103952. doi: 10.1016/j.autcon.2021.103952
    [127] Green M F, Cebon D. 1994. Dynamic response of highway bridges to heavy vehicle loads: theory and experimental validation. Journal of Sound and Vibration, 170: 51-78. doi: 10.1006/jsvi.1994.1046
    [128] Green M F, Cebon D, Cole D J. 1995. Effects of vehicle suspension design on dynamics of highway bridges. Journal of Structural Engineering-asce, 121: 272-282. doi: 10.1061/(ASCE)0733-9445(1995)121:2(272)
    [129] Gulvanessian H. 2001. EN1990 Euro code Basis of structural design. Proceedings of The Institution of Civil Engineers-civil Engineering - PROC INST CIVIL ENG-CIVIL ENG, 144: 8-13. doi: 10.1680/cien.2001.144.6.8
    [130] Guo W, Xia H, Xu Y. 2010. Running safety analysis of a train on the Tsing Ma Bridge under turbulent winds. Earthquake Engineering and Engineering Vibration, 9: 307-318. doi: 10.1007/s11803-010-0015-3
    [131] Guo W-W, Cai B-S, Sun F-X, et al. 2022. Aerodynamic characteristics of a train on a long-span bridge with steel truss section under crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 231: 105215. doi: 10.1016/j.jweia.2022.105215
    [132] Han X, Xiang H, Chen X, et al. 2023. Random Dynamic Analysis of Wind-Vehicle-Bridge System Based on ARMAX Surrogate Model and High-Order Differencing. International Journal of Structural Stability and Dynamics, 23: 2350021. doi: 10.1142/S0219455423500219
    [133] Han X, Yue X, Li Y, et al. 2019. Predictions of vertical train-bridge response using artificial neural network-based surrogate model. Advances in Structural Engineering , 22: 136943321984980.
    [134] Han Y, Liu Y, Cai C-s, et al. 2022. Effects of sudden change in wind loads on running performance of trains on a highway-railway one-story bridge in crosswinds. Journal of Central South University, 29: 2621-2638. doi: 10.1007/s11771-022-5095-5
    [135] Han Y, Liu Y, Hu P, et al. 2020. Effect of unsteady aerodynamic loads on driving safety and comfort of trains running on bridges. Advances in Structural Engineering , 23: 136943322092479.
    [136] Han Y, Liu Y, Hu P, et al. 2023. Establishment of aerodynamic force model with varying wind yaw angles and its influences on the safety and comfort of the rail vehicle. Journal of Wind Engineering and Industrial Aerodynamics, 232: 105271. doi: 10.1016/j.jweia.2022.105271
    [137] Han Y, Zhang X, Wang L, et al. 2022. Running safety assessment of a train traversing a long-span bridge under sudden changes in wind loads owing to damaged wind barriers. International Journal of Structural Stability and Dynamics , 22.
    [138] He J, Yue X, Li Y, et al. 2022. Aerodynamic impact of train-induced wind on a moving motor-van. Frontiers of Structural and Civil Engineering, 16: 1-19. doi: 10.1007/s11709-021-0790-0
    [139] He X, Fang D-x, Huan l, et al. 2019. Parameter optimization for improved aerodynamic performance of louver-type wind barrier for train-bridge system. Journal of Central South University, 26: 229-240. doi: 10.1007/s11771-019-3996-8
    [140] He X, Gai Y, Wu T. 2017. Simulation of train–bridge interaction under wind loads: a rigid-flexible coupling approach. International Journal of Rail Transportation : 1-20.
