Fundamental mechanical problems in hydrogen energy utilization technology: State-of-art review
-
摘要: 氢能作为一种零碳排放的能源载体, 在应对全球气候变化和推动能源体系脱碳化发展中扮演着重要角色. 本文系统性地综述了氢能利用技术中的关键力学问题及其研究进展, 涵盖氢制取、纯化、储运、加注、应用以及安全等多个核心环节. 分别介绍了氢制取领域中化石能源制氢、电解水制氢及生物质制氢技术中的复杂流动、反应过程以及不同制氢方法下的力学挑战; 探讨了氢纯化环节中变压吸附法和膜分离法中的耦合集成技术及其优化; 分析了氢储运过程中高压气态储氢、低温液态储运及固态储氢技术中的力学问题, 包括容器结构力学性能的优化、氢液化过程效率的提升以及绝热管理技术的改进等; 研究了氢应用领域中氢加注过程的多因素耦合影响、氢燃料电池的传质与水热管理优化以及氢内燃机的燃烧特性; 强调了氢安全中的泄漏与爆炸问题, 涉及氢气的泄漏扩散、燃爆机理及防范措施; 最后, 针对管道输氢中的界面损伤与管内流动问题, 提出了若干研究建议, 为未来氢能产业的大规模发展提供理论支撑.Abstract: Hydrogen energy, as a zero-carbon energy source, is crucial for addressing climate change and promoting energy decarbonization. This paper systematically reviews key mechanical issues in hydrogen energy technologies, covering production, purification, storage and transportation, fueling, application, and safety. It introduces complex processes and mechanical challenges in fossil-fuel-based, water electrolysis, and biomass-based hydrogen production. The coupling and optimization of pressure swing adsorption and membrane separation for hydrogen purification are discussed. Mechanical issues in high-pressure gaseous, low-temperature liquid, and solid-state hydrogen storage are analyzed, including container structural optimization, liquefaction efficiency improvement, and thermal insulation management. In terms of application, the paper explores multi-factor coupling in the fueling process, optimization of mass transfer and water-thermal management in fuel cells, and combustion characteristics of hydrogen internal combustion engines. It emphasizes the risks of hydrogen leakage and explosion, discussing related mechanisms and preventive measures. Finally, suggestions are proposed for addressing interface damage and flow issues in hydrogen pipeline transportation, providing theoretical support for the large-scale development of the hydrogen energy industry in the future.
-
图 1 全球能源系统转型 (1850—2150年)(Dunn 2002)
图 2 以氢能为枢纽的“能源互联” (本图源自网络公开资料, 原图出自(Ruth et al. 2020))
图 4 煤炭超临界水气化制氢反应机理(Hui et al. 2015, 吕友军 等 2022). (a)煤炭超临界水气化制氢主要物理、化学过程、集总参数模型示意, (b)超临界水流态化分解示意
图 5 典型橇装天然气制氢加氢一体站工艺流程(宋鹏飞 等 2023)
图 6 电解水制氢技术基本原理(Kumar & Himabindu. 2019, 陈彬 等 2022)
图 7 不同类型电解池设计理念. (a)离子选择性AquaPIM膜及其液流电池示意图(Baran et al. 2019), (b)无电解质隔膜流动电解池工作原理(Yan et al. 2021), (c)传统膜电极与整体有序化膜电极结构设计(Wan et al. 2022)
图 8 生物质的主要存在形式(李亮荣 等 2022)
图 9 (a)氢气分离膜的分类 , (b)膜内气体传输机制示意图(Li P Y et al. 2015), (c)催化膜反应器中催化剂的几种负载方式(王金亮和黑悦鹏 2021)
注: A Poiseuille流动; B努森扩散; C分子筛分; D毛细管冷凝; E表面扩散; F溶解扩散; G促进传递.
图 11 (a)瓶口组合阀组合形式(Hausmann 2021), (b)单个空心玻璃微球(Kohli et al.2008), (c)圆柱体和六角形微管阵列(Zhevago & Glebov 2007), (d)高压−固态复合气态储氢罐结构 (蒲亮 等 2022)
图 12 (a)结合了MR制冷系统, 以及MR-H2焦耳−布雷顿级联制冷系统, (b)设备低温段JB循环流的MR组成(Asadnia & Mehrpooya 2018)
图 14 (a)充气过程结束时喷注器向上、垂直和向下(直径6 mm)时的温度场(Melideo et al. 2019), (b)不同充氢质量流量下氢气温度的变化(何青和胡华为 2022)
图 16 (a)不同肋板位置排布的阴极侧流道结构(Heidary et al. 2017), (b)肋下通过气体扩散层的对流(Wilberforce et al. 2019), (c)波浪形仿生结构流道(Cai et al. 2020), (d)叶脉形仿生结构流道(Ouellette et al. 2018)
图 17 (a)氢气循环系统 (引射器) 组成及器件(赵海贺 等 2022), (b)三叶转子型线(Zhou et al. 2021)
图 18 (a)缸内直喷氢内燃机的3种燃烧模型(李星国 2023), (b)混合气均匀性系数随喷氢流量的变化(杨振中 等 2022), (c)不同压缩比匀速压缩下, NOx排放量随燃空当量比的变化(Jilakara et al. 2015)
图 19 (a)高压欠膨胀射流激波结构示意(Wilkes et al. 2008), (b)高压欠膨胀射流发展过程(Li X et al. 2021), (c)不同工况、不同孔径下监测点氢气浓度变化(赵泽滢 2022)
图 20 (a)环形涡旋结构的发展过程(Wang et al. 2020), (b)截面尺寸对火焰传播速度的影响: 早/中期二维火焰面切片流场(周宁 等 2020)
图 21 氢吸附及渗透过程. (a)液相电化学阴极极化充氢及氢原子渗透过程示意(Vecchi et al. 2018), (b)氢气管道表面可能存在的两种氢原子产生机理示意(Sun & Cheng 2021a)
图 22 (a)钢的各种氢捕获位置(刘神光 等 2020), (b)同应力下X80钢焊件(Ⅰ)热影响区、(Ⅱ)基钢、(Ⅲ)焊缝金属不同区域的电化学氢渗透电流曲线(Sun & Cheng 2021b), (c)腐蚀速率和氢气浓度的关系(Wasim & Djukic 2020)
表 1 氢气与石油 (气)、天然气性质比较
参数 氢气 石油 (气) 天然气 热值 (KJ/kg) 142351 50179 38931 气态密度 (kg/m3) 0.089 2.35 0.7174 能量密度 (MJ/kg) 143 44 42 燃点 (℃) 574 426 538 燃烧点能量 (MJ) 0.02 0.2 0.29 燃烧产物 H2O CO\CO2 CO\C\CO2\H2O 爆炸极限 (%) 4.1-75 1.4-7.6 5.3-15 毒性 无毒 一般 较低 表 2 主要生物制氢技术
生物制氢技术 原理 热化学转化 热解法 生物质热解产生气−液−固三相产物后继续催化重整制氢 气化法 生物质在高温或超临界物质中气化为含氢产物 微生物转化 光解法 微生物利用光合作用分解水制氢 发酵法 发酵细菌在光照或厌氧环境下分解生物质制取氢气 表 3 等温吸附模型
模型种类 表达式 模型种类 表达式 Freundlich模型 $ V = {K_b}{p^n} $ 二参数BET模型 $ V = \dfrac{{{V_m}Cp}}{{\left( {{P^0} - P} \right)\left[ {1 + \left( {C - 1} \right)\dfrac{p}{{{p^0}}}} \right]}} $ Langmuir模型 $ V = V_L^{}p/\left( {{P_L} + p} \right) $ 三参数BET模型 $ V = \dfrac{{{V_m}Cp\left[ {1 - \left( {n + 1} \right){{\left( {\dfrac{p}{{{p^0}}}} \right)}^n} + n{{\left( {\dfrac{p}{{{p^0}}}} \right)}^{n + 1}}} \right]}}{{\left( {{P^0} - P} \right)\left[ {1 + \left( {C - 1} \right)\dfrac{p}{{{p^0}}} - C{{\left( {\dfrac{p}{{{p^0}}}} \right)}^{n + 1}}} \right]}} $ 扩展的Langmuir模型 $ V = \dfrac{{{V_L}{K_b}p}}{{1 + {K_b}p + n\sqrt {{K_b}p} }} $ Toth模型 $ V = \dfrac{{V_L^{}{K_b}p}}{{{{\left[ {1 + {{\left( {{K_b}p} \right)}^n}} \right]}^{\frac{1}{n}}}}} $ Dubinin-
Radushkevich模型$ V = {V_0}\exp \left[ { - DL{n^2}\left( {\dfrac{{{p^0}}}{p}} \right)} \right] $ L-F模型 $ V = {V_L}\dfrac{{{K_b}{p^n}}}{{1 + {K_b}{p^n}}} $ Dubinin-
Astakhov模型$ V = {V_0}\exp \left[ { - DL{n^n}\left( {\dfrac{{{p^0}}}{p}} \right)} \right] $ 表 4 气态/液态储氢密度对比
高压气态储氢 低温液态储氢
20 K/1 bar压力/bar 1 150 300 700 密度/ (g/L) 0.3 10 28 40 71 表 5 气态燃料的相对泄漏率及流动参数
物质 相对泄漏率 流动参数 (0℃, 101.3 kPa (标况)) 扩散 层流 湍流 空气中的扩散系数/(cm2·s−1) 密度/(kg·m−1) 动力粘度/(Pa·s) 甲烷 1.0 1.0 1.0 0.223 0.717 10.3 氢气 3.8 1.26 2.83 0.611 0.08985 8.42 丙烷 0.63 1.38 0.6 0.121 (丙烷为主的液化石油气) 2.02 7.95 (18℃) 表 6 关键力学问题一览表
研究领域 关键技术 关键力学问题 氢制取 化石能源制氢 煤制氢——煤浆的固流转化与气化过程中的流动与流变特性复杂多变, 涉及非牛顿流体流动、多相耦合流动及传热传质问题.
