留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞的力学智能

程波 卢梦楠 贾渊博 徐峰

程波, 卢梦楠, 贾渊博, 徐峰. 细胞的力学智能. 力学进展, 待出版 doi: 10.6052/1000-0992-24-028
引用本文: 程波, 卢梦楠, 贾渊博, 徐峰. 细胞的力学智能. 力学进展, 待出版 doi: 10.6052/1000-0992-24-028
Cheng B, Lu M N, Jia Y B, Xu F. Cellular mechanical intelligence. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-028
Citation: Cheng B, Lu M N, Jia Y B, Xu F. Cellular mechanical intelligence. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-028

细胞的力学智能

doi: 10.6052/1000-0992-24-028 cstr: 32046.14.1000-0992-24-028
基金项目: 国家自然科学基金 (12002262, 12225208, 12432015)
详细信息
    作者简介:

    程波, 西安交通大学生命科学与技术学院副教授. 致力于研究生物膜系统相互作用的物理机制和应用, 为疾病的发病机制、预防和治疗提供重要的理论基础. 研究成果以一作/通讯身份 (包含共同) 发表于国际知名期刊《Nature Materials》(2022), 《Science Advances》(2020), 《Cell Discovery》(2022)及生物物理学旗舰期刊《Biophysical Journal》 (2016, 2019, 2023, 2024)等, 4篇论文被《Science Advances》《Biophysical Journal》等杂志选为当期封面论文. 获陕西高等学校科学技术奖一等奖1项, 陕西省高等教育 (研究生) 教学成果奖一等奖1项

    徐峰, 西安交通大学生命学院教授、生物医学信息教育部重点实验室主任、国家医学攻关产教融合平台 (医工方向) 智慧诊断技术及装备中心主任、西安市生物热-力-电多尺度耦合工程重点实验室主任. 作为第一/通讯作者在Nat Chem、PNAS、Nat Commu、Matter、Chem Rev、Prog Mater Sci、Mat Sci Eng R、Adv Mater、ACS Nano等国际高影响力期刊以及J Mech Phys Solids、Appl Mech Rev、Adv Appl Mech、J Biomech、J Fluid Mech等国际著名力学期刊发表350余篇期刊论文; 获授权发明专利60余项, 引用指数因子H = 95. 获“国家自然科学奖”二等奖、“教育部科学技术奖”一等奖、“中华医学科技奖”一等奖、“陕西省高等学校科学技术奖”一等奖等多项奖项. 并先后获得“中国力学青年科技奖” (2017, 同年全国仅4人)、“陕西青年科技标兵” (2016)、“陕西青年科技奖” (2016) 等科技奖, 以及陕西省“五四青年奖章” (2016)、“庆祝中华人民共和国成立70周年纪念章” (2019) 等个人荣誉, 入选“全球前2%顶尖科学家榜单” (2020—2022)、科睿唯安“全球高被引科学家 (交叉学科)” (2021—2023) 和爱思唯尔“中国高被引学者” (2023). 先后入选中组部“青年千人计划”、国家自然科学基金委“优秀青年基金”和“杰出青年基金”支持计划、陕西省“百人计划”、教育部“新世纪优秀人才”支持计划、享受国务院特殊津贴专家

    通讯作者:

    fengxu@mail.xjtu.edu.cn

  • 中图分类号: Q

Cellular mechanical intelligence

More Information
  • 摘要: 生物智能行为特征, 如感知、记忆、学习、问题求解及决策等, 在人类、动物及具有神经系统的高等生物中普遍存在. 近期研究揭示, 单个细胞在与其微环境相互作用的过程中, 也表现出部分类似于人类智能的行为, 如“多模态感知” 、“问题求解” 、“学习记忆”及“演化适应”等. 细胞智能作为新提出的颠覆性理论概念, 其基本问题包括细胞智能的形成原理、群体细胞涌现群体智能行为机制及单细胞进化为多细胞生命的演化动力等. 随着生物力学及力生物学的发展, 大量研究表明细胞力学微环境对细胞生理行为具有重要影响. 在力学刺激作用下, 单个细胞同样表现出智能行为. 基于此, 本文提出了“细胞的力学智能”的概念, 从细胞力学感知、力学决策、力学记忆及力学学习等方面对智能行为特征进行了总结, 旨在为细胞力学智能的形成机制及其潜在应用方向 (如细胞智能医学) 提供新的思路与见解.

     

  • 图  1  细胞智能内涵

    图  2  人类、动物、植物和细胞智能演化及形成机制

    图  3  细胞学习机制

    图  4  细胞力学记忆的正反馈环路(PFL)模型. (a)PFL的双稳态模型, (b)细胞力学记忆的强度阈值和时间阈值示意图, (c)细胞力学记忆的PFL模型, (d)细胞力学记忆的PFL双稳态模型

    图  5  力学网络模体的持久性检测和一致性检测. (a)力学网络模体的持久性检测, (b)力学网络模体的一致性检测。FLP: 触觉感觉神经元; ASH: 化学感觉神经元; AVD: 运动神经中间神经元; AVA: 运动神经中间神经元

  • [1] 包晗, 马腾志, 黄凯, 等. 2024. 细胞核骨架蛋白异常剪接在高血压血管重建中的力学生物学作用和机制. 医用生物力学, 39(S1): 53 (Bao H, Ma T Z, Huang K, et al. 2024. Mechanobiology and mechanism of abnormal splicing of nuclear skeleton protein in hypertensive vascular remodeling. Journal of Medical Biomechanics, 39(S1): 53).

    Bao H, Ma T Z, Huang K, et al. 2024. Mechanobiology and mechanism of abnormal splicing of nuclear skeleton protein in hypertensive vascular remodeling. Journal of Medical Biomechanics, 39(S1): 53
    [2] 程波, 万婉婷, Genin G M, 等. 2019. 梯度基质刚度依赖的神经生长锥趋向性移动. 医用生物力学, 34(S1): 167-168 (Cheng B, Wan W T, Genin G M, et al. 2019. Gradient matrix stiffness dependent nerve growth cone convergent movement. Journal of Medical Biomechanics, 34(S1): 167-168).

    Cheng B, Wan W T, Genin G M, et al. 2019. Gradient matrix stiffness dependent nerve growth cone convergent movement. Journal of Medical Biomechanics, 34(S1): 167-168
    [3] 丁文萍, 廖爱华. 2008. 记忆B细胞与血清记忆. 国际免疫学杂志, 31(2): 138-141 (Ding W P, Liao A H. 2008. Memory B cells and serological memory. International Journal of Immunology, 31(2): 138-141). doi: 10.3760/cma.j.issn.1673-4394.2008.02.016

    Ding W P, Liao A H. 2008. Memory B cells and serological memory. International Journal of Immunology, 31(2): 138-141 doi: 10.3760/cma.j.issn.1673-4394.2008.02.016
    [4] 高奕胜, 尹龙, 赵亚红. 2024. 仿胞外基质黏弹性水凝胶调控神经干细胞命运促进脊髓损伤恢复. 医用生物力学, 39(S1): 201-202 (Gao Y S, Yin L, Zhao Y H. 2024. Simulated extracellular matrix viscoelastic hydrogel regulates the fate of neural stem cells and promotes recovery from spinal cord injury. Journal of Medical Biomechanics, 39(S1): 201-202).

    Gao Y S, Yin L, Zhao Y H. 2024. Simulated extracellular matrix viscoelastic hydrogel regulates the fate of neural stem cells and promotes recovery from spinal cord injury. Journal of Medical Biomechanics, 39(S1): 201-202
    [5] 郭旭蓓, 柏振江, 李莺. 2020. 感染相关固有免疫记忆的研究进展. 中国小儿急救医学, 27(10): 750-753 (Guo X B, Bai Z J, Li Y. 2020. Research progress on infection-related innate immune memory. Chinese Pediatric Emergency Medicine, 27(10): 750-753). doi: 10.3760/cma.j.issn.1673-4912.2020.10.008

    Guo X B, Bai Z J, Li Y. 2020. Research progress on infection-related innate immune memory. Chinese Pediatric Emergency Medicine, 27(10): 750-753 doi: 10.3760/cma.j.issn.1673-4912.2020.10.008
    [6] 韩悦, 姜宗来, Chien S, 等. 2021. 葡萄糖激酶调节蛋白在切应力调控血管内皮细胞糖酵解中的作用机制. 医用生物力学, 36(S1): 62 (Han Y, Jiang Z L, Chien S, et al. 2021. The mechanism of glucokinase regulatory protein in the regulation of vascular endothelial cell glycolysis by shear stress. Journal of Medical Biomechanics, 36(S1): 62).

