摘要:
近几年, 深度学习无所不在, 在给各个领域赋能, 尤其是人工智能与传统科学的结合 (AI for science, AI4Science) 引发广泛关注. 在AI4Science领域, 利用人工智能算法求解PDEs (AI4PDEs) 成为计算力学研究的焦点. AI4PDEs的核心是将数据与方程相融合, 并且几乎可以求解任何偏微分方程问题, 由于其融合数据的优势, 相较于传统算法, 其计算效率通常提升数万倍. 因此, 本文全面综述了AI4PDEs的研究, 总结了现有AI4PDEs算法、理论, 并讨论了其在固体力学中的应用, 包括正问题和反问题, 展望了未来研究方向, 尤其是必然会出现的计算力学大模型. 现有AI4PDEs算法包括基于物理信息神经网络 (physics-informed neural network, PINNs)、深度能量法 (deep energy methods, DEM)、算子学习 (operator learning), 以及基于物理神经网络算子 (physics-informed neural operator, PINO). AI4PDEs在科学计算中有许多应用, 本文聚焦于固体力学, 正问题包括线弹性、弹塑性, 超弹性、以及断裂力学; 反问题包括材料参数, 本构, 缺陷的识别, 以及拓朴优化. AI4PDEs代表了一种全新的科学模拟方法, 通过利用大量数据在特定问题上提供近似解, 然后根据具体的物理方程进行微调, 避免了像传统算法那样从头开始计算, 因此AI4PDEs是未来计算力学大模型的雏形, 能够大大加速传统数值算法. 我们相信, 利用人工智能助力科学计算不仅仅是计算领域的未来重要方向, 同时也是科学研究的人类曙光, 为人类迈向科学发展的新高度奠定了基础.
王一铮, 庄晓莹, Timon Rabczcuk, 刘应华. AI for PDEs在固体力学领域的研究进展. 力学进展, 2024, 54(3): 1-57. doi: 10.6052/1000-0992-24-016.