天然气制氢——反应过程中的物料平衡、热量平衡及各种反应速率的精确控制, 以及反应器内复杂的多相流动和传热现象.电解水制氢 碱性电解水——隔膜的结构设计对流体传输和电能损耗的影响, 以及电解过程中的气−液−固三相传质机制.
PEM电解水——膜电极的有序化设计、流体在多孔介质中的复杂流动及传热传质现象.
SOEC电解水——高温高压环境下的材料性能要求, 以及电堆内部的热梯度和热应力管理.生物质制氢 热化学转化——焦油颗粒的堵塞问题, 催化重整反应中的积炭结焦现象, 以及反应器内的复杂气−液−固三相流动.
微生物转化——反应器内生物质与微生物的相互作用, 以及流态化反应器的设计与优化.氢纯化 变压吸附法 吸附穿透与平衡过程——吸附过程中的热效应对吸附量及吸附热值的影响, 以及多组分气体在吸附床内的流动与传热传质问题. 膜分离法 膜内传输与成膜材质——膜的结构设计与气体传输机制, 以及膜的机械强度、耐高温性能等关键性能的提升. 氢储运 高压气态储氢 容器结构及力学性能优化——高压储氢容器的材料选择、结构设计及瓶口组合阀的优化, 以及氢脆和渗透问题. 低温液态储运 氢液化与振荡漏热——氢液化过程中的能耗与效率问题, 以及液氢输运过程中的漏热和蒸发损失问题. 固态储氢 充放氢过程中的热力学与动力学问题——固态储氢材料的吸放氢温度、速度及循环性能的优化. 氢应用 氢加注 多因素耦合加注及设备研制设计——加注过程中的质量、动量、能量传递机理, 以及加注设备的优化设计与制造. 氢燃料电池 传质与水热管理优化——流道内的气/液体流动行为及流场结构设计, 以及水管理策略的优化. 氢内燃机 燃烧特性优化——氢气喷射技术、混合气形成过程及燃烧特性的优化, 以及排气及过滤系统的性能提升. 氢安全 泄漏与爆炸 泄漏扩散与燃爆机理——氢气泄漏后的扩散规律、燃爆机理及防范措施, 以及高压氢气泄漏燃爆的规律及机理研究. 管道输氢 界面损伤与管内流动——管道壁面在氢环境下的损伤机制, 以及管道内氢气流动与传热的跨尺度、多维度、多因素耦合机理研究. -
[1] 李家春(主编). 2023. 《中国大百科全书(第三版)·力学》. 北京: 中国大百科全书出版社 (Li J C. (Ed). 2023. Encyclopedia of China (Third Edition)· Mechanics. Beijing: China Encyclopedia Publishing House).Li J C. (Ed.). 2023. Encyclopedia of China (Third Edition)· Mechanics. Beijing: China Encyclopedia Publishing House [2] 艾青, 王帅, 吴家欢, 等. 2018. 核热推进冷却通道热工特性影响因素研究. 工程热物理学报, 39(12): 2745-2748 (Ai Q, Wang S, Wu J H, et al. 2018. Study on influencing factors of thermal characteristics of nuclear thermal propulsion cooling channel. Journal of Engineering Thermophysics, 39(12): 2745-2748).Ai Q, Wang S, Wu J H, et al. 2018. Study on influencing factors of thermal characteristics of nuclear thermal propulsion cooling channel. Journal of Engineering Thermophysics, 39(12): 2745-2748 [3] 蔡永华, 朱宇烽, 方舟. 2019. 高电流密度下PEMFC阴极流场结构优化. 电池, 49(01): 8-12 (Cai Y H, Zhu Y F, Fang Z. 2019. Structure optimization of the cathode flow field for PEMFC at high current density. BATTEY BIMONTHLY, 49(01): 8-12).Cai Y H, Zhu Y F, Fang Z. 2019. Structure optimization of the cathode flow field for PEMFC at high current density. BATTEY BIMONTHLY, 49(01): 8-12 [4] 曾庆喜, 施金榕, 张智博, 等. 2020. PEM电池二相流流动压降建模、验证及应用研究. 武汉理工大学学报(交通科学与工程版), 44(01): 153-157 (Zeng Q X, Shi J R, Zhang Z B, et al. 2020. Modeling, verification and application of two-phase flow pressure drop in PEM Cells. Journal of Wuhan university of technology (transportation science & engineering), 44(01): 153-157).Zeng Q X, Shi J R, Zhang Z B, et al. 2020. Modeling, verification and application of two-phase flow pressure drop in PEM Cells. Journal of Wuhan university of technology (transportation science & engineering), 44(01): 153-157 [5] 陈彬, 谢和平, 刘涛, 等. 2022. 碳中和背景下先进制氢原理与技术研究进展. 工程科学与技术, 54(01): 106-116 (Chen B, Xie H P, Liu T, et al. 2022. Principles and Progress of Advanced Hydrogen Production Technologies in the Context of Carbon Neutrality. Advanced Engineering Sciences, 54(01): 106-116).Chen B, Xie H P, Liu T, et al. 2022. Principles and Progress of Advanced Hydrogen Production Technologies in the Context of Carbon Neutrality. Advanced Engineering Sciences, 54(01): 106-116 [6] 陈良, 周楷淼, 赖天伟, 等. 2020. 液氢为核心的氢燃料供应链. 低温与超导, 48(11): 1-7 (Chen L, Zhou K M, Lai T W, et al. 2020. Hydrogen fuel supply chain based on liquid hydrogen. Cryogenics & Superconductivity, 48(11): 1-7).Chen L, Zhou K M, Lai T W, et al. 2020. Hydrogen fuel supply chain based on liquid hydrogen. Cryogenics & Superconductivity, 48(11): 1-7 [7] 陈良勇, 段钰锋, 赵国华 等. 2008. 浓度对水煤浆壁面滑移和流变特性的影响. 中国电机工程学报, 28(20): 48-54 (Chen L Y, Duan Y F, Zhao G H, et al. 2008. Effects of Concentration on Wall Slip Behavior and Rheological Characteristics of Coal Water Slurry. Proceedings of the CSEE, 28(20): 48-54). doi: 10.3321/j.issn:0258-8013.2008.20.009Chen L Y, Duan Y F, Zhao G H, et al. 2008. Effects of Concentration on Wall Slip Behavior and Rheological Characteristics of Coal Water Slurry. Proceedings of the CSEE, 28(20): 48-54 doi: 10.3321/j.issn:0258-8013.2008.20.009 [8] 陈敏恒, 丛德滋, 方图南, 等. 2015. 化工原理. 北京: 化学工业出版社 (Chen M H, Cong D Z, Fang T N, et al. 2015. Chemical Principle. Beijing: Chemical Industry Press).Chen M H, Cong D Z, Fang T N, et al. 2015. Chemical Principle. Beijing: Chemical Industry Press [9] 程玉峰, 孙颖昊, 张引弟. 2022. 氢气管道发展与管线钢氢脆挑战. 长江大学学报(自然科学版), 19(01): 54-69 (Cheng Y F, Sun H Y, Zhang Y D. 2022. Development of hydrogen pipelines and hydrogen embrittlement challenges of pipeline steel. Journal of Yangtze University (Natural Science Edition), 19(01): 54-69).Cheng Y F, Sun H Y, Zhang Y D. 2022. Development of hydrogen pipelines and hydrogen embrittlement challenges of pipeline steel. Journal of Yangtze University (Natural Science Edition), 19(01): 54-69 [10] 程友良, 张盼, 何传金. 2022. 小型储氢罐低温吸附特性影响因素及解决方案研究. 力学与实践, 44(4): 809-817 (Cheng Y L, Zhang P, He C J. 2022. Research on the issues and solutions of low-temperature adsorption characteristics of small hydrogen storage tanks. Mechanics in Engineering, 44(4): 809-817). doi: 10.6052/1000-0879-22-126Cheng Y L, Zhang P, He C J. 2022. Research on the issues and solutions of low-temperature adsorption characteristics of small hydrogen storage tanks. Mechanics in Engineering, 44(4): 809-817 doi: 10.6052/1000-0879-22-126 [11] 褚武扬, 乔利杰, 李金许等. 2013. 氢脆和应力腐蚀. 北京: 科学出版社( Chu W Y, Qiao L J, Li J X, et al. 2013. Hydrogen Embrittlement and Stress Corrosion Cracking . Beijing: Science Press [12] 杜旭鹏. 2022. SE水煤浆气化炉内反应流动状态在线监控研究[硕士学位论文]. 上海: 华东理工大学 (Du X D. 2022. Study on on-line monitoring of reaction flow state in SE coal water slurry gasifier [Master Thesis]. Shanghai: East China University of Science and Technology).Du X D. 2022. Study on on-line monitoring of reaction flow state in SE coal water slurry gasifier [Master Thesis]. Shanghai: East China University of Science and Technology [13] 房玉良, 秦浩, 王成龙, 等. 2020. 高温、高流速氢气在圆管内流动换热特性研究. 原子能科学技术, 54(10): 1762-1770 (Fang Y L, Qin H, Wang C L, et al. 2020. Heat transfer performance of high temperature and high velocity hydrogen flow inside circle tube. Atomic Energy Science and Technology, 54(10): 1762-1770). doi: 10.7538/yzk.2019.youxian.0755Fang Y L, Qin H, Wang C L, et al. 2020. Heat transfer performance of high temperature and high velocity hydrogen flow inside circle tube. Atomic Energy Science and Technology, 54(10): 1762-1770 doi: 10.7538/yzk.2019.youxian.0755 [14] 付佳佳, 王昌建, 秦俊, 等. 2013. 氢气喷射火的大涡模拟. 燃烧科学与技术, 19(5): 473-477 (Fu J J, Wang C J, Qin J, et al. 2013. Large Eddy Simulation of Hydrogen Jet Fire. Journal of Combustion Science and Technology, 19(5): 473-477). doi: 10.11715/rskxjs.R201301028Fu J J, Wang C J, Qin J, et al. 2013. Large Eddy Simulation of Hydrogen Jet Fire. Journal of Combustion Science and Technology, 19(5): 473-477 doi: 10.11715/rskxjs.R201301028 [15] 郭斌, 赵建福, 李凯, 等. 2021. 