    Han Y, Jiang Z L, Chien S, et al. 2021. The mechanism of glucokinase regulatory protein in the regulation of vascular endothelial cell glycolysis by shear stress. Journal of Medical Biomechanics, 36(S1): 62
    [7] 姜宗来. 2017. 从生物力学到力学生物学的进展. 力学进展, 47(1): 309-332 (Jiang Z L. 2017. Advance from biomechanics to mechanobiology. Advances in Mechanics, 47(1): 309-332). doi: 10.6052/1000-0992-16-023

    Jiang Z L. 2017. Advance from biomechanics to mechanobiology. Advances in Mechanics, 47(1): 309-332 doi: 10.6052/1000-0992-16-023
    [8] 李亭亭, 李祎超, 方婉荔, 等. 2021. 胞外基质刚度通过ILK-YAP信号轴调控乳腺癌细胞耐药的力学生物学机制研究. 医用生物力学, 36(S1): 175 (Li T T, Li Y C, Fang W L, et al. 2021. Study on mechanobiology mechanism of drug resistance in breast cancer cells regulated by extracellular matrix stiffness via ILK-YAP signaling axis. Journal of Medical Biomechanics, 36(S1): 175).

    Li T T, Li Y C, Fang W L, et al. 2021. Study on mechanobiology mechanism of drug resistance in breast cancer cells regulated by extracellular matrix stiffness via ILK-YAP signaling axis. Journal of Medical Biomechanics, 36(S1): 175
    [9] 刘如娟, 王铮, 文礼, 等. 2024. 机械敏感性离子通道Piezo1在免疫细胞和胰腺炎中的研究进展. 中华消化外科杂志, 23(5): 754-760 (Liu R J, Wang Z, Wen L, et al. 2024. Research progress of mechanosensitive ion channel Piezo1 in immune cells and pancreatitis. Chinese Journal of Digestive Surgery, 23(5): 754-760). doi: 10.3760/cma.j.cn115610-20240411-00201

    Liu R J, Wang Z, Wen L, et al. 2024. Research progress of mechanosensitive ion channel Piezo1 in immune cells and pancreatitis. Chinese Journal of Digestive Surgery, 23(5): 754-760 doi: 10.3760/cma.j.cn115610-20240411-00201
    [10] 吕东媛, 周吕文, 龙勉. 2017. 干细胞的生物力学研究. 力学进展, 47(1): 534-585 (Lv D Y, Zhou L W, Long M. 2017. Biomechanics of stem cells. Advances in Mechanics, 47(1): 534-585). doi: 10.6052/1000-0992-16-041

    Lv D Y, Zhou L W, Long M. 2017. Biomechanics of stem cells. Advances in Mechanics, 47(1): 534-585 doi: 10.6052/1000-0992-16-041
    [11] 吕守芹, 杨晴, 龚明亮, 等. 2024. 黏着斑激酶FAK的结构-功能关系模拟. 医用生物力学, 39(S1): 83 (Lv S Q, Yang Q, Gong M L, et al. 2024. Simulation of structure-function relationship of adhesion spot kinase FAK. Journal of Medical Biomechanics, 39(S1): 83).

    Lv S Q, Yang Q, Gong M L, et al. 2024. Simulation of structure-function relationship of adhesion spot kinase FAK. Journal of Medical Biomechanics, 39(S1): 83
    [12] 孟剑锋, 徐翔宇, 蒋超慧, 等. 2024. 肿瘤细胞通过对基质纤维重塑影响局部侵袭的细胞力学机制. 医用生物力学, 39(S1): 594 (Meng J F, Xu X Y, Jiang C H, et al. 2024. Cytomechanical mechanism of tumor cells influencing local invasion through matrix fiber remodeling. Journal of Medical Biomechanics, 39(S1): 594).

    Meng J F, Xu X Y, Jiang C H, et al. 2024. Cytomechanical mechanism of tumor cells influencing local invasion through matrix fiber remodeling. Journal of Medical Biomechanics, 39(S1): 594
    [13] 纳静, 石秋生, 杨智杰, 等. 2024. 基于染色质和代谢重塑的力学记忆调控间充质干细胞增殖和平滑肌分化的机制研究. 医用生物力学, 39(S1): 89 (Na J, Shi Q S, Yang Z J, et al. 2024. Mechanistic memory based on chromatin and metabolic remodeling regulates the proliferation and smooth muscle differentiation of mesenchymal stem cells. Journal of Medical Biomechanics, 39(S1): 89).

    Na J, Shi Q S, Yang Z J, et al. 2024. Mechanistic memory based on chromatin and metabolic remodeling regulates the proliferation and smooth muscle differentiation of mesenchymal stem cells. Journal of Medical Biomechanics, 39(S1): 89
    [14] 苏同悦, 包晗, 徐蕾涵, 等. 2021. 周期性张应变通过miRNA-214-3p调控LaminA/C表达参与血管重建. 医用生物力学, 36(S1): 267 (Su T Y, Bao H, Xu L H, et al. 2021. Periodic tensile strain regulates LaminA/C expression through miRNA-214-3p and participates in vascular remodeling. Journal of Medical Biomechanics, 36(S1): 267).

    Su T Y, Bao H, Xu L H, et al. 2021. Periodic tensile strain regulates LaminA/C expression through miRNA-214-3p and participates in vascular remodeling. Journal of Medical Biomechanics, 36(S1): 267
    [15] 王安琪, 陈新曼, 陈俊威. 2024. 基质刚度重构染色质对肿瘤细胞耐药性的影响. 医用生物力学, 39(S1): 453 (Wang A Q, Chen X M, Chen J W. 2024. Effect of matrix stiffness remodeling chromatin on drug resistance of tumor cells. Journal of Medical Biomechanics, 39(S1): 453).

    Wang A Q, Chen X M, Chen J W. 2024. Effect of matrix stiffness remodeling chromatin on drug resistance of tumor cells. Journal of Medical Biomechanics, 39(S1): 453
    [16] 王乾春, 蒋超慧, 季葆华. 2024. 基底拓扑与曲率影响上皮细胞排列和极化的研究. 医用生物力学, 39(S1): 226 (Wang Q C, Jiang C H, Ji B H. 2024. The influence of basal topology and curvature on the arrangement and polarization of epithelial cells. Journal of Medical Biomechanics, 39(S1): 226).

    Wang Q C, Jiang C H, Ji B H. 2024. The influence of basal topology and curvature on the arrangement and polarization of epithelial cells. Journal of Medical Biomechanics, 39(S1): 226
    [17] 韦富香, 徐翔宇, 张春雨, 等. 2021. 细胞应力纤维的各向异性影响力模式依赖的染色质拉伸和基因表达. 医用生物力学, 36(S1): 79-80 (Wei F X, Xu X Y, Zhang C Y, et al. 2021. The anisotropy of cellular stress fibers influences pattern-dependent chromatin stretching and gene expression. Journal of Medical Biomechanics, 36(S1): 79-80).

    Wei F X, Xu X Y, Zhang C Y, et al. 2021. The anisotropy of cellular stress fibers influences pattern-dependent chromatin stretching and gene expression. Journal of Medical Biomechanics, 36(S1): 79-80
    [18] 吴嘉钦, 王春莉, 杨力. 2024. 基质刚度通过影响细胞核形变调控H3组蛋白乳酰化修饰参与OA病变. 医用生物力学, 39(S1): 648 (Wu J Q, Wang C L, Yang L. 2024. Matrix stiffness regulates H3 histone acylation by influencing nuclear deformation and participates in OA disease. Journal of Medical Biomechanics, 39(S1): 648).