    [141] He X, Shi K, Wu T, et al. 2016. Aerodynamic performance of a novel wind barrier for train-bridge system. Wind and Structures, 23: 171-189. doi: 10.12989/was.2016.23.3.171
    [142] He X, Wu T, Zou Y, et al. 2017. Recent developments of high-speed railway bridges in China. Structure and Infrastructure Engineering, 13: 1584-1595. doi: 10.1080/15732479.2017.1304429
    [143] He X-h, Shi K, Wu T. 2020. An efficient analysis framework for high-speed train-bridge coupled vibration under non-stationary winds. Structure and Infrastructure Engineering, 16: 1326-1346. doi: 10.1080/15732479.2019.1704800
    [144] He X-h, Zuo T-h, Zou Y-f, et al. 2020. Experimental study on aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds. Journal of Central South University, 27: 2465-2478. doi: 10.1007/s11771-020-4462-3
    [145] Howell J P. 1986. Aerodynamic response of maglev train models to a crosswind gust. Journal of Wind Engineering and Industrial Aerodynamics, 22: 205-213. doi: 10.1016/0167-6105(86)90085-1
    [146] Hu H, Xiang H, Liu K, et al. 2022. Experiments of aerodynamic admittances for moving vehicles on bridges. Journal of Wind Engineering and Industrial Aerodynamics, 226: 105041. doi: 10.1016/j.jweia.2022.105041
    [147] Hu P, Han Y, Cai C S, et al. 2019. New analytical models for power spectral density and coherence function of wind turbulence relative to a moving vehicle under crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 188: 384-396. doi: 10.1016/j.jweia.2019.02.005
    [148] Huang B, Seresh R, Zhu L. 2013. Statistical analysis of basic dynamic characteristics of large span cable-stayed bridge based on high order perturbation stochastic fem. Advances in Structural Engineering, 16: 1499-1512. doi: 10.1260/1369-4332.16.9.1499
    [149] Jiahao L. 1992. A fast CQC algorithm of psd matrices for random seismic responses. Computers & Structures, 44: 683-687.
    [150] Jin X, Xiao X, Ling L, et al. 2013. Study on safety boundary for high-speed train running in severe environments. International Journal of Rail Transportation, 1: 87-108. doi: 10.1080/23248378.2013.790138
    [151] Jin Z, Li G, Pei S, et al. 2017. Vehicle-induced random vibration of railway bridges: a spectral approach. International Journal of Rail Transportation, 5: 191-212. doi: 10.1080/23248378.2017.1338538
    [152] Jing H, Ji X, He X, et al. 2022. Dynamic characteristics of unsteady aerodynamic pressure on an enclosed housing for sound emission alleviation caused by a passing high-speed train. Applied Sciences, 12: 1545. doi: 10.3390/app12031545
    [153] Johnson K L. 1960. A note on the influence of elastic compliance on sliding friction in ball bearings. Journal of Basic Engineering, 82: 899-900. doi: 10.1115/1.3662793
    [154] Johnson K L. 2021. The effect of spin upon the rolling motion of an elastic sphere on a plane. Journal of Applied Mechanics, 25: 332-338.
    [155] Kalker J J. 1968. The tangential force transmitted by two elastic bodies rolling over each other with pure creepage. Wear, 11: 421-430. doi: 10.1016/0043-1648(68)90551-6
    [156] Kalker J J. 1979. The computation of three-dimensional rolling contact with dry friction. International Journal for Numerical Methods in Engineering, 14: 1293-1307. doi: 10.1002/nme.1620140904
    [157] Kalker J J. 1982. A fast algorithm for the simplified theory of rolling contact. Vehicle System Dynamics, 11: 1-13. doi: 10.1080/00423118208968684
    [158] Kalker J J. 1991. Wheel-rail rolling contact theory. Wear, 144: 243-261. doi: 10.1016/0043-1648(91)90018-P
    [159] Kalker J J, Ingenieur W, 's-Gravenhage G t. On the rolling contact of two elastic bodies in the presence of dry friction[C]//, 1967
    [160] Kalker J J. The simplified theory of contact[c]//j. J. Kalker. Three-dimensional elastic bodies in rolling contact. Dordrecht: Springer Netherlands, 1990: 99-135. 10.1007/978-94-015-7889-9_3.