零重力条件下低温射流抑制大尺寸液氢储罐热分层的数值研究. 力学学报, 53(4): 1170-1182 (Guo B, Zhao J F, Li K, et al. 2021. Numerical study on thermal destratification in large scale hydrogen propellant tank in space by jet injection under zero gravity condition. Chinese Journal of Theoretical and Applied Mechanics, 53(4): 1170-1182). doi: 10.6052/0459-1879-20-343Guo B, Zhao J F, Li K, et al. 2021. Numerical study on thermal destratification in large scale hydrogen propellant tank in space by jet injection under zero gravity condition. Chinese Journal of Theoretical and Applied Mechanics, 53(4): 1170-1182 doi: 10.6052/0459-1879-20-343 [16] 郭烈锦, 赵亮. 2002. 可再生能源制氢与氢能动力系统研究. 中国科学基金, 04: 20-22 (Guo L J, Zhao L. 2002. Hydrogen production using solar energy and the study on hydrogen power system. Science Foundation in China, 04: 20-22). doi: 10.3969/j.issn.1000-8217.2002.01.006Guo L J, Zhao L. 2002. Hydrogen production using solar energy and the study on hydrogen power system. Science Foundation in China, 04: 20-22 doi: 10.3969/j.issn.1000-8217.2002.01.006 [17] 郭斯茂, 郭烈锦, 吕友军. 2011. 生物质超临界水气化制氢反应建模及数值模拟. 太阳能学报, 32(06): 929-935 (Guo S M, Guo L J, Lv Y J. 2011. Modeling and numerical simulation of hydrogen production with supercritical water gasification of biomass. Acta Energiae Solaris Sinica, 32(06): 929-935).Guo S M, Guo L J, Lv Y J. 2011. Modeling and numerical simulation of hydrogen production with supercritical water gasification of biomass. Acta Energiae Solaris Sinica, 32(06): 929-935 [18] 郭英俊, 韩令海, 钱丁超, 等. 2022. 直喷氢内燃机试验开发关键技术研究. 现代车用动力, 03: 19-22 + 33 (Guo Y J, Han L H, Qian D C, et al. 2022. Research on key technologies of direct injection hydrogen engine test and development. Modern vehicle power, 03: 19-22 + 33). doi: 10.3969/j.issn.1671-5446.2022.01.005Guo Y J, Han L H, Qian D C, et al. 2022. Research on key technologies of direct injection hydrogen engine test and development. Modern vehicle power, 03: 19-22 + 33 doi: 10.3969/j.issn.1671-5446.2022.01.005 [19] 何青, 胡华为. 2022. 氢燃料电池汽车变质量加注过程建模与分析. 热力发电, 51(11): 83-89 (He Q, Hu H W. 2022. Modeling and analysis of variable mass filling process for hydrogen fuel cell vehicle. Thermal Power Generation, 51(11): 83-89).He Q, Hu H W. 2022. Modeling and analysis of variable mass filling process for hydrogen fuel cell vehicle. Thermal Power Generation, 51(11): 83-89 [20] 花纯利, 高康, 周俊, 等. 2013. 特种输液(汽)管道振动固有特性分析. 噪声与振动控制, 33(3): 60-64 (Hua C L. Gao K, Zhou J, et al. 2013. Analysis of Characteristics of Intrinsic Vibration of a Special Liguid (Gas) Transfer Pipeline. Noise and vibration control, 33(3): 60-64).Hua C L. Gao K, Zhou J, et al. 2013. Analysis of Characteristics of Intrinsic Vibration of a Special Liguid (Gas) Transfer Pipeline. Noise and vibration control, 33(3): 60-64 [21] 黄辉, 万善宏, 易戈文, 等. 2021. 涉氢环境机械部件的摩擦学研究现状. 摩擦学学报, 41(04): 572-582 (Huang H, Wan S H, Yi G W, et al. 2021. Research Status of Tribology of Hydrogen-Related Mechanical Components. Tribology, 41(04): 572-582).Huang H, Wan S H, Yi G W, et al. 2021. Research Status of Tribology of Hydrogen-Related Mechanical Components. Tribology, 41(04): 572-582 [22] 黄明, 吴勇, 文习之, 等. 2013. 利用天然气管道掺混输送氢气的可行性分析. 煤气与热力, 33(4): 39-42 (Huang M, Wu Y, Wen X Z, et al. 2013. Feasibility Analysis of Hydrogen Transportin Natural Gas Pipeline. Gas & Heat, 33(4): 39-42). doi: 10.3969/j.issn.1000-4416.2013.04.010Huang M, Wu Y, Wen X Z, et al. 2013. Feasibility Analysis of Hydrogen Transportin Natural Gas Pipeline. Gas & Heat, 33(4): 39-42 doi: 10.3969/j.issn.1000-4416.2013.04.010 [23] 黄姝青, 徐文强, 李先明, 等. 2018. 金属储氢材料的性能边界条件分析. 稀有金属, 42(10): 1046-1053 (Huang S Q, Xu W Q, Li X M, et al. 2018. Scenario Analysis for Material Properties Boundary of Metal Hydrides for Hydrogen Storage. Chinese journal of rare metals, 42(10): 1046-1053).Huang S Q, Xu W Q, Li X M, et al. 2018. Scenario Analysis for Material Properties Boundary of Metal Hydrides for Hydrogen Storage. Chinese journal of rare metals, 42(10): 1046-1053 [24] 蒋庆梅, 张小强. 2015. 氢气与天然气长输管道线路设计ASME标准对比分析. 压力容器, 32(8): 44 (Jiang Q M, Zhang X Q. 2015. Contrastive analysis of ASME standards for route design of hydrogen and natural gas long-distance transportation pipeline. Pressure Vessel Technology., 32(8): 44). doi: 10.3969/j.issn.1001-4837.2015.08.008Jiang Q M, Zhang X Q. 2015. Contrastive analysis of ASME standards for route design of hydrogen and natural gas long-distance transportation pipeline. Pressure Vessel Technology., 32(8): 44 doi: 10.3969/j.issn.1001-4837.2015.08.008 [25] 李峰哲, 丁杰, 郭婉茜, 等. 2021. 卧式CSTR生物制氢反应器设计与流场数值模拟. 太阳能学报, 42(10): 305-310 (Ri Pong-Chol, Ding J, Guo W Q, et al. 2021. Design and flow field numerical simulation of horizontal CSTR biohydrogen reactor. Acta Energiae Solaris Sinica, 42(10): 305-310).Ri Pong-Chol, Ding J, Guo W Q, et al. 2021. Design and flow field numerical simulation of horizontal CSTR biohydrogen reactor. Acta Energiae Solaris Sinica, 42(10): 305-310 [26] 李家春. 2016. 能源. 环境. 力学−我国能源转型中的环境力学问题. 2016年全国环境力学学术研讨会摘要集 (Li J C. 2016. Energy. Environment. Mechanics - Environmental mechanics in energy transition. Proceedings of National Symposium on Environmental Mechanics).Li J C. 2016. Energy. Environment. Mechanics - Environmental mechanics in energy transition. Proceedings of National Symposium on Environmental Mechanics [27] 李建, 张立新, 李瑞懿, 等. 2021. 高压储氢容器研究进展. 储能科学与技术, 10(5): 1835-1844 (Li J, Zhang L X, Li R Y, et al. 2021. High-pressure gaseous hydrogen storage vessels: Current status and prospects. Energy Storage Science and Technology, 10(5): 1835-1844).Li J, Zhang L X, Li R Y, et al. 2021. High-pressure gaseous hydrogen storage vessels: Current status and prospects. Energy Storage Science and Technology, 10(5): 1835-1844 [28] 李亮荣, 彭建, 付兵, 等. 2022. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析. 太阳能学报, 43(06): 508-520 (Li L R, Peng J, Fu B, et al. 2022. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision. Acta Energiae Solaris Sinica, 43(06): 508-520).Li L R, Peng J, Fu B, et al. 2022. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision. Acta Energiae Solaris Sinica, 43(06): 508-520 [29] 李璐伶, 樊栓狮, 陈秋雄, 等. 2018. 储氢技术研究现状及展望. 