    Wu J Q, Wang C L, Yang L. 2024. Matrix stiffness regulates H3 histone acylation by influencing nuclear deformation and participates in OA disease. Journal of Medical Biomechanics, 39(S1): 648
    [19] 严然, 陈祥燕, 李顺, 等. 2024. 三维力学微环境中压应力诱导肿瘤细胞染色质结构重塑. 医用生物力学, 39(S1): 121 (Yan R, Chen X Y, Li S, et al. 2024. Chromatin remodeling in tumor cells induced by compressive stress in three-dimensional mechanical microenvironment. Journal of Medical Biomechanics, 39(S1): 121).

    Yan R, Chen X Y, Li S, et al. 2024. Chromatin remodeling in tumor cells induced by compressive stress in three-dimensional mechanical microenvironment. Journal of Medical Biomechanics, 39(S1): 121
    [20] 杨月华, 姜洪源. 2021. 细胞趋硬性迁移的研究进展. 应用数学和力学, 42(10): 999-1007 (Yang Y H, Jiang H Y. 2021. Research advances in cell durotaxis. Applied Mathematics and Mechanics, 42(10): 999-1007).

    Yang Y H, Jiang H Y. 2021. Research advances in cell durotaxis. Applied Mathematics and Mechanics, 42(10): 999-1007
    [21] 张帆, 郑璐, 武亿, 等. 2024. 基质硬度通过黏附蛋白调节胚胎干细胞的力学感知和分化命运. 医用生物力学, 39(S1): 193 (Zhang F, Zheng L, Wu Y, et al. 2024. Matrix hardness regulates the mechanical perception and differentiation fate of embryonic stem cells through adhesion proteins. Journal of Medical Biomechanics, 39(S1): 193).

    Zhang F, Zheng L, Wu Y, et al. 2024. Matrix hardness regulates the mechanical perception and differentiation fate of embryonic stem cells through adhesion proteins. Journal of Medical Biomechanics, 39(S1): 193
    [22] 张欢, 赵国清, 冯锦腾, 等. 2023. 力敏感受体介导细胞功能调控的力学生物学研究. 力学进展, 53(1): 48-153 (Zhang H, Zhao G Q, Feng J T, et al. 2023. Cellular mechanobiology: Mediated by force-sensitive adhesion receptors. Advances in Mechanics, 53(1): 48-153). doi: 10.6052/1000-0992-22-029

    Zhang H, Zhao G Q, Feng J T, et al. 2023. Cellular mechanobiology: Mediated by force-sensitive adhesion receptors. Advances in Mechanics, 53(1): 48-153 doi: 10.6052/1000-0992-22-029
    [23] 朱鸿源, 张诚, 林敏. 2021. 整合素-钙黏素协同介导细胞力学感知和记忆行为: 基于黏附拮抗效应的转录因子重定位模型. 医用生物力学, 36(S1): 84 (Zhu H Y, Zhang C, Lin M. 2021. Integrin-cadherin synergistically mediates cellular mechanical perception and memory behavior: A transcription factor relocation model based on adhesion antagonistic effects. Journal of Medical Biomechanics, 36(S1): 84).