    [161] Kožar I, Torić Malić N. 2013. Spectral method in realistic modelling of bridges under moving vehicles. Engineering Structures, 50: 149-157. doi: 10.1016/j.engstruct.2012.10.024
    [162] Li H, He X, Wang H, et al. 2019. Aerodynamics of a scale model of a high-speed train on a streamlined deck in cross winds. Journal of Fluids and Structures, 91: 102717. doi: 10.1016/j.jfluidstructs.2019.102717
    [163] Li H, Wang T, Wu G. 2022. A Bayesian deep learning approach for random vibration analysis of bridges subjected to vehicle dynamic interaction. Mechanical Systems and Signal Processing, 170: 108799. doi: 10.1016/j.ymssp.2021.108799
    [164] Li S, Li Z, Yang Q, et al. 2023. The scale effect of the wind tunnel test on the drag force of a stationary train under crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 238: 105425. doi: 10.1016/j.jweia.2023.105425
    [165] Li W, Liu T, Martinez-Vazquez P, et al. 2022. Effects of embankment layouts on train aerodynamics in a wind tunnel configuration. Journal of Wind Engineering and Industrial Aerodynamics, 220: 104830. doi: 10.1016/j.jweia.2021.104830
    [166] Li X, Tan Y, Qiu X, et al. 2021. Wind tunnel measurement of aerodynamic characteristics of trains passing each other on a simply supported box girder bridge. Railway Engineering Science, 29: 152-162. doi: 10.1007/s40534-021-00231-4
    [167] Li X-Z, Wang M, Xiao J, et al. 2018. Experimental study on aerodynamic characteristics of high-speed train on a truss bridge: A moving model test. Journal of Wind Engineering and Industrial Aerodynamics, 179: 26-38. doi: 10.1016/j.jweia.2018.05.012
    [168] Li Y, Qiang S, Liao H, et al. 2005. Dynamics of wind–rail vehicle–bridge systems. Journal of Wind Engineering and Industrial Aerodynamics, 93: 483-507. doi: 10.1016/j.jweia.2005.04.001
    [169] Li Y, Xiang H, Wang Z, et al. 2022. A comprehensive review on coupling vibrations of train–bridge systems under external excitations. Railway Engineering Science, 30: 383-401. doi: 10.1007/s40534-022-00278-x
    [170] Li Y, Xu X, Zhou Y C, et al. 2018. An interactive method for the analysis of the simulation of vehicle–bridge coupling vibration using ANSYS and SIMPACK. Proceedings of The Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit , 232: 663 - 679.
    [171] Li Y, Yue X, Wang B, et al. 2013. Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains. Advances in Structural Engineering, 16: 1663-1670. doi: 10.1260/1369-4332.16.10.1663
    [172] Liu H, Ong Y-S, Cai J. 2018. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Structural and Multidisciplinary Optimization, 57: 393-416. doi: 10.1007/s00158-017-1739-8
    [173] Liu H, Tian H-q, Li Y-f. 2015. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. Journal of Wind Engineering and Industrial Aerodynamics, 141: 27-38. doi: 10.1016/j.jweia.2015.02.004
    [174] Liu H, Yu Z, Guo W. 2019. A fastmodeling technique for the vertical train-track-bridge interactions. Shock And Vibration, 2019: 1-14.
    [175] Liu H, Yu Z, Guo W, et al. 2019. A novel method to search for the wheel–rail contact point. International Journal of Structural Stability and Dynamics, 19: 1950142. doi: 10.1142/S0219455419501426
    [176] Liu K, Zhang N, Xia H, et al. 2013. A comparison of different solution algorithms for the numerical analysis of vehicle–bridge interaction. International Journal of Structural Stability and Dynamics , 14.
    [177] Liu Y, Han Y, Hu P, et al. 2021. Influences of Wind Barriers on the Train Running Safety on a Highway-Railway One-Story Bridge. International Journal of Structural Stability and Dynamics, 21: 2140009. doi: 10.1142/S0219455421400095
    [178] Liu Y, Han Y, Li C, et al. 2023. Aerodynamic characteristics and dynamic performance of the moving train under crosswind. International Journal of Structural Stability and Dynamics , 23.
    [179] Ma C, Duan Q, Li Q, et al. 2018. Buffeting forces on static trains on a truss girder in turbulent crosswinds. Journal of Bridge Engineering , 23.
    [180] Mao J, Yu Z, Xiao Y, et al. 2016. Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method. Probabilistic Engineering Mechanics, 46: 48-61. doi: 10.1016/j.probengmech.2016.08.003
    [181] Miyamoto M. 1996. Mechanism of derailment phenomena of railway vehicles. Quarterly Report of Rtri , 37.