储能科学与技术, 7(4): 586-594 (Li L L, Fan S S, Chen Q X, et al. 2018. Hydrogen storage technology: Current status and prospects. Energy Storage Science and Technology, 7(4): 586-594). doi: 10.12028/j.issn.2095-4239.2018.0062Li L L, Fan S S, Chen Q X, et al. 2018. Hydrogen storage technology: Current status and prospects. Energy Storage Science and Technology, 7(4): 586-594 doi: 10.12028/j.issn.2095-4239.2018.0062 [30] 李守英, 胡瑞松, 赵卫民等. 2020. 氢在钢铁表面吸附以及扩散的研究现状. 表面技术, 2020,49(8): 15 (Li S Y, Hu R S, Zhao W M, et al. 2020. Hydrogen adsorption and diffusion on steel surface. Surface Technology, 2020,49(8): 15).Li S Y, Hu R S, Zhao W M, et al. 2020. Hydrogen adsorption and diffusion on steel surface. Surface Technology, 2020,49(8): 15 [31] 李星国. 2023. 氢燃烧特性对氢内燃机性能的影响. 自然杂志, 45(01): 57-67 (Li X G. 2023. Effect of hydrogen combustion characteristics on the performance of hydrogen internal combustion engine. Chinese Journal of Nature, 45(01): 57-67).Li X G. 2023. Effect of hydrogen combustion characteristics on the performance of hydrogen internal combustion engine. Chinese Journal of Nature, 45(01): 57-67 [32] 李雪芳. 2015. 储氢系统意外氢气泄漏和扩散研究[博士学位论文]. 北京: 清华大学 (Li X F. 2015. Dispersion of Unintended Subsonic and Supersonic Hydrogen Releases from Hydrogen Storage Systems[PhD Thesis]. Beijing: Tsinghua University).Li X F. 2015. Dispersion of Unintended Subsonic and Supersonic Hydrogen Releases from Hydrogen Storage Systems[PhD Thesis]. Beijing: Tsinghua University [33] 刘翠伟, 裴业斌, 韩辉, 等. 2022. 氢能产业链及储运技术研究现状与发展趋势. 油气储运, 41(05): 498-514 (Liu C W, Pei Y B, Han H, et al. 2022. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies. OIL& GAS STORAGE AND TRANSPORTATION, 41(05): 498-514). doi: 10.6047/j.issn.1000-8241.2022.05.002Liu C W, Pei Y B, Han H, et al. 2022. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies. OIL& GAS STORAGE AND TRANSPORTATION, 41(05): 498-514 doi: 10.6047/j.issn.1000-8241.2022.05.002 [34] 刘神光, 周耀, 王正等. 2020. 钢中氢分布检测技术进展. 表面技术, 49(8): 1 (Liu S G, Zhou Y, Wang Z, et al. 2020. Progress of detection techniques for hydrogen mapping in steel. Surface Technology., 49(8): 1).Liu S G, Zhou Y, Wang Z, et al. 2020. Progress of detection techniques for hydrogen mapping in steel. Surface Technology., 49(8): 1 [35] 龙李威, 杜贵祥, 廖云庭, 等. 2022. 隔膜压缩机膜片PIP处理改性研究. 金属热处理, 47(07): 272-276 (Long L W, Du G X, Liao Y T, et al. 2022. PIP treatment modification of diaphragm compressor. Heat Treatment of Metals, 47(07): 272-276).Long L W, Du G X, Liao Y T, et al. 2022. PIP treatment modification of diaphragm compressor. Heat Treatment of Metals, 47(07): 272-276 [36] 栾骁, 马昕晖, 陈景鹏, 等. 2011. 液氢加注系统低温管道中的两相流仿真与分析. 低温与超导, 39(10): 20-23 (Luan X, Ma X H, Chen J P, et al. 2011. Analysis and simulation on two-phase flow in the pipeline of liquid hydrogen filling system. Cryogenics & Superconductivity, 39(10): 20-23). doi: 10.3969/j.issn.1001-7100.2011.10.005Luan X, Ma X H, Chen J P, et al. 2011. Analysis and simulation on two-phase flow in the pipeline of liquid hydrogen filling system. Cryogenics & Superconductivity, 39(10): 20-23 doi: 10.3969/j.issn.1001-7100.2011.10.005 [37] 吕超, 刘艳龙, 陈绪鑫, 等. 2022. 氢气管道内部凸起对流场影响的数值模拟研究. 中国工程机械学报, 20(06): 477-481 (LYU C, Liu Y L, Chen X X, et al. 2022. Numerical simulation study on the influence of internal bulge of hydrogen pipeline on flow field. Chinese Journal of Construction Machinery, 20(06): 477-481).LYU C, Liu Y L, Chen X X, et al. 2022. Numerical simulation study on the influence of internal bulge of hydrogen pipeline on flow field. Chinese Journal of Construction Machinery, 20(06): 477-481 [38] 吕冉, 赵杰, 闫东雷, 等. 加氢站核心设备安全风险分析与防护研究进展[J]. 现代化工, 2025, 45(02): 16-20 + 26 (Lv R, Zhao J, Yan D L, et al. 2025. Research progress on safety risk analysis and protection of core equipment in hydrogen refueling stations, 45(02): 16-20 + 26).Lv R, Zhao J, Yan D L, et al. 2025. Research progress on safety risk analysis and protection of core equipment in hydrogen refueling stations, 45(02): 16-20 + 26 [39] 吕友军, 金辉, 李国兴, 等. 2022. 基于超临界水气化制氢的煤炭利用技术研究进展. 煤炭学报, 47(11): 3870-3885 (LÜ Y J, Jin H, Li G X, et al. 2022. Research progress of coal utilization technology based on supercritical water gasification for hydrogen production. Journal of China Coal Society, 47(11): 3870-3885).LÜ Y J, Jin H, Li G X, et al. 2022. Research progress of coal utilization technology based on supercritical water gasification for hydrogen production. Journal of China Coal Society, 47(11): 3870-3885 [40] 马捷, 谢文杰, 刘宜构. 2006. 中国氢能研究的背景, 意义和趋势. 中国(北京)国际氢能大会 (Ma J, Xie W J, Liu Y G. 2006. Background, significance and trend of hydrogen energy research in China. China (Beijing) International Hydrogen Energy Conference).Ma J, Xie W J, Liu Y G. 2006. Background, significance and trend of hydrogen energy research in China. China (Beijing) International Hydrogen Energy Conference [41] 毛绍宽, 程友良, 王玮. 2022. 点阵结构对燃料电池大尺度流场流动均匀性影响. 热力发电, 1(11): 100-106 (Mao S K, Cheng Y L, Wang W. 2022. Influence of dot matrix on flow uniformity of large-scale flow field of fuel cells. Thermal Power Generation, 1(11): 100-106).Mao S K, Cheng Y L, Wang W. 2022. Influence of dot matrix on flow uniformity of large-scale flow field of fuel cells. Thermal Power Generation, 1(11): 100-106 [42] 毛宗强. 2005. 氢能: 21世纪的绿色能源. 北京: 化学工业出版社 (Mao Z Q. 2006. Hydrogen energy: The 21st century green energy. Beijing: Chemical Industry Press).Mao Z Q. 2006. Hydrogen energy: The 21st century green energy. Beijing: Chemical Industry Press. [43] 毛宗强. 2006. 无限的氢能−未来的能源. 自然杂志, 01: 14-18 (Mao Z Q. 2006. Hydrogen: Future Clean Energy. Chinese Journal of Nature, 01: 14-18). doi: 10.3969/j.issn.0253-9608.2006.01.003Mao Z Q. 2006. Hydrogen: Future Clean Energy. Chinese Journal of Nature, 01: 14-18 doi: 10.3969/j.issn.0253-9608.2006.01.003 [44] 妙丛, 张翼, 黄磊. 2022. 车载液氢容器关键技术. 低温与超导, 50(04): 71-74 (Miao C, Zhang Y, Huang L. 2022. Key technologies of liquid hydrogen container on vehicle. Cryogenics & Superconductivity, 50(04): 71-74).Miao C, Zhang Y, Huang L. 2022. Key technologies of liquid hydrogen container on vehicle. Cryogenics & Superconductivity, 50(04): 71-74 [45] 欧国标, 任一飞, 金辉, 郭烈锦. 2022. 典型煤种超临界水气动力学模型. 工程热物理报, 43(08): 2009-2018 (Ou G B, Ren Y F, Jin H, Guo L J. 2022. Kinetic Model for Supercritical Water Gasification of Typical Coals. JOURNAL OF ENGINEERING THERMOPHYSICS, 43(08): 2009-2018).Ou G B, Ren Y F, Jin H, Guo L J. 2022. Kinetic Model for Supercritical Water Gasification of Typical Coals. JOURNAL OF ENGINEERING THERMOPHYSICS, 43(08): 2009-2018 [46] 蒲亮, 余海帅, 代明昊, 等. 2022. 氢的高压与液化储运研究及应用进展. 