    Zhu H Y, Zhang C, Lin M. 2021. Integrin-cadherin synergistically mediates cellular mechanical perception and memory behavior: A transcription factor relocation model based on adhesion antagonistic effects. Journal of Medical Biomechanics, 36(S1): 84
    [24] Acar M, Becskei A, Van Oudenaarden A. 2005. Enhancement of cellular memory by reducing stochastic transitions. Nature, 435(7039): 228-232. doi: 10.1038/nature03524
    [25] Adler J, Tso W W. 1974. “Decision”-making in bacteria: Chemotactic response of Escherichia coli to conflicting stimuli. Science, 184(4143): 1292-1294. doi: 10.1126/science.184.4143.1292
    [26] Adler M, Mayo A, Zhou X, et al. 2020. Principles of cell circuits for tissue repair and fibrosis. IScience, 23(2): 100841. doi: 10.1016/j.isci.2020.100841
    [27] Albrecht E, Petty H R. 1998. Cellular memory: Neutrophil orientation reverses during temporally decreasing chemoattractant concentrations. Proceedings of the National Academy of Sciences, 95(9): 5039-5044. doi: 10.1073/pnas.95.9.5039
    [28] Alisafaei F, Moheimani H, Elson E L, et al. 2023. A nuclear basis for mechanointelligence in cells. Proceedings of the National Academy of Sciences, 120(19): e2303569120. doi: 10.1073/pnas.2303569120
    [29] Allmann J M. 1999. Evolving brains. Scientific American Library.
    [30] Alon U. 2007. Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 8(6): 450-461. doi: 10.1038/nrg2102
    [31] Amar K, Wei F, Chen J, et al. 2021. Effects of forces on chromatin. APL Bioengineering, 5(4): 041503. doi: 10.1063/5.0065302
    [32] Andrews B W, Iglesias P A. 2007. An information-theoretic characterization of the optimal gradient sensing response of cells. PLoS Computational Biology, 3(8): e153. doi: 10.1371/journal.pcbi.0030153
    [33] Angulo-Urarte A, Van Der Wal T, Huveneers S. 2020. Cell-cell junctions as sensors and transducers of mechanical forces. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(9): 183316. doi: 10.1016/j.bbamem.2020.183316
    [34] Appel H M, Cocroft R B. 2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175(4): 1257-1266. doi: 10.1007/s00442-014-2995-6
    [35] Aquino G, Tweedy L, Heinrich D, et al. 2014. Memory improves precision of cell sensing in fluctuating environments. Scientific Reports, 4(1): 5688. doi: 10.1038/srep05688
    [36] Arnsdorf E J, Tummala P, Castillo A B, et al. 2010. The epigenetic mechanism of mechanically induced osteogenic differentiation. Journal of Biomechanics, 43(15): 2881-2886. doi: 10.1016/j.jbiomech.2010.07.033
    [37] Babaei B, Davarian A, Pryse K M, et al. 2016. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. Journal of the Mechanical Behavior of Biomedical Materials, 55: 32-41. doi: 10.1016/j.jmbbm.2015.10.008
    [38] Bachir A I, Horwitz A R, Nelson W J, et al. 2017. Actin-based adhesion modules mediate cell interactions with the extracellular matrix and neighboring cells. Cold Spring Harbor Perspectives in Biology, 9(7): a023234. doi: 10.1101/cshperspect.a023234
    [39] Bae J, Liu L, Moore C, et al. 2022. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8 + T cells to overcome immunotherapy resistance in cancer. Nature Cell Biology, 24(12): 1754-1765. doi: 10.1038/s41556-022-01024-5
    [40] Balázsi G, Van Oudenaarden A, Collins J J. 2011. Cellular decision making and biological noise: From microbes to mammals. Cell, 144(6): 910-925. doi: 10.1016/j.cell.2011.01.030
    [41] Balestrini J L, Chaudhry S, Sarrazy V, et al. 2012. The mechanical memory of lung myofibroblasts. Integrative Biology, 4(4): 410-421. doi: 10.1039/c2ib00149g
    [42] Ball P. 2008. Cellular memory hints at the origins of intelligence. Nature, 451(7177): 385. doi: 10.1038/451385a
    [43] Baluška F, Levin M. 2016. On having no head: Cognition throughout biological systems. Frontiers in Psychology, 7: 902. doi: 10.3389/fpsyg.2016.00902
    [44] Baluška F, Mancuso S, Volkmann D, et al. 2009. The ‘root-brain’ hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signaling & Behavior, 4(12): 1121-1127. doi: 10.3389/fpsyg.2016.00902
    [45] Barcelona-Estaje E, Dalby M J, Cantini M, et al. 2021. You talking to me? Cadherin and integrin crosstalk in biomaterial design. Advanced Healthcare Materials, 10(6): 2002048. doi: 10.1002/adhm.202002048
    [46] Bennett R R, Pfeifer C R, Irianto J, et al. 2017. Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophysical Journal, 112(11): 2271-2279. doi: 10.1016/j.bpj.2017.04.037
    [47] Bera K, Kiepas A, Godet I, et al. 2022. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature, 611(7935): 365-373. doi: 10.1038/s41586-022-05394-6
    [48] Berry D B, Guan Q, Hose J, et al. 2011. Multiple means to the same end: The genetic basis of acquired stress resistance in yeast. PLoS Genetics, 7(11): e1002353. doi: 10.1371/journal.pgen.1002353
    [49] Biderman N, Bakkour A, Shohamy D. 2020. What are memories for? The hippocampus bridges past experience with future decisions. Trends in Cognitive Sciences, 24(7): 542-556. doi: 10.1016/j.tics.2020.04.004
    [50] Borg M, Jacob Y, Susaki D, et al. 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature Cell Biology, 22(6): 621-629. doi: 10.1038/s41556-020-0515-y
    [51] Brasacchio D, Okabe J, Tikellis C, et al. 2009. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58(5): 1229-1236. doi: 10.2337/db08-1666
    [52] Brown T H, Kairiss E W, Keenan C L. 1990. Hebbian synapses: Biophysical mechanisms and algorithms. Annual Review of Neuroscience, 13(1): 475-511. doi: 10.1146/annurev.ne.13.030190.002355
    [53] Buckley C D, Tan J, Anderson K L, et al. 2014. The minimal cadherin-catenin complex binds to actin filaments under force. Science, 346(6209): 1254211. doi: 10.1126/science.1254211
    [54] Burdon-Sanderson J S. 1873. I. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula. Proceedings of the Royal Society of London, 21 (139-147): 495-496.
    [55] Cabal C, Martínez-García R, De Castro Aguilar A, et al. 2020. The exploitative segregation of plant roots. Science, 370(6521): 1197-1199. doi: 10.1126/science.aba9877
    [56] Cai D, Chen S C, Prasad M, et al. 2014. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell, 157(5): 1146-1159. doi: 10.1016/j.cell.2014.03.045
    [57] Caliari S R, Perepelyuk M, Cosgrove B D, et al. 2016. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Scientific Reports, 6(1): 21387. doi: 10.1038/srep21387
    [58] Calvo F, Ege N, Grande-Garcia A, et al. 2013. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 15(6): 637-646. doi: 10.1038/ncb2756
    [59] Calvo Garzón P, Keijzer F. 2011. Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19(3): 155-171. doi: 10.1177/1059712311409446
    [60] Cambria E, Coughlin M F, Floryan M A, et al. 2024. Linking cell mechanical memory and cancer metastasis. Nature Reviews Cancer, 24(3): 216-228. doi: 10.1038/s41568-023-00656-5
    [61] Chen X, Liang H, Zhang J, et al. 2012. Secreted microRNAs: A new form of intercellular communication. Trends in Cell Biology, 22(3): 125-132. doi: 10.1016/j.tcb.2011.12.001
    [62] Cheng B, Wan W, Huang G, et al. 2020. Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10): eaax1909. doi: 10.1126/sciadv.aax1909
    [63] Choi P J, Mitchison T J. 2013. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells. Proceedings of the National Academy of Sciences, 110(16): 6488-6493. doi: 10.1073/pnas.1221312110
    [64] Cipponi A, Goode D L, Bedo J, et al. 2020. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science, 368(6495): 1127-1131. doi: 10.1126/science.aau8768
    [65] Cui Y, Hameed F M, Yang B, et al. 2015. Cyclic stretching of soft substrates induces spreading and growth. Nature Communications, 6(1): 6333. doi: 10.1038/ncomms7333
    [66] Cunningham K S, Gotlieb A I. 2005. The role of shear stress in the pathogenesis of atherosclerosis. Laboratory Investigation, 85(1): 9-23. doi: 10.1038/labinvest.3700215
    [67] Dai E N, Heo S J, Mauck R L. 2020a. “Looping in” mechanics: Mechanobiologic regulation of the nucleus and the epigenome. Advanced Healthcare Materials, 9(8): 2000030. doi: 10.1002/adhm.202000030
    [68] Dai H, Lan P, Zhao D, et al. 2020b. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science, 368(6495): 1122-1127. doi: 10.1126/science.aax4040