    [182] Montenegro P A, Carvalho H, Ortega M, et al. 2022. Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds - Part I: Running safety. Journal of Wind Engineering and Industrial Aerodynamics, 224: 104974. doi: 10.1016/j.jweia.2022.104974
    [183] Montenegro P A, Carvalho H, Ribeiro D, et al. 2021. Assessment of train running safety on bridges: A literature review. Engineering Structures, 241: 112425. doi: 10.1016/j.engstruct.2021.112425
    [184] Nguyen D-V, Kim K-D, Warnitchai P. 2009. Simulation procedure for vehicle–substructure dynamic interactions and wheel movements using linearized wheel–rail interfaces. Finite Elements in Analysis and Design, 45: 341-356. doi: 10.1016/j.finel.2008.11.001
    [185] Olmos J M, Astiz M Á. 2018. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct. Journal of Sound and Vibration, 419: 63-89. doi: 10.1016/j.jsv.2017.12.038
    [186] Olsson M. 1985. Finite element, modal co-ordinate analysis of structures subjected to moving loads. Journal of Sound and Vibration, 99: 1-12. doi: 10.1016/0022-460X(85)90440-7
    [187] Piotrowski J, Chollet H. 2005. Wheel–rail contact models for vehicle system dynamics including multi-point contact. Vehicle System Dynamics, 43: 455-483. doi: 10.1080/00423110500141144
    [188] Piotrowski J, Kik W. 2008. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Vehicle System Dynamics, 46: 27-48. doi: 10.1080/00423110701586444
    [189] Potosakis N, Paraskevopoulos E, Natsiavas S. 2020. Application of an augmented lagrangian approach to multibody systems with equality motion constraints. Nonlinear Dynamics , 99.
    [190] Proppe C, Wetzel C. 2010. A probabilistic approach for assessing the crosswind stability of ground vehicles. Vehicle System Dynamics - VEH SYST DYN, 48: 411-428. doi: 10.1080/00423114.2010.482158
    [191] Ren Z, Iwnicki S D, Xie G. 2011. A new method for determining wheel–rail multi-point contact. Vehicle System Dynamics, 49: 1533-1551. doi: 10.1080/00423114.2010.539237
    [192] Shen Z Y, Hedrick J K. 1983. A comparison of alternative creep force models for rail vehicle dynamic analysis. Vehicle System Dynamics, 12: 79-83. doi: 10.1080/00423118308968725
    [193] Stoura C D, Paraskevopoulos E, Dimitrakopoulos E G, et al. 2021. A dynamic partitioning method to solve the vehicle-bridge interaction problem. Computers & Structures, 251: 106547.
    [194] Su C, Wu Z, Xian J. 2020. Stochastic dynamic analysis of vehicle-bridge coupled systems with nonlinear Hertz contacts by explicit time-domain method. Vehicle System Dynamics , 60.
    [195] Sun J. 1987. Frequency spectral analysis of bridge-vehicle system due to road surface roughness. Vehicle System Dynamics, 16: 227-239. doi: 10.1080/00423118708968880
    [196] Sun J-Q. 2012. Random vibration analysis of time-delayed dynamical systems. Probabilistic Engineering Mechanics, 29: 1-6. doi: 10.1016/j.probengmech.2011.12.003
    [197] Sun Y, Zhai W, Guo Y. 2018. A robust non-Hertzian contact method for wheel–rail normal contact analysis. Vehicle System Dynamics, 56: 1899-1921. doi: 10.1080/00423114.2018.1439587
    [198] Tanabe M, Yamada Y, Hajime W. 1987. Modal method for interaction of train and bridge. Computers & Structures, 27: 119-127.
    [199] Tian Z, Xia H, Guo W 2013. Analysis on running safety of train on bridge with wind barriers subjected to cross wind. Wind and Structures , 17.
    [200] Vermeulen P J, Johnson K L. 1964. Contact of nonspherical elastic bodies transmitting tangential forces. Journal of Applied Mechanics, 31: 338-340. doi: 10.1115/1.3629610
    [201] Vu-Quoc L, Olsson M. 1993. High-speed vehicle models based on a new concept of vehicle/structure interaction component: part i—formulation. Journal of Dynamic Systems, Measurement, and Control , 115: 140-147.
    [202] Wang L, Zhang X, Bu X, et al. 2022. PDEM-based stochastic analysis of a train-track-bridge system using dimension-reduced simulations of turbulent winds and track irregularities. Structure and Infrastructure Engineering, 19: 1-16.
    [203] Wang L, Zhang X, Han Y, et al. 2024. A fast hybrid algorithm for the random vibration analysis of train-bridge systems under crosswinds. Engineering Structures, 299: 117107. doi: 10.1016/j.engstruct.2023.117107
    [204] Wang L, Zhang X, Liu H, et al. 2022. Global reliability analysis of running safety of a train traversing a bridge under crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 224: 104979. doi: 10.1016/j.jweia.2022.104979
    [205] Wang M, Chen X, Li X, et al. 2020. A frequency domain analysis framework for assessing overturning risk of high-speed trains under crosswind. Journal of Wind Engineering and Industrial Aerodynamics, 202: 104196. doi: 10.1016/j.jweia.2020.104196
    [206] Wang M, Li X-Z, Xiao J, et al. 2018. An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 177: 92-100. doi: 10.1016/j.jweia.2018.03.021
    [207] Wang T L. 1993. Impact in a railway truss bridge. Computers & Structures, 49: 1045-1054.