科学通报, 67(19): 2172-2191 (Pu L, Yu H S, Dai M H, et al. 2022. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation (in Chinese). Chin Sci Bull, 67: 2172–2191).Pu L, Yu H S, Dai M H, et al. 2022. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation (in Chinese). Chin Sci Bull, 67: 2172–2191 [47] 彭先华. 2013. 不同微观结构管线钢氢致开裂 (HIC) 行为研究 [硕士学位论文]. 武汉: 武汉科技大学 (Peng X H. 2013. Research on hydrogen induced cracking behaviors of different microstructure pipeline steels [Master Thesis]. Wuhan: Wuhan University of Science and Technology [48] 任振华, 金辉, 刘石, 等. 2020. 煤炭超临界水流化床制氢反应器内颗粒流动及传热特性的数值分析. 工程热物理学报, 41(01): 154-160 (Ren Z H, Jin H, Liu S, et al. 2020. Numerical analysis of particle flow and heat transfer characteristics in a coal-supercritical water fluidized bed reactor for hydrogen production. JOURNAL OF ENGINEERING THERMOPHYSICS, 41(01): 154-160).Ren Z H, Jin H, Liu S, et al. 2020. Numerical analysis of particle flow and heat transfer characteristics in a coal-supercritical water fluidized bed reactor for hydrogen production. JOURNAL OF ENGINEERING THERMOPHYSICS, 41(01): 154-160 [49] 沈晓波, 章雪凝, 刘海峰. 2021. 高压氢气泄漏相关安全问题研究与进展. 化工学报, 72(03): 1217-1229 (Shen X B, Zhang X N, Liu H F. 2021. Research and progress on safety issues related to high-pressure hydrogen leakage. CIESC Journal, 72(03): 1217-1229). doi: 10.11949/0438-1157.20200874Shen X B, Zhang X N, Liu H F. 2021. Research and progress on safety issues related to high-pressure hydrogen leakage. CIESC Journal, 72(03): 1217-1229 doi: 10.11949/0438-1157.20200874 [50] 宋鹏飞, 张超, 肖力, 等. 2023. 我国站内小型橇装天然气制氢技术现状与发展趋势. 低碳化学与化工, 48(01): 164-169 (Song P F, Zhang C, Xiao L, et al. 2023. Status and development trend of small on-site skid-mounted natural gas hydrogen production technology in China. Low-carbon chemistry and chemical engineering, 48(01): 164-169). doi: 10.3969/j.issn.1001-9219.2023.01.021Song P F, Zhang C, Xiao L, et al. 2023. Status and development trend of small on-site skid-mounted natural gas hydrogen production technology in China. Low-carbon chemistry and chemical engineering, 48(01): 164-169 doi: 10.3969/j.issn.1001-9219.2023.01.021 [51] 孙柏刚, 包凌志, 罗庆贺. 2021. 缸内直喷氢燃料内燃机技术发展及趋势. 汽车安全与节能学报, 12(03): 265-278 (Sun B G, Bao L Z, Luo Q H. 2021. Development and trends of direct injection hydrogen internal combustion engine technology. Journal of Automotive Safety and Energy, 12(03): 265-278). doi: 10.3969/j.issn.1674-8484.2021.03.001Sun B G, Bao L Z, Luo Q H. 2021. Development and trends of direct injection hydrogen internal combustion engine technology. Journal of Automotive Safety and Energy, 12(03): 265-278 doi: 10.3969/j.issn.1674-8484.2021.03.001 [52] 孙亚浩, 朱瑞杰, 陈小松, 等. 2022. PEMFC流道结构对电池水管理影响的研究. 电源技术, 46(09): 1017-1020 (Sun Y H, Zhu R J, Chen X S, et al. 2022. Effect of flow channel structure on water management in PEMFC. Chinese Journal of Power Sources, 46(09): 1017-1020). doi: 10.3969/j.issn.1002-087X.2022.09.017Sun Y H, Zhu R J, Chen X S, et al. 2022. Effect of flow channel structure on water management in PEMFC. Chinese Journal of Power Sources, 46(09): 1017-1020 doi: 10.3969/j.issn.1002-087X.2022.09.017 [53] 王传成, 刘建忠, 虞育杰 等. 2010. 内蒙古褐煤的成浆特性. 中国电机工程学报, 30: 85-90 (Wang C C, Liu J Z, Yu Y J, et al. 2010. Slurry ability of Coal Water Slurry Prepared by Inner Mongolia Brown Coal. Proceedings of the CSEE, 30: 85-90).Wang C C, Liu J Z, Yu Y J, et al. 2010. Slurry ability of Coal Water Slurry Prepared by Inner Mongolia Brown Coal. Proceedings of the CSEE, 30: 85-90 [54] 王金亮, 黑悦鹏. 2021. 氢的现代分离与纯化技术. 齐鲁石油化工, 49(03): 235-244 (Wang J L, Hei Y P. 2021. The Modern Separation and Purification Technologies of Hydrogen. Qilu Petrochemical Technology, 49(03): 235-244). doi: 10.3969/j.issn.1009-9859.2021.03.017Wang J L, Hei Y P. 2021. The Modern Separation and Purification Technologies of Hydrogen. Qilu Petrochemical Technology, 49(03): 235-244 doi: 10.3969/j.issn.1009-9859.2021.03.017 [55] 王培灿, 万磊, 徐子昂, 等. 2021. 碱性膜电解水制氢技术现状与展望. 化工学报, 2(12): 6161-6175 (Wang P C, Wan L, Xu Z A, et al, 2021. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective. CIESC Journal, 2(12): 6161-6175).Wang P C, Wan L, Xu Z A, et al, 2021. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective. CIESC Journal, 2(12): 6161-6175 [56] 王天祥, 陈虹, 雷刚, 等. 2012. 增压输送过程中卧式贮罐液氢温度分层研究. 低温与超导, 40(4): 1-4 (Wang T X, Chen H, Lei G, et al. 2012. Investigation on thermal stratification of liquid hydrogen in a horizontal liquid hydrogen tank in pressurization feed process. Cryogenics & Superconductivity, 40(4): 1-4). doi: 10.3969/j.issn.1001-7100.2012.04.001Wang T X, Chen H, Lei G, et al. 2012. Investigation on thermal stratification of liquid hydrogen in a horizontal liquid hydrogen tank in pressurization feed process. Cryogenics & Superconductivity, 40(4): 1-4 doi: 10.3969/j.issn.1001-7100.2012.04.001 [57] 王学科, 沈义伟, 赵洪滨, 等. 2020. 旋涡式氢气循环泵的设计及性能分析. 化工进展, 39(S2): 89-96 (Wang X K, Shen Y W, Zhao H B, et al. 2020. Design and performance analysis of a compact hydrogen circulation pump. Chemical Industry and Engineering Progress, 39(S2): 89-96).Wang X K, Shen Y W, Zhao H B, et al. 2020. Design and performance analysis of a compact hydrogen circulation pump. Chemical Industry and Engineering Progress, 39(S2): 89-96 [58] 王振华, 蒋军成, 尤飞, 等. 2021. 高压氢气储运设施泄漏喷射火过程预测模型及其验证. 化工学报, 72(10): 5412-5423 (Wang Z H, Jiang J C, You F, et al. 2021. Prediction model for the process of jet fire induced by the leakage of high pressure hydrogen storage and transportation facilities and its validation. CIESC Journal, 72(10): 5412-5423). doi: 10.11949/0438-1157.20210672Wang Z H, Jiang J C, You F, et al. 2021. Prediction model for the process of jet fire induced by the leakage of high pressure hydrogen storage and transportation facilities and its validation. CIESC Journal, 72(10): 5412-5423 doi: 10.11949/0438-1157.20210672 [59] 王子松, 王业勤, 张超祥, 等. 2022. 小型化天然气制氢技术的研究进展与探索. 太阳能, 05: 40-47 (Wang Z S, Wang Y Q, Zhang C X, et al. 2022. Study progress and exploration of small scale hydrogen production technology by natural gas. SOLAR ENERGY, 05: 40-47).Wang Z S, Wang Y Q, Zhang C X, et al. 2022. Study progress and exploration of small scale hydrogen production technology by natural gas. SOLAR ENERGY, 05: 40-47 [60] 魏来, 汤赫男, 周营, 等. 2023. 加氢循环压缩机活塞杆断裂失效分析. 