    [69] De Beco S, Amblard F, Coscoy S. 2012. New insights into the regulation of E-cadherin distribution by endocytosis. International Review of Cell and Molecular Biology, 295: 63-108. doi: 10.1016/B978-0-12-394306-4.00008-3
    [70] De Belly H, Paluch E K, Chalut K J. 2022. Interplay between mechanics and signalling in regulating cell fate. Nature Reviews Molecular Cell Biology, 23(7): 465-480. doi: 10.1038/s41580-022-00472-z
    [71] Dekel E, Alon U. 2005. Optimality and evolutionary tuning of the expression level of a protein. Nature, 436(7050): 588-592. doi: 10.1038/nature03842
    [72] Demongeot J, Kaufman M, Thomas R. 2000. Positive feedback circuits and memory. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 323(1): 69-79. doi: 10.1016/S0764-4469(00)00112-8
    [73] Denais C M, Gilbert R M, Isermann P, et al. 2016. Nuclear envelope rupture and repair during cancer cell migration. Science, 352(6283): 353-358. doi: 10.1126/science.aad7297
    [74] Desbiez M, Kergosien Y, Champagnat P, et al. 1984. Memorization and delayed expression of regulatory messages in plants. Planta, 160(5): 392-399. doi: 10.1007/BF00429754
    [75] Douglas F. 2022. Evolution. 5th ed. Oxford Uuniversity Press.
    [76] Druker B J, Guilhot F, O’Brien S G, et al. 2006. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. New England Journal of Medicine, 355(23): 2408-2417. doi: 10.1056/NEJMoa062867
    [77] Earle A J, Kirby T J, Fedorchak G R, et al. 2020. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nature Materials, 19(4): 464-473. doi: 10.1038/s41563-019-0563-5
    [78] Erdogan B, Webb D J. 2017. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochemical Society Transactions, 45(1): 229-236. doi: 10.1042/BST20160387
    [79] Fabrizio P, Garvis S, Palladino F. 2019. Histone methylation and memory of environmental stress. Cells, 8(4): 339. doi: 10.3390/cells8040339
    [80] Fanselow M S, Poulos A M. 2005. The neuroscience of mammalian associative learning. Annual Review of Psychology, 56(1): 207-234. doi: 10.1146/annurev.psych.56.091103.070213
    [81] Fitzgerald D M, Hastings P, Rosenberg S M. 2017. Stress-induced mutagenesis: Implications in cancer and drug resistance. Annual Review of Cancer Biology, 1(1): 119-140. doi: 10.1146/annurev-cancerbio-050216-121919
    [82] Fitzgerald D M, Rosenberg S M. 2019. What is mutation? A chapter in the series: How microbes “jeopardize” the modern synthesis. PLoS Genetics, 15(4): e1007995. doi: 10.1371/journal.pgen.1007995
    [83] Ford B J. 2017. Cellular intelligence: Microphenomenology and the realities of being. Progress in Biophysics and Molecular Biology, 131: 273-287. doi: 10.1016/j.pbiomolbio.2017.08.012
    [84] Futuyma D, Kirkpatrick M. 2022. Evolution. 5th ed. Oxford University Press.
    [85] Gagliano M, Vyazovskiy V V, Borbély A A, et al. 2016. Learning by association in plants. Scientific Reports, 6(1): 38427. doi: 10.1038/srep38427
    [86] Galbraith C G, Yamada K M, Galbraith J A. 2007. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science, 315(5814): 992-995. doi: 10.1126/science.1137904
    [87] Galperin M Y. 2005. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts. BMC Microbiology, 5: 1-19. doi: 10.1186/1471-2180-5-1
    [88] Gantier M P, McCoy C E, Rusinova I, et al. 2011. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Research, 39(13): 5692-5703. doi: 10.1093/nar/gkr148
    [89] Gardner H E. 2011. Frames of mind: The theory of multiple intelligences. Hachette, UK.
    [90] Gatfield D, Le Martelot G, Vejnar C E, et al. 2009. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes & Development, 23(11): 1313-1326. doi: 10.1101/gad.1781009
    [91] Gauthier N C, Roca-Cusachs P. 2018. Mechanosensing at integrin-mediated cell-matrix adhesions: From molecular to integrated mechanisms. Current Opinion in Cell Biology, 50: 20-26. doi: 10.1016/j.ceb.2017.12.014
    [92] Gersani M, Brown J S, O'Brien E E, et al. 2001. Tragedy of the commons as a result of root competition. Journal of Ecology, 89(4): 660-669. doi: 10.1046/j.0022-0477.2001.00609.x
    [93] Giovannetti E, Funel N, Peters G J, et al. 2010. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Research, 70(11): 4528-4538. doi: 10.1158/0008-5472.CAN-09-4467
    [94] Girard C A, Lecacheur M, Ben Jouira R, et al. 2020. A feed-forward mechanosignaling loop confers resistance to therapies targeting the MAPK pathway in BRAF-mutant melanoma. Cancer Research, 80(10): 1927-1941. doi: 10.1158/0008-5472.CAN-19-2914
    [95] Goldmann W H. 2024. Durotaxis: A cause of organ fibrosis and metastatic cancer? Cell Biology International, 48(5): 553-555. doi: 10.1002/cbin.12156
    [96] Gottfredson L S. 1997. Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1): 13-23. doi: 10.1016/S0160-2896(97)90011-8
    [97] Gourley T S, Wherry E J, Masopust D, et al. 2004. Generation and maintenance of immunological memory. Seminars in Immunology, 16(5): 323-333. doi: 10.1016/j.smim.2004.08.013
    [98] Grime J P, Mackey J. 2002. The role of plasticity in resource capture by plants. Evolutionary Ecology, 16(3): 299-307. doi: 10.1023/A:1019640813676
    [99] Guilluy C, Swaminathan V, Garcia-Mata R, et al. 2011. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nature Cell Biology, 13(6): 722-727. doi: 10.1038/ncb2254
    [100] Gunne-Braden A, Sullivan A, Gharibi B, et al. 2020. GATA3 mediates a fast, irreversible commitment to BMP4-driven differentiation in human embryonic stem cells. Cell Stem Cell, 26(5): 693-706. doi: 10.1016/j.stem.2020.03.005
    [101] Hadjipanayi E, Mudera V, Brown R. 2009. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. Journal of Tissue Engineering and Regenerative Medicine, 3(2): 77-84. doi: 10.1002/term.136
    [102] Han Y L, Pegoraro A F, Li H, et al. 2020. Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nature Physics, 16(1): 101-108. doi: 10.1038/s41567-019-0680-8
    [103] Heilmeier H, Erhard M, Schulze E D. 1997. Biomass allocation and water use under arid conditions. In Bazzaz F A, Grace J (Eds. ). Plant Resource Allocation. Academic Press, 93-111.
    [104] Hellingwerf K J. 2005. Bacterial observations: A rudimentary form of intelligence? Trends in Microbiology, 13(4): 152-158. doi: 10.1016/j.tim.2005.02.001
    [105] Heo S J, Han W M, Szczesny S E, et al. 2016. Mechanically induced chromatin condensation requires cellular contractility in mesenchymal stem cells. Biophysical Journal, 111(4): 864-874. doi: 10.1016/j.bpj.2016.07.006
    [106] Heo S J, Thorpe S D, Driscoll T P, et al. 2015. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Scientific Reports, 5(1): 16895. doi: 10.1038/srep16895
    [107] Hirata E, Girotti M R, Viros A, et al. 2015. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell, 27(4): 574-588. doi: 10.1016/j.ccell.2015.03.008
    [108] Hörner M, Raute K, Hummel B, et al. 2019. Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Advanced Materials, 31(12): 1806727. doi: 10.1002/adma.201806727
    [109] Hsia C R, Melters D P, Dalal Y. 2023. The force is strong with this epigenome: Chromatin structure and mechanobiology. Journal of Molecular Biology, 435(11): 168019. doi: 10.1016/j.jmb.2023.168019
    [110] Huang Y, Su J, Liu J, et al. 2022. YAP activation in promoting negative durotaxis and acral melanoma progression. Cells, 11(22): 3543. doi: 10.3390/cells11223543
    [111] Humphries J D, Wang P, Streuli C, et al. 2007. Vinculin controls focal adhesion formation by direct interactions with talin and actin. The Journal of Cell Biology, 179(5): 1043-1057. doi: 10.1083/jcb.200703036
    [112] Isomursu A, Park K Y, Hou J, et al. 2022. Negative durotaxis: Cell movement toward softer environments. Nature Materials, 21(9): 1081-1090. doi: 10.1038/s41563-022-01294-2
    [113] Jacob E B, Becker I, Shapira Y, et al. 2004. Bacterial linguistic communication and social intelligence. Trends in Microbiology, 12(8): 366-372. doi: 10.1016/j.tim.2004.06.006
    [114] Jiang Y, Akhavanaghdam Z, Li Y, et al. 2020. A protein kinase A-regulated network encodes short-and long-lived cellular memories. Science Signaling, 13(632): eaay3585. doi: 10.1126/scisignal.aay3585