    [208] Wang T-L, Garg V K, Chu K-h. 1991. Railway Bridge/Vehicle Interaction Studies with New Vehicle Model. Journal of Structural Engineering-asce, 117: 2099-2116. doi: 10.1061/(ASCE)0733-9445(1991)117:7(2099)
    [209] Wang T-L, Huang D, Shahawy M, et al. 1996. Dynamic response of highway girder bridges. Computers & Structures, 60: 1021-1027.
    [210] Wang W, Zhang Y, Ouyang H. 2017. An iterative method for solving the dynamic response of railway vehicle-track coupled systems based on prediction of wheel-rail forces. Engineering Structures, 151: 297-311. doi: 10.1016/j.engstruct.2017.08.017
    [211] Wanming Z. 1991. The explicit scheme of newmark's integration method for large structural dynamic analyses. Journal of Chongqing Jiao tong University (Natural Science), 10: 33-41.
    [212] Xia H, Guo W W, Zhang N, et al. 2008. Dynamic analysis of a train–bridge system under wind action. Computers & Structures, 86: 1845-1855.
    [213] Xia H, Xu Y L, Chan T H T. 2000. Dynamic interaction of long suspension bridges with running trains. Journal of Sound and Vibration, 237: 263-280. doi: 10.1006/jsvi.2000.3027
    [214] Xia H, Zhang N, De Roeck G. 2003. Dynamic analysis of high speed railway bridge under articulated trains. Computers & Structures, 81: 2467-2478.
    [215] Xiang H, Tang P, Zhang Y, et al. 2020. Random dynamic analysis of vertical train–bridge systems under small probability by surrogate model and subset simulation with splitting. Railway Engineering Science, 28: 305-315. doi: 10.1007/s40534-020-00219-6
    [216] Xu L, Zhai W. 2019. A model for vehicle–track random interactions on effects of crosswinds and track irregularities. Vehicle System Dynamics, 57: 444-469. doi: 10.1080/00423114.2018.1469775
    [217] Xu Y L, Zhang N, Xia H. 2004. Vibration of coupled train and cable-stayed bridge systems in cross winds. Engineering Structures, 26: 1389-1406. doi: 10.1016/j.engstruct.2004.05.005
    [218] Xu Z, Dai G, Chen Y F, et al. 2023. Extreme response analysis of train-track-bridge-wind interaction system based on in-situ monitoring wind data. Structural Safety, 100: 102288. doi: 10.1016/j.strusafe.2022.102288
    [219] Yan N, Chen X, Li Y. 2018. Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach. Journal of Wind Engineering and Industrial Aerodynamics, 174: 103-118. doi: 10.1016/j.jweia.2017.12.024
    [220] Yang W, Deng E, Zhu Z, et al. 2020. Deterioration of dynamic response during high-speed train travelling in tunnel–bridge–tunnel scenario under crosswinds. Tunnelling and Underground Space Technology, 106: 103627. doi: 10.1016/j.tust.2020.103627
    [221] Yang W, Yue H, Deng E, et al. 2022. Influence of the turbulence conditions of crosswind on the aerodynamic responses of the train when running at tunnel-bridge-tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 229: 105138. doi: 10.1016/j.jweia.2022.105138
    [222] Yang X, Gu S, Zhou S, et al. 2015. A method for improved accuracy in three dimensions for determining wheel/rail contact points. Vehicle System Dynamics, 53: 1620-1640. doi: 10.1080/00423114.2015.1066508
    [223] Yang Y B, Lin B-H. 1995. Vehicle-bridge interaction analysis by dynamic condensation method. Journal of Structural Engineering-asce - J STRUCT ENG-ASCE , 121.