热加工工艺, 52(14): 157-160 (Wei L, Tang H N, Zhou Y, et al. 2023. Failure Analysis on Piston Rod Fracture in Hydrotreating Cycle Compressor. Hot Working Technology, 52(14): 157-160).Wei L, Tang H N, Zhou Y, et al. 2023. Failure Analysis on Piston Rod Fracture in Hydrotreating Cycle Compressor. Hot Working Technology, 52(14): 157-160 [61] 位召祥, 张淑兴, 刘世学, 2021. 固体氧化物电解制氢技术现状及面临问题分析. 科技创新与应用, 11(35): 36-39 (Wei Z X, Zhang S X, Liu S X, 2021. Status and problems of hydrogen production by solid oxide electrolysis. Technology Innovation and Application, 11(35): 36-39).Wei Z X, Zhang S X, Liu S X, 2021. Status and problems of hydrogen production by solid oxide electrolysis. Technology Innovation and Application, 11(35): 36-39 [62] 温昶, 张博涵, 王雅钦, 等. 2022. 高效质子交换膜电解水制氢技术的研究进展. 华中科技大学学报(自然科学版), 1-14 (Wen C, Zhang B H, Wang Y Q, et al. 2022. Research progress of high efficiency proton exchange membrane water electrolysis technology. Journal of Huazhong University of Science and Technology (Natural Science Edition), 1-14).Wen C, Zhang B H, Wang Y Q, et al. 2022. Research progress of high efficiency proton exchange membrane water electrolysis technology. Journal of Huazhong University of Science and Technology (Natural Science Edition), 1-14 [63] 肖强, 张乐, 张建军, 等. 2024. 大规模地下储氢用压缩机现状与发展趋势. 流体机械, 52(02): 75-82 (Xiao Q, Zhang L, Zhang J J, et al. 2024. Current situation and development trends in compressors for use in large-scale underground hydrogen storage. Fluid Machinery, 52(02): 75-82). doi: 10.3969/j.issn.1005-0329.2024.02.011Xiao Q, Zhang L, Zhang J J, et al. 2024. Current situation and development trends in compressors for use in large-scale underground hydrogen storage. Fluid Machinery, 52(02): 75-82 doi: 10.3969/j.issn.1005-0329.2024.02.011 [64] 徐一凡, 彭林法. 2019. 燃料电池流道内液滴流动建模与分析. 电源技术, 43(05): 815-818 (Xu Y F, Peng L F. 2019. Modeling and analysis of droplet dynamics in gas channel of PEMFC. Chinese Journal of Power Sources, 43(05): 815-818). doi: 10.3969/j.issn.1002-087X.2019.05.026Xu Y F, Peng L F. 2019. Modeling and analysis of droplet dynamics in gas channel of PEMFC. Chinese Journal of Power Sources, 43(05): 815-818 doi: 10.3969/j.issn.1002-087X.2019.05.026 [65] 闫伟阳, 潘旭海, 汪志雷, 等. 2019. 高压氢气泄漏自燃形成喷射火的实验研究. 爆炸与冲击, 39(11): 134-143 (Yan W Y, Pan X H, Wang Z L, et al. 2019. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire. Explosion and Shock Waves, 39(11): 134-143). doi: 10.11883/bzycj-2018-0394Yan W Y, Pan X H, Wang Z L, et al. 2019. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire. Explosion and Shock Waves, 39(11): 134-143 doi: 10.11883/bzycj-2018-0394 [66] 杨国辉. 2022. 水煤浆流变特性影响因素及相关研究. 煤炭加工与综合利用, 07: 76-80 (Yang G H. 2022. Study on influencing factors and related factors of rheological properties of coal water slurry. COAL PROCESSING & COMPREHENSIVE UTILIZATION, 07: 76-80).Yang G H. 2022. Study on influencing factors and related factors of rheological properties of coal water slurry. COAL PROCESSING & COMPREHENSIVE UTILIZATION, 07: 76-80 [67] 杨家培, 马骁, 雷体蔓, 等. 2019. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化. 清华大学学报(自然科学版), 59(07): 580-586 (Yang J P, Ma X, Lei T M, et al. 2019. Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of PEMFC. Journal of Tsinghua University (Science and Technology), 59(07): 580-586).Yang J P, Ma X, Lei T M, et al. 2019. Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of PEMFC. Journal of Tsinghua University (Science and Technology), 59(07): 580-586 [68] 杨晓阳, 杨昌乐. 2018. 正仲氢转化催化剂性能研究. 化学推进剂与高分子材料, 16(03): 79-82 (Yang X Y, Yang C L. 2018. Study on performance of orthohydrogen-parahydrogen converting catalyst. Chemical Propellants & Polymeric Materials, 16(03): 79-82).Yang X Y, Yang C L. 2018. Study on performance of orthohydrogen-parahydrogen converting catalyst. Chemical Propellants & Polymeric Materials, 16(03): 79-82 [69] 杨振中, 吴佳凯, 徐建伦, 等. 2022. 基于层次分析−熵值法的氢内燃机异常燃烧风险评估. 浙江大学学报(工学版), 56(11): 2187-2193 (Yang Z Z, Wu J K, Xu J L, et al. 2022. Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method. Journal of Zhejiang University (Engineering Science), 56(11): 2187-2193).Yang Z Z, Wu J K, Xu J L, et al. 2022. Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method. Journal of Zhejiang University (Engineering Science), 56(11): 2187-2193 [70] 易伟. 2018. 质子交换膜燃料电池流道内水传输过程的研究[硕士学位论文]. 武汉: 武汉理工大学 (Yi W. 2018. The Study of Water Transport Process in the Flow Channel of Proton Exchange Membrane Fuel Cell [Master Thesis]. Wuhan: Wuhan University of Technology).Yi W. 2018. The Study of Water Transport Process in the Flow Channel of Proton Exchange Membrane Fuel Cell [Master Thesis]. Wuhan: Wuhan University of Technology [71] 尹正宇, 符传略, 韩奎华, 等. 2022. 生物质制氢技术研究综述. 热力发电, 11: 37-48 (Yin Z Y, Fu C L, Han K H, et al. 2022. Review on technologies of hydrogen production from biomass. Thermal Power Generation, 11: 37-48).Yin Z Y, Fu C L, Han K H, et al. 2022. Review on technologies of hydrogen production from biomass. Thermal Power Generation, 11: 37-48 [72] 占超. 2020. 基于多种吸附剂的变压吸附氢气纯化性能研究[硕士学位论文]. 武汉: 武汉理工大学 (Zhan C. 2020. Study on Hydrogen Purification Performance of Pressure Swing Adsorption Using Multiple Adsorbents [Master Thesis]. Wuhan: Wuhan University of Technology).Zhan C. 2020. Study on Hydrogen Purification Performance of Pressure Swing Adsorption Using Multiple Adsorbents [Master Thesis]. Wuhan: Wuhan University of Technology [73] 张立新, 李建, 李瑞懿, 等. 2022. 车用燃料电池氢气供应系统研究综述. 工程热物理学报, 43(06): 1444-1459 (Zhang L X, Li J, Li R Y, et al. 2022. Research on the Hydrogen Supply System of Fuel Cell for Vehicle. Journal of Engineering Thermophysics, 43(06): 1444-1459).Zhang L X, Li J, Li R Y, et al. 2022. Research on the Hydrogen Supply System of Fuel Cell for Vehicle. Journal of Engineering Thermophysics, 43(06): 1444-1459 [74] 张文强, 于波. 2020. 高温固体氧化物电解制氢技术发展现状与展望. 电化学, 26(2): 212-229 (Zhang W Q, Yu B. 2020. Development Status and Prospects of Hydrogen Production by High Temperature Solid Oxide Electrolysis. Journal of Electrochemistry, 26(2): 212-229).Zhang W Q, Yu B. 2020. Development Status and Prospects of Hydrogen Production by High Temperature Solid Oxide Electrolysis. Journal of Electrochemistry, 26(2): 212-229 [75] 张晓光. 2020. 膜反应器甘油催化重整制氢的模拟研究. 能源化工, 41(06): 16-20 (Zhang X G. 2020. Simulation study on glycerol catalytic reforming for hydrogen production in a membrane reactor. Energy Chemical Industry, 41(06): 16-20). doi: 10.3969/j.issn.1006-7906.2020.06.005Zhang X G. 2020. Simulation study on glycerol catalytic reforming for hydrogen production in a membrane reactor. Energy Chemical Industry, 41(06): 16-20 doi: 10.3969/j.issn.1006-7906.2020.06.005 [76] 张振扬, 解辉. 2023. 