    [115] Karban R. 2008. Plant behaviour and communication. Ecology Letters, 11(7): 727-739. doi: 10.1111/j.1461-0248.2008.01183.x
    [116] Kechagia J Z, Ivaska J, Roca-Cusachs P. 2019. Integrins as biomechanical sensors of the microenvironment. Nature Reviews Molecular Cell Biology, 20(8): 457-473. doi: 10.1038/s41580-019-0134-2
    [117] Khait I, Lewin-Epstein O, Sharon R, et al. 2023. Sounds emitted by plants under stress are airborne and informative. Cell, 186(7): 1328-1336. doi: 10.1016/j.cell.2023.03.009
    [118] Killaars A R, Grim J C, Walker C J, et al. 2019. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Advanced Science, 6(3): 1801483. doi: 10.1002/advs.201801483
    [119] Kramer B A, Sarabia Del Castillo J, Pelkmans L. 2022. Multimodal perception links cellular state to decision-making in single cells. Science, 377(6606): 642-648. doi: 10.1126/science.abf4062
    [120] Kriegman S, Blackiston D, Levin M, et al. 2021a. Kinematic self-replication in reconfigurable organisms. Proceedings of the National Academy of Sciences, 118(49): 1-8. doi: 10.1073/pnas.2112672118
    [121] Kriegman S, Blackiston D, Levin M, et al. 2021b. Mechanotaxis directs Pseudomonas aeruginosa twitching motility. Proceedings of the National Academy of Sciences, 118(30): 1-9. doi: 10.1073/pnas.2101759118
    [122] Krueger E, Al Faouri R, Fologea D, et al. 2013. A model for the hysteresis observed in gating of lysenin channels. Biophysical Chemistry, 184: 126-130. doi: 10.1016/j.bpc.2013.09.001
    [123] Kumar A, Mazzanti M, Mistrik M, et al. 2014. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress. Cell, 158(3): 633-646. doi: 10.1016/j.cell.2014.05.046
    [124] Kurosaki T, Kometani K, Ise W. 2015. Memory B cells. Nature Reviews Immunology, 15(3): 149-159. doi: 10.1038/nri3802
    [125] Lambora A, Gupta K, Chopra K. 2019. Genetic algorithm-A literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), Faridabad, India, 380-384.
    [126] Lansner A. 2009. Associative memory models: From the cell-assembly theory to biophysically detailed cortex simulations. Trends in Neurosciences, 32(3): 178-186. doi: 10.1016/j.tins.2008.12.002
    [127] Lau C M, Adams N M, Geary C D, et al. 2018. Epigenetic control of innate and adaptive immune memory. Nature Immunology, 19(9): 963-972. doi: 10.1038/s41590-018-0176-1
    [128] Le H Q, Ghatak S, Yeung C Y C, et al. 2016. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nature Cell Biology, 18(8): 864-875. doi: 10.1038/ncb3387
    [129] Legg S, Hutter M. 2007. A collection of definitions of intelligence. In Proceedings of the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006, Washington, USA, 17-24.
    [130] Leiphart R J, Chen D, Peredo A P, et al. 2018. Mechanosensing at cellular interfaces. Langmuir, 35(23): 7509-7519. doi: 10.1021/acs.langmuir.8b02841
    [131] Lele T P, Brock A, Peyton S R. 2020. Emerging concepts and tools in cell mechanomemory. Annals of Biomedical Engineering, 48(7): 2103-2112. doi: 10.1007/s10439-019-02412-z
    [132] Lele T P, Thodeti C K, Pendse J, et al. 2008. Investigating complexity of protein-protein interactions in focal adhesions. Biochemical and Biophysical Research Communications, 369(3): 929-934. doi: 10.1016/j.bbrc.2008.02.137
    [133] Li C X, Talele N P, Boo S, et al. 2017. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nature Materials, 16(3): 379-389. doi: 10.1038/nmat4780
    [134] Libby E, Perkins T J, Swain P S. 2007. Noisy information processing through transcriptional regulation. Proceedings of the National Academy of Sciences, 104(17): 7151-7156. doi: 10.1073/pnas.0608963104
    [135] Liebman C, Mccolloch A, Rabiei M, et al. 2020. Mechanics of the cell: Interaction mechanisms and mechanobiological models. Current Topics in Membranes, 86: 143-184. doi: 10.1016/bs.ctm.2020.09.001
    [136] Liu F, Lagares D, Choi K M, et al. 2015. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308(4): L344-L357. doi: 10.1152/ajplung.00300.2014
    [137] Liu L, Shadish J A, Arakawa C K, et al. 2018. Cyclic stiffness modulation of cell-laden protein-polymer hydrogels in response to user-specified stimuli including light. Advanced Biosystems, 2(12): 1800240. doi: 10.1002/adbi.201800240
    [138] Liu Q, Luo Q, Ju Y, et al. 2020a. Role of the mechanical microenvironment in cancer development and progression. Cancer Biology & Medicine, 17(2): 282-292. doi: 10.20892/j.issn.2095-3941.2019.0437
    [139] Liu S, Jiao J, Lu T J, et al. 2017. Arabidopsis leaf trichomes as acoustic antennae. Biophysical Journal, 113(9): 2068-2076. doi: 10.1016/j.bpj.2017.07.035
    [140] Liu T, Zhou L, Li D, et al. 2019. Cancer-associated fibroblasts build and secure the tumor microenvironment. Frontiers in Cell and Developmental Biology, 7: 60. doi: 10.3389/fcell.2019.00060
    [141] Liu X Q, Chen X T, Liu Z Z, et al. 2020b. Biomimetic matrix stiffness modulates hepatocellular carcinoma malignant phenotypes and macrophage polarization through multiple modes of mechanical feedbacks. ACS Biomaterials Science & Engineering, 6(7): 3994-4004. doi: 10.1021/acsbiomaterials.0c00669
    [142] Lo C M, Wang H B, Dembo M, et al. 2000. Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1): 144-152. doi: 10.1016/S0006-3495(00)76279-5
    [143] Maemondo M, Inoue A, Kobayashi K, et al. 2010. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. New England Journal of Medicine, 362(25): 2380-2388. doi: 10.1056/NEJMoa0909530
    [144] Manicka S, Levin M. 2019. Modeling somatic computation with non-neural bioelectric networks. Scientific Reports, 9(1): 1-17. doi: 10.1038/s41598-018-37186-2
    [145] Marijuán P C, Navarro J, Del Moral R. 2010. On prokaryotic intelligence: Strategies for sensing the environment. Biosystems, 99(2): 94-103. doi: 10.1016/j.biosystems.2009.09.004
    [146] Massey A, Stewart J, Smith C, et al. 2024. Mechanical properties of human tumour tissues and their implications for cancer development. Nature Reviews Physics, 6(4): 269-282. doi: 10.1038/s42254-024-00707-2
    [147] McGann J P. 2015. Associative learning and sensory neuroplasticity: How does it happen and what is it good for? Learning & Memory, 22(11): 567-576. doi: 10.1101/lm.039636.115
    [148] Meunier J C, Buc J, Ricard J. 1979. Enzyme memory: Effect of glucose 6-phosphate and temperature on the molecular transition of wheat-germ Hexokinase LI. European Journal of Biochemistry, 97(2): 573-583. doi: 10.1111/j.1432-1033.1979.tb13146.x
    [149] Miroshnikova Y A, Nava M M, Wickström S A. 2017. Emerging roles of mechanical forces in chromatin regulation. Journal of Cell Science, 130(14): 2243-2250. doi: 10.1242/jcs.202192
    [150] Monticelli S, Natoli G. 2013. Short-term memory of danger signals and environmental stimuli in immune cells. Nature Immunology, 14(8): 777-784. doi: 10.1038/ni.2636
    [151] Moroni M, Servin-Vences M R, Fleischer R, et al. 2018. Voltage gating of mechanosensitive PIEZO channels. Nature Communications, 9(1): 1096. doi: 10.1038/s41467-018-03502-7
    [152] Morris K. 2011. What is hysteresis? Applied Mechanics Reviews, 64(5): 050801. doi: 10.1115/1.4007112
    [153] Na J, Shi Q, Yang Z, et al. 2024. Mechanical memory based on chromatin and metabolism remodeling promotes proliferation and smooth muscle differentiation in mesenchymal stem cells. The FASEB Journal, 38(6): e23538. doi: 10.1096/fj.202302178R
    [154] Nam S, Gupta V K, Lee H P, et al. 2019. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27Kip1 signaling axis. Science Advances, 5(8): eaaw6171. doi: 10.1126/sciadv.aaw6171
    [155] Nardone G, Oliver-De La Cruz J, Vrbsky J, et al. 2017. YAP regulates cell mechanics by controlling focal adhesion assembly. Nature Communications, 8(1): 15321. doi: 10.1038/ncomms15321
    [156] Nasrollahi S, Walter C, Loza A J, et al. 2017. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials, 146: 146-155. doi: 10.1016/j.biomaterials.2017.09.012
    [157] Nava M M, Miroshnikova Y A, Biggs L C, et al. 2020. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell, 181(4): 800-817. doi: 10.1016/j.cell.2020.03.052
    [158] Nazarian R, Shi H, Wang Q, et al. 2010. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326): 973-977. doi: 10.1038/nature09626