    [224] Yu H, Wang B, Xia C, et al. 2021. Efficient non-stationary random vibration analysis of vehicle-bridge system based on an improved explicit time-domain method. Engineering Structures, 231: 111786. doi: 10.1016/j.engstruct.2020.111786
    [225] Yu Z-w, Mao J-f. 2017. Probability analysis of train-track-bridge interactions using a random wheel/rail contact model. Engineering Structures, 144: 120-138. doi: 10.1016/j.engstruct.2017.04.038
    [226] Yu Z-w, Mao J-f. 2018. A stochastic dynamic model of train-track-bridge coupled system based on probability density evolution method. Applied Mathematical Modelling, 59: 205-232. doi: 10.1016/j.apm.2018.01.038
    [227] Yu Z-w, Mao J-f, Guo F-q, et al. 2016. Non-stationary random vibration analysis of a 3D train–bridge system using the probability density evolution method. Journal of Sound and Vibration, 366: 173-189. doi: 10.1016/j.jsv.2015.12.002
    [228] Yuan P, Dong Y. 2022. High-efficient decoupling method for coupling systems with multiple subdomains and time steps. Mechanical Systems and Signal Processing, 163: 108159. doi: 10.1016/j.ymssp.2021.108159
    [229] Yuan P, Li D, Cai C S, et al. 2018. An efficient decoupling dynamic algorithm for coupled multi-spring-systems. Computers & Structures, 209: 44-56.
    [230] Zeng Q, Stoura C D, Dimitrakopoulos E G. 2018. A localized lagrange multipliers approach for the problem of vehicle-bridge-interaction. Engineering Structures, 168: 82-92. doi: 10.1016/j.engstruct.2018.04.040
    [231] Zhai W. 1996. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering, 39: 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    [232] Zhai W M, Cai C B. 2002. Train/track/bridge dynamic interactions: simulation and applications. Vehicle System Dynamics, 37: 653-665. doi: 10.1080/00423114.2002.11666270
    [233] Zhai W, Han Z, Chen Z, et al. 2019. Train-track-bridge dynamic interaction: a state-of-the-art review. Vehicle System Dynamics , 57.
    [234] Zhai W, Sun X. 1994. A detailed model for investigating vertical interaction between railway vehicle and track. Vehicle System Dynamics, 23: 603-615. doi: 10.1080/00423119308969544
    [235] Zhang N, Chen X, Zhang C, et al. 2020. The effect of moving train on the aerodynamic performances of train-bridge system with a crosswind. Engineering Applications of Computational Fluid Mechanics, 14: 222-235. doi: 10.1080/19942060.2019.1704886
    [236] Zhang N, Ge G, Xia H, et al. 2015. Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers. Wind and Structures, An International Journal , 21: 311-329.
    [237] Zhang N, Tian Y, Xia H. 2016. A train-bridge dynamic interaction analysis method and its experimental validation. Engineering, 2: 528-536. doi: 10.1016/J.ENG.2016.04.012
    [238] Zhang N, Xia H. 2013. Dynamic analysis of coupled vehicle–bridge system based on inter-system iteration method. Computers & Structures, 114-115: 26-34.
    [239] Zhang N, Zhou Z, Wu Z. 2021. Safety evaluation of a vehicle–bridge interaction system using the pseudo-excitation method. Railway Engineering Science , 30.
    [240] Zhang T, Xia H, Guo W. 2018. Analysis on running safety of train on the bridge considering sudden change of wind load caused by wind barriers. Frontiers of Structural and Civil Engineering, 12: 558-567. doi: 10.1007/s11709-017-0455-1
    [241] Zhang X, Han Y, Wang L, et al. 2023. An adaptive surrogate model approach for random vibration analysis of the train–bridge system. Engineering Structures, 278: 115490. doi: 10.1016/j.engstruct.2022.115490
    [242] Zhang X, Wang L, Han Y, et al. 2023. An efficient method for predicting wheel-rail forces in coupled nonlinear train-track-bridge system using artificial neural networks. Advances in Structural Engineering, 26: 1228-1241. doi: 10.1177/13694332231156989
    [243] Zhu S, Li Y, Xu X. 2022. Wind tunnel test on the aerodynamic admittance of a rail vehicle in crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 226: 105052. doi: 10.1016/j.jweia.2022.105052
    [244] Zhu Z, Gong W, Wang L, et al. 2017. A hybrid solution for studying vibrations of coupled train–track–bridge system. Advances in Structural Engineering , 20: 136943321769177.
    [245] Zhu Z, Gong W, Wang L, et al. 2018. An efficient multi-time-step method for train-track-bridge interaction. Computers & Structures, 196: 36-48.
    [246] Zhu Z, Gong W, Wang L, et al. 2019. Efficient assessment of 3D train-track-bridge interaction combining multi-time-step method and moving track technique. Engineering Structures, 183: 290-302. doi: 10.1016/j.engstruct.2019.01.036
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  14
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 录用日期:  2025-01-13
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回