    [159] Neisser U, Boodoo G, Bouchard Jr T J, et al. 1996. Intelligence: Knowns and unknowns. American Psychologist, 51(2): 77-101. doi: 10.1037/0003-066X.51.2.77
    [160] Nelson T J, Alkon D L. 2015. Molecular regulation of synaptogenesis during associative learning and memory. Brain Research, 1621: 239-251. doi: 10.1016/j.brainres.2014.11.054
    [161] Netea M G, Joosten L A, Latz E, et al. 2016. Trained immunity: A program of innate immune memory in health and disease. Science, 352(6284): aaf1098. doi: 10.1126/science.aaf1098
    [162] Nguyen T V, Sleiman M, Moriarty T, et al. 2014. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials, 35(22): 5749-5759. doi: 10.1016/j.biomaterials.2014.03.058
    [163] Niu L, Cheng B, Huang G, et al. 2022. A positive mechanobiological feedback loop controls bistable switching of cardiac fibroblast phenotype. Cell Discovery, 8(1): 84. doi: 10.1038/s41421-022-00427-w
    [164] Palani S, Sarkar C A. 2012. Transient noise amplification and gene expression synchronization in a bistable mammalian cell-fate switch. Cell Reports, 1(3): 215-224. doi: 10.1016/j.celrep.2012.01.007
    [165] Palombo C, Kozakova M. 2016. Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vascular Pharmacology, 77: 1-7. doi: 10.1016/j.vph.2015.11.083
    [166] Parekh S H, Chatterjee K, Lin-Gibson S, et al. 2011. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials, 32(9): 2256-2264. doi: 10.1016/j.biomaterials.2010.11.065
    [167] Park J, Kim D H, Levchenko A. 2018. Topotaxis: A new mechanism of directed cell migration in topographic ECM gradients. Biophysical Journal, 114(6): 1257-1263. doi: 10.1016/j.bpj.2017.11.3813
    [168] Pickup M W, Mouw J K, Weaver V M. 2014. The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15(12): 1243-1253. doi: 10.15252/embr.201439246
    [169] Pieuchot L, Marteau J, Guignandon A, et al. 2018. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Communications, 9(1): 3995. doi: 10.1038/s41467-018-06494-6
    [170] Plodinec M, Loparic M, Monnier C A, et al. 2012. The nanomechanical signature of breast cancer. Nature Nanotechnology, 7(11): 757-765. doi: 10.1038/nnano.2012.167
    [171] Price C C, Mathur J, Boerckel J D, et al. 2021. Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22): 5074-5089. doi: 10.1016/j.bpj.2021.10.006
    [172] Qin N, Wang Z, Liu Q, et al. 2020. Pathogenic germline mutations in DNA repair genes in combination with cancer treatment exposures and risk of subsequent neoplasms among long-term survivors of childhood cancer. Journal of Clinical Oncology, 38(24): 2728-2740. doi: 10.1200/JCO.19.02760
    [173] Quintin J, Saeed S, Martens J H, et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe, 12(2): 223-232. doi: 10.1016/j.chom.2012.06.006
    [174] Rakshit S, Zhang Y, Manibog K, et al. 2012. Ideal, catch, and slip bonds in cadherin adhesion. Proceedings of the National Academy of Sciences, 109(46): 18815-18820. doi: 10.1073/pnas.1208349109
    [175] Rashid F, Kabbo S A, Wang N. 2024. Mechanomemory of nucleoplasm and RNA polymerase II after chromatin stretching by a microinjected magnetic nanoparticle force. Cell Reports, 43(7): 114462. doi: 10.1016/j.celrep.2024.114462
    [176] Reddy M A, Zhang E, Natarajan R. 2015. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 58(3): 443-455. doi: 10.1007/s00125-014-3462-y
    [177] Reinberg D, Vales L D. 2018. Chromatin domains rich in inheritance. Science, 361(6397): 33-34. doi: 10.1126/science.aat7871
    [178] Rubiano A, Delitto D, Han S, et al. 2018. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomaterialia, 67: 331-340. doi: 10.1016/j.actbio.2017.11.037
    [179] Sahai E, Astsaturov I, Cukierman E, et al. 2020. A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 20(3): 174-186. doi: 10.1038/s41568-019-0238-1
    [180] Sahari A, Headen D, Behkam B. 2012. Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomedical Microdevices, 14: 999-1007. doi: 10.1007/s10544-012-9712-1
    [181] Schedlowski M, Pacheco-López G. 2010. The learned immune response: Pavlov and beyond. Brain, Behavior, and Immunity, 24(2): 176-185. doi: 10.1016/j.bbi.2009.08.007
    [182] Schrader J, Gordon-Walker T T, Aucott R L, et al. 2011. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology, 53(4): 1192-1205. doi: 10.1002/hep.24108
    [183] Segel M, Neumann B, Hill M F, et al. 2019. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature, 573(7772): 130-134. doi: 10.1038/s41586-019-1484-9
    [184] Sengupta S, Parent C A, Bear J E. 2021. The principles of directed cell migration. Nature Reviews Molecular Cell Biology, 22(8): 529-547. doi: 10.1038/s41580-021-00366-6
    [185] Shaffer S M, Emert B L, Hueros R A R, et al. 2020. Memory sequencing reveals heritable single-cell gene expression programs associated with distinct cellular behaviors. Cell, 182(4): 947-959. doi: 10.1016/j.cell.2020.07.003
    [186] Shaheen S, Wan Z, Haneef K, et al. 2019. B cell mechanosensing: A mechanistic overview. Advances in Immunology, 144: 23-63. doi: 10.1016/bs.ai.2019.08.003
    [187] Shen Y, Wang X, Lu J, et al. 2020. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell, 37(6): 800-817. doi: 10.1016/j.ccell.2020.05.005
    [188] Siebel A L, Fernandez A Z, El-Osta A. 2010. Glycemic memory associated epigenetic changes. Biochemical Pharmacology, 80(12): 1853-1859. doi: 10.1016/j.bcp.2010.06.005
    [189] Simon D N, Wilson K L. 2011. The nucleoskeleton as a genome-associated dynamic'network of networks'. Nature Reviews Molecular Cell Biology, 12(11): 695-708. doi: 10.1038/nrm3207
    [190] Skoge M, Yue H, Erickstad M, et al. 2014. Cellular memory in eukaryotic chemotaxis. Proceedings of the National Academy of Sciences, 111(40): 14448-14453. doi: 10.1073/pnas.1412197111
    [191] Solis A G, Bielecki P, Steach H R, et al. 2019. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature, 573(7772): 69-74. doi: 10.1038/s41586-019-1485-8
    [192] Sorek M, Balaban N Q, Loewenstein Y. 2013. Stochasticity, bistability and the wisdom of crowds: A model for associative learning in genetic regulatory networks. PLoS Computational Biology, 9(8): e1003179. doi: 10.1371/journal.pcbi.1003179
    [193] Sosman J A, Kim K B, Schuchter L, et al. 2012. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. New England Journal of Medicine, 366(8): 707-714. doi: 10.1056/NEJMoa1112302
    [194] Spearman C. 1961. “General intelligence” objectively determined and measured. In Jenkins J J, Paterson D G (Eds.). Studies in individual differences: The search for intelligence. Appleton-Century-Crofts, 59-73.
    [195] Spoerri P M, Strohmeyer N, Sun Z, et al. 2020. Protease-activated receptor signalling initiates α5β1-integrin-mediated adhesion in non-haematopoietic cells. Nature Materials, 19(2): 218-226. doi: 10.1038/s41563-019-0580-4
    [196] Stan R C, Bhatt D K, De Camargo M M. 2020. Cellular adaptation relies on regulatory proteins having episodic memory: Proteins modulate cell metabolism and reproduction by remembering, transmitting, and using data on the environment. Bioessays, 42(1): 1900115. doi: 10.1002/bies.201900115
    [197] Stan R C, De Camargo M M. 2019. Memory of periodic thermal stimulation in an immune complex. ChemistrySelect, 4(12): 3325-3328. doi: 10.1002/slct.201804045
    [198] Sternberg R J. 2020. The Cambridge handbook of intelligence. Cambridge University Press.
    [199] Stewart-Morgan K R, Petryk N, Groth A. 2020. Chromatin replication and epigenetic cell memory. Nature Cell Biology, 22(4): 361-371. doi: 10.1038/s41556-020-0487-y
    [200] Sun J C, Ugolini S, Vivier E. 2014. Immunological memory within the innate immune system. The EMBO Journal, 33(12): 1295-1303.
    [201] Sun J, Chen J, Mohagheghian E, et al. 2020. Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation. Science Advances, 6(14): eaay9095. doi: 10.1126/sciadv.aay9095
    [202] Sun M, Spill F, Zaman M H. 2016a. A computational model of YAP/TAZ mechanosensing. Biophysical Journal, 110(11): 2540-2550. doi: 10.1016/j.bpj.2016.04.040
    [203] Sun Z, Guo S S, Fässler R. 2016b. Integrin-mediated mechanotransduction. Journal of Cell Biology, 215(4): 445-456. doi: 10.1083/jcb.201609037
    [204] Sunyer R, Trepat X. 2020. Durotaxis. Current Biology, 30(9): R383-R387. doi: 10.1016/j.cub.2020.03.051
    [205] Swiatczak B. 2020. Genomic stress responses drive lymphocyte evolvability: An ancient and ubiquitous mechanism. Bioessays, 42(10): 2000032. doi: 10.1002/bies.202000032
    [206] Tagkopoulos I, Liu Y C, Tavazoie S. 2008. Predictive behavior within microbial genetic networks. Science, 320(5881): 1313-1317. doi: 10.1126/science.1154456
    [207] Takehara-Nishiuchi K. 2022. Neuronal ensemble dynamics in associative learning. Current Opinion in Neurobiology, 73: 102530. doi: 10.1016/j.conb.2022.102530
    [208] Takeuchi L A. 2004. Cellular memory in organ transplants. San Francisco Medical Society.
    [209] Tang S K, Marshall W F. 2018. Cell learning. Current Biology, 28(20): R1180-R1184. doi: 10.1016/j.cub.2018.09.015
    [210] Taylor J A, Hasegawa M, Benoit C M, et al. 2021. Single cell plasticity and population coding stability in auditory thalamus upon associative learning. Nature Communications, 12(1): 2438. doi: 10.1038/s41467-021-22421-8
    [211] Thurstone L L. 1938. Primary mental abilities. University of Chicago Press.
    [212] Tolić I M, Mosekilde E, Sturis J. 2000. Modeling the insulin-glucose feedback system: The significance of pulsatile insulin secretion. Journal of Theoretical Biology, 207(3): 361-375. doi: 10.1006/jtbi.2000.2180
    [213] Tonna S, El-Osta A, Cooper M E, et al. 2010. Metabolic memory and diabetic nephropathy: Potential role for epigenetic mechanisms. Nature Reviews Nephrology, 6(6): 332-341. doi: 10.1038/nrneph.2010.55
    [214] Trewavas A. 2003. Aspects of plant intelligence. Annals of Botany, 92(1): 1-20. doi: 10.1093/aob/mcg101
    [215] Trewavas A. 2005. Green plants as intelligent organisms. Trends in Plant Science, 10(9): 413-419. doi: 10.1016/j.tplants.2005.07.005
    [216] Trichet L, Le Digabel J, Hawkins R J, et al. 2012. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proceedings of the National Academy of Sciences, 109(18): 6933-6938. doi: 10.1073/pnas.1117810109
    [217] Tweedy L, Thomason P A, Paschke P I, et al. 2020. Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science, 369(6507): eaay9792. doi: 10.1126/science.aay9792
    [218] Van Rooij E, Sutherland L B, Qi X, et al. 2007. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824): 575-579. doi: 10.1126/science.1139089
    [219] Vassaux M, Pieuchot L, Anselme K, et al. 2019. A biophysical model for curvature-guided cell migration. Biophysical Journal, 117(6): 1136-1144. doi: 10.1016/j.bpj.2019.07.022
    [220] Vining K H, Mooney D J. 2017. Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 18(12): 728-742. doi: 10.1038/nrm.2017.108
    [221] Walker C J, Crocini C, Ramirez D, et al. 2021. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nature Biomedical Engineering, 5(12): 1485-1499. doi: 10.1038/s41551-021-00709-w
    [222] Wang H, Abhilash A, Chen C S, et al. 2014. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal, 107(11): 2592-2603. doi: 10.1016/j.bpj.2014.09.044
    [223] Wang L, Walker B L, Iannaccone S, et al. 2009. Bistable switches control memory and plasticity in cellular differentiation. Proceedings of the National Academy of Sciences, 106(16): 6638-6643. doi: 10.1073/pnas.0806137106
    [224] Wang Y, Wang X, Ge A, et al. 2020. A dual-stimulation strategy in a micro-chip for the investigation of mechanical associative learning behavior of C. elegans. Talanta, 215: 120900. doi: 10.1016/j.talanta.2020.120900
    [225] Watson A W, Grant A D, Parker S S, et al. 2021. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Reports, 35(13): 109293. doi: 10.1016/j.celrep.2021.109293
    [226] Wei N, Quan Z, Tang H, et al. 2017a. Three-dimensional organoid system transplantation technologies in future treatment of central nervous system diseases. Stem Cells International, 2017(1): 5682354. doi: 10.1155/2017/5682354
    [227] Wei Y, Mo X, Zhang P, et al. 2017b. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano, 11(6): 5915-5924. doi: 10.1021/acsnano.7b01661
    [228] Westerhoff H V, Brooks A N, Simeonidis E, et al. 2014. Macromolecular networks and intelligence in microorganisms. Frontiers in Microbiology, 5: 379. doi: 10.3389/fmicb.2014.00379
    [229] Wong S H D, Wong W K R, Lai C H N, et al. 2020. Soft polymeric matrix as a macroscopic cage for magnetically modulating reversible nanoscale ligand presentation. Nano Letters, 20(5): 3207-3216. doi: 10.1021/acs.nanolett.9b05315
    [230] Wood D C. 1969. Parametric studies of the response decrement produced by mechanical stimuli in the protozoan. Stentor coeruleus. Journal of Neurobiology, 1(3): 345-360. doi: 10.1002/neu.480010309
    [231] Wu P H, Aroush D R B, Asnacios A, et al. 2018. A comparison of methods to assess cell mechanical properties. Nature Methods, 15(7): 491-498. doi: 10.1038/s41592-018-0015-1
    [232] Xia S, Kanchanawong P. 2017. Nanoscale mechanobiology of cell adhesions. Seminars in Cell & Developmental Biology, 71: 53-67. doi: 10.1016/j.semcdb.2017.07.029
    [233] Xie S A, Zhang T, Wang J, et al. 2018. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1. Biomaterials, 155: 203-216. doi: 10.1016/j.biomaterials.2017.11.033
    [234] Xin Y, Li K, Huang M, et al. 2023. Biophysics in tumor growth and progression: From single mechano-sensitive molecules to mechanomedicine. Oncogene, 42(47): 3457-3490. doi: 10.1038/s41388-023-02844-x
    [235] Xiong W, Ferrell Jr J E. 2003. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 426(6965): 460-465. doi: 10.1038/nature02089
    [236] Yang C Y, Bialecka-Fornal M, Weatherwax C, et al. 2020. Encoding membrane-potential-based memory within a microbial community. Cell Systems, 10(5): 417-423. doi: 10.1016/j.cels.2020.04.002
    [237] Yang C, Tibbitt M W, Basta L, et al. 2014. Mechanical memory and dosing influence stem cell fate. Nature Materials, 13(6): 645-652. doi: 10.1038/nmat3889
    [238] Yang S S, Cha J, Cho S W, et al. 2019. Time-dependent retention of nanotopographical cues in differentiated neural stem cells. ACS Biomaterials Science & Engineering, 5(8): 3802-3807. doi: 10.1021/acsbiomaterials.8b01057
    [239] Yeung T, Georges P C, Flanagan L A, et al. 2005. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60(1): 24-34. doi: 10.1002/cm.20041
    [240] Yi T M, Huang Y, Simon M I, et al. 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences, 97(9): 4649-4653. doi: 10.1073/pnas.97.9.4649
    [241] Zanconato F, Cordenonsi M, Piccolo S. 2016. YAP/TAZ at the roots of cancer. Cancer Cell, 29(6): 783-803. doi: 10.1016/j.ccell.2016.05.005
    [242] Zanconato F, Forcato M, Battilana G, et al. 2015. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nature Cell Biology, 17(9): 1218-1227. doi: 10.1038/ncb3216
    [243] Zhang Q, Tamashunas A C, Agrawal A, et al. 2019. Local, transient tensile stress on the nuclear membrane causes membrane rupture. Molecular Biology of the Cell, 30(7): 899-906. doi: 10.1091/mbc.E18-09-0604
    [244] Zhang Y, Wei D, Wang X, et al. 2023. Run-and-tumble dynamics and mechanotaxis discovered in microglial migration. Research, 6: 0063. doi: 10.34133/research.0063
    [245] Zhao Y, Antoniou-Kourounioti R L, Calder G, et al. 2020. Temperature-dependent growth contributes to long-term cold sensing. Nature, 583(7818): 825-829. doi: 10.1038/s41586-020-2485-4
    [246] Zhou J, Li Y S, Wang K C, et al. 2014. Epigenetic mechanism in regulation of endothelial function by disturbed flow: Induction of DNA hypermethylation by DNMT1. Cellular and Molecular Bioengineering, 7: 218-224. doi: 10.1007/s12195-014-0325-z
    [247] Zuidema A, Wang W, Sonnenberg A. 2020. Crosstalk between cell adhesion complexes in regulation of mechanotransduction. Bioessays, 42(11): 2000119. doi: 10.1002/bies.202000119
    [248] Zuo F, Panda P, Kotiuga M, et al. 2017. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nature Communications, 8(1): 240. doi: 10.1038/s41467-017-00248-6
    [249] Zustiak S, Nossal R, Sackett D L. 2014. Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugs. Biotechnology and Bioengineering, 111(2): 396-403. doi: 10.1002/bit.25097
  • 加载中
图(5)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  47
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 录用日期:  2025-01-11
  • 网络出版日期:  2025-01-13

目录

    /

    返回文章
    返回