氢能利用−液氢的制、储、运技术现状及分析. 可再生能源: 1-8 (Zhang Z, Xie H. 2023. Hydrogen utilization - status quo and analysis of liquid hydrogen production, storage and transportation technology. Renewable Energy Resources, 1-8).Zhang Z, Xie H. 2023. Hydrogen utilization - status quo and analysis of liquid hydrogen production, storage and transportation technology. Renewable Energy Resources, 1-8 [77] 赵宝超, 常浩. 2022. 天然气制氢工艺技术研究进展. 化工设计通讯, 48(04): 96-98 (Zhao B C, Chang H. 2022. Research progress of hydrogen production technology from natural gas. Chemical Engineering Design Communications, 48(04): 96-98). doi: 10.3969/j.issn.1003-6490.2022.04.034Zhao B C, Chang H. 2022. Research progress of hydrogen production technology from natural gas. Chemical Engineering Design Communications, 48(04): 96-98 doi: 10.3969/j.issn.1003-6490.2022.04.034 [78] 赵海贺, 陈泽宇, 覃承富, 等. 2022. 车用燃料电池氢气循环系统引射特性研究. 电力工程技术, 41(01): 173-179 (Zhan H H, Chen Z Y, Qin C F, et al. 2022. Ejection characteristics of hydrogen cycle system for vehicular fuel cell. Electric Power Engineering Technology, 41(01): 173-179). doi: 10.12158/j.2096-3203.2022.01.023Zhan H H, Chen Z Y, Qin C F, et al. 2022. Ejection characteristics of hydrogen cycle system for vehicular fuel cell. Electric Power Engineering Technology, 41(01): 173-179 doi: 10.12158/j.2096-3203.2022.01.023 [79] 赵杰, 姚冉, 王雯昕, 等. 2021. 往复压缩机管路系统气固耦合振动特性研究. 流体机械, 49(12): 78-85 (Zhao J, Yao R, Wang W X, et al. 2021. Study on Gas-solid Coupling Vibration Characteristics of Reciprocating Compressor Pipeline System. Fluid Machinery, 49(12): 78-85). doi: 10.3969/j.issn.1005-0329.2021.12.012Zhao J, Yao R, Wang W X, et al. 2021. Study on Gas-solid Coupling Vibration Characteristics of Reciprocating Compressor Pipeline System. Fluid Machinery, 49(12): 78-85 doi: 10.3969/j.issn.1005-0329.2021.12.012 [80] 赵鑫, 杨沄芃, 郭帅帅. 2022. 亲/疏水流道壁面对PEMFC水传输特性的影响. 电源技术, 46(07): 761-764 (Zhao X, Yang Y P, Guo S S. 2022. Effect of hydrophilicity/hydrophobicity flow channel wall on water transport characteristics of PEMFC. Chinese Journal of Power Sources, 46(07): 761-764). doi: 10.3969/j.issn.1002-087X.2022.07.014Zhao X, Yang Y P, Guo S S. 2022. Effect of hydrophilicity/hydrophobicity flow channel wall on water transport characteristics of PEMFC. Chinese Journal of Power Sources, 46(07): 761-764 doi: 10.3969/j.issn.1002-087X.2022.07.014 [81] 赵永志, 张鑫, 郑津洋, 等. 2016. 掺氢天然气管道输送安全技术. 化工机械, 43(01): 1-7 (Zhao Y Z, Zhang X, Zheng J Y, et al. 2016. Safety Technology for Pipeline Transportation of Hydrogen-Natural Gas Mixtures. Chemical Engineering & Machinery, 43(01): 1-7). doi: 10.3969/j.issn.0254-6094.2016.01.001Zhao Y Z, Zhang X, Zheng J Y, et al. 2016. Safety Technology for Pipeline Transportation of Hydrogen-Natural Gas Mixtures. Chemical Engineering & Machinery, 43(01): 1-7 doi: 10.3969/j.issn.0254-6094.2016.01.001 [82] 赵泽滢. 2022. 撬装式加氢站氢气泄漏及爆炸事故安全分析[硕士学位论文]. 济南: 山东大学(Zhao Z Y. 2022. Safety analysis of hydrogen releases and explosion accident in a skid-mounted hydrogen refueling station. Jinnan: Shandong University [83] 周宁, 梅苑, 李雪, 等. 2020. 管道截面尺寸对氢气火焰传播过程影响的数值模拟. 安全与环境学报, 20(6): 2131-2138 (Zhou N, Mei Y, Li X, et al. 2020. Numerical simulation for the influence of the section-size on the hydrogen flame propagation process. Journal of Safety and Environment, 20(6): 2131-2138).Zhou N, Mei Y, Li X, et al. 2020. Numerical simulation for the influence of the section-size on the hydrogen flame propagation process. Journal of Safety and Environment, 20(6): 2131-2138 [84] Aasadnia M, Mehrpooya M. 2018. Large-scale liquid hydrogen production methods and approaches: A review. Applied Energy, 212(FEB.15): 57-83 [85] Ahluwalia R K, Wang X. 2008. Fuel cell systems for transportation: Status and trends. Journal of power sources, 177(1): 167-176 doi: 10.1016/j.jpowsour.2007.10.026 [86] Akbari Nasrin K, Ramiar M. 2015. Heat transfer analysis of liquid piston compressor for hydrogen applications. International Journal of Hydrogen Energy, 40(35): 11522-11529 doi: 10.1016/j.ijhydene.2015.01.098 [87] Akyuzlu K M. 2015. Numerical study of high-temperature and high-velocity gaseous hydrogen flow in a cooling channel of a nuclear thermal rocket core. Journal of Nuclear Engineering and Radiation Science, 1(4): 041006 doi: 10.1115/1.4030833 [88] Andersson J, S Grönkvist. 2019. Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 4(23): 11901-11919 [89] An T, Zheng S, Peng H, et al. 2017. Synergistic action of hydrogen and stress concentration on the fatigue properties of X80 pipeline steel. Materials Science and Engineering: A, 700: 321-330. doi: 10.1016/j.msea.2017.06.029 [90] Anwar S, Khan F, Zhang Y, et al. 2021. Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 46(63): 32284-32317 doi: 10.1016/j.ijhydene.2021.06.191 [91] Asadnia M, Mehrpooya M. 2017. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems. International journal of hydrogen energy, 2 42(23): 15564-15585. [92] Ashok J, Dewangan N, Das S, et al. 2020. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology, 199: 106252 doi: 10.1016/j.fuproc.2019.106252 [93] Azadi P, Farnood R. 2011. Review of heterogeneous catalysts for sub-and supercritical water gasification of biomass and wastes. International Journal of Hydrogen Energy, 36(16): 9529-9541 doi: 10.1016/j.ijhydene.2011.05.081 [94] Aziz M. 2021. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety. Energies, 14(18): 5917Atsbha TA, Yoon T, Cherif A, et al. 2023. Integrated kinetics-computational fluid dynamic-optimization for catalytic hydrogenation of CO2 to formic acid. Journal of CO2 Utilization, 78: 102635 [95] Badami M, Mura M. 2010. Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system. Energy Conversion and management, 51(3): 553-560 doi: 10.1016/j.enconman.2009.10.022 [96] Badduri S R, Srinivasulu G N, Rao S S. 2020. Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell. Chinese Journal of Chemical Engineering, 28(3): 824-831 doi: 10.1016/j.cjche.2019.07.010 [97] Bakonyi P, Nemestóthy N, Lankó J, et al. 2015. Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. International journal of hydrogen energy, 40(4): 1690-1697 doi: 10.1016/j.ijhydene.2014.12.002 [98] Baldwin D. 2017. Development of high pressure hydrogen storage tank for storage and gaseous truck delivery. Hexagon Lincoln LLC, Lincoln, NE (United States [99] Baran M J, Braten M N, Sahu S. 2019. Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free. Joule, 3 (12 [100] Bessarabov D, Wang H, Li H, et al. 2015. PEM Electrolysis for Hydrogen Production (Principles and Applications)| | Generation of Ozone and Hydrogen in a PEM Electrolyzer. CRC Press, Boca Raton [101] Bouwman P J. 2016. Advances in electrochemical hydrogen compression and purification. ECS Transactions, 75(14): 503 doi: 10.1149/07514.0503ecst [102] Brennan S L, Makarov D V, Molkov V. 2009. LES of high pressure hydrogen jet fire. Journal of Loss Prevention in the Process Industries, 22(3): 353-359 doi: 10.1016/j.jlp.2008.12.007 [103] Brennan Sile, Molkov Vladimir. 2018. Pressure peaking phenomenon for indoor hydrogen releases. International journal of hydrogen energy, 43(39): 18530-18541 doi: 10.1016/j.ijhydene.2018.08.096 [104] Briottet L, Moro I, Escot M, et al. 2015. Fatigue crack initiation and growth in a CrMo steel under hydrogen pressure. International Journal of Hydrogen Energy, 40(47): 17021-17030 doi: 10.1016/j.ijhydene.2015.05.080 [105] Briottet L, Moro I, Lemoine P. 2012. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations. International journal of hydrogen energy, 37(22): 17616-17623 doi: 10.1016/j.ijhydene.2012.05.143 [106] Brunner D A, Marcks S, Bajpai M, et al. 2012. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. International journal of hydrogen energy, 37(5): 4457-4466 doi: 10.1016/j.ijhydene.2011.11.116 [107] Baran A, Jensen TR, Polański M. 2024. Mechanochemistry at elevated temperature and hydrogen pressure applied for the synthesis of magnesium-cobalt-based hydrogen storage materials. Journal of Energy Storage, 103: 114272 doi: 10.1016/j.est.2024.114272 [108] Cai G, Liang Y, Liu Z, et al. 2020. Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm. Energy, 192: 116670 doi: 10.1016/j.energy.2019.116670 [109] Chang H, Xie X, Zheng Y, et al. 2017. Numerical study on the cavitating flow in liquid hydrogen through elbow pipes with a simplified cavitation model. International journal of hydrogen energy, 42(29): 18325-18332 doi: 10.1016/j.ijhydene.2017.04.132 [110] Charbonnier V, Enoki H, Asano K, et al. 2022. Improvement of hydrogenation sorption properties of Ti0.90V0.30Mn1.00Ni0.80 for ultra-high pressure metal-hydride compressor. International Journal of Hydrogen Energy, 47(75): 32252-32261 [111] Chen N, Hu C, Wang H H , et al. 2021. Chemically & physically stable crosslinked poly (aryl-co-aryl piperidinium) s for anion exchange membrane fuel cells. Journal of Membrane Science, 638: 119685 [112] Cheng Y, Zhang P, He C. 2022. Research on the issues and solutions of low-temperature adsorption characteristics of small hydrogen storage tanks. Mechanics in Engineering, 44(4): 809-817. [113] Cirrone D M C, Makarov D, Molkov V. 2019. Simulation of thermal hazards from hydrogen under-expanded jet fire. International journal of hydrogen energy, 44(17): 8886-8892 doi: 10.1016/j.ijhydene.2018.08.106 [114] Cai T, Tang A, Li C. 2023. Experimental and kinetic analyses on the flame dynamics and stabilization of ammonia/hydrogen-air mixtures in a micro-planar combustor. Chemical Engineering Journal, 477: 147038 doi: 10.1016/j.cej.2023.147038 [115] Chen J, Ge W. 2023. Computational study of the segmental catalysis of steam-methanol reforming in heat integrated microchannel reactors for hydrogen production. Chemical Engineering and Processing - Process Intensification, 186: 109338 doi: 10.1016/j.cep.2023.109338 [116] Chen Q, Morita T, Sawae Y, et al. 2023. Effects of trace moisture content on tribofilm formation, friction and wear of CF-filled PTFE in hydrogen. Tribology International, 188: 108905 doi: 10.1016/j.triboint.2023.108905 [117] Chen Z, Yang D, Bian H. 2023. Peridynamic modeling of crack propagation driven by hydrogen embrittlement. Engineering Fracture Mechanics, 293: 109687 doi: 10.1016/j.engfracmech.2023.109687 [118] Chu T, Tang Q, Wang Q, et al. 2023. Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism. Energy, 264: 126286 doi: 10.1016/j.energy.2022.126286 [119] Dashbabu D, Kumar E A, Jain I P. 2023. Thermodynamic analysis of a metal hydride hydrogen compressor with aluminium substituted LaNi5 hydrides. International Journal of Hydrogen Energy, 48(96): 37886-37897 doi: 10.1016/j.ijhydene.2022.09.094 [120] De Stefano M, Rocourt X, Sochet I, et al. 2019. Hydrogen dispersion in a closed environment. International journal of hydrogen energy, 44(17): 9031-9040 doi: 10.1016/j.ijhydene.2018.06.099 [121] Ding Y, Bi H T, Wilkinson D P. 2010. Three-dimensional numerical simulation of water droplet emerging from a gas diffusion layer surface in microchannels. Journal of Power Sources, 195(21): 7278-7288 doi: 10.1016/j.jpowsour.2010.05.059 [122] Ding R, Cheng Y L, Fan X C, et al. 2024. Many-objective optimization of graded cathode catalyst layer for PEMFC on performance, gas distribution quality, and cost via AI-based model. International Journal of Hydrogen Energy, 58: 1514-1525 doi: 10.1016/j.ijhydene.2024.01.309 [123] Ding R, Cheng Y L, Fan X C, et al. 2024. Combined effects of Pt/C ratio and relative humidity on the performance and gas distribution quality of PEMFC with graded ionomer distribution. International Journal of Hydrogen Energy, 79: 208-220 doi: 10.1016/j.ijhydene.2024.06.406 [124] Donaubauer P J, Cardella U, Decker L, et al. 2019. Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction. Chemical Engineering & Technology, 42(3): 669-679 [125] Dong G X, Li H Y, Chen V. 2013. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 1(15): 4610-4630 doi: 10.1039/c3ta00927k [126] Du M, Hao YL. 2007. Numerical study on the gas-solid two phase flow in a 1t/h two stage entrained flow gasifier. Proceeding of the 6th International Symposium on Coal Combusition. Wuhan, China [127] Duan Q L, Xiao H H, GAO W, et al. 2016. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air. Fuel, 181: 811-819 doi: 10.1016/j.fuel.2016.05.066 [128] Dunn S. 2002. Hydrogen futures: toward a sustainable energy system. International journal of hydrogen energy, 27(3): 235-264 doi: 10.1016/S0360-3199(01)00131-8 [129] Duranty E R, Roosendaal T J, Pitman S G, et al. 2017. An in situ tribometer for measuring friction and wear of polymers in a high pressure hydrogen environment. Review of Scientific Instruments, 88(9): 095114 doi: 10.1063/1.5001836 [130] Doi D. 2024. Thermal analysis of the hydrogen release behavior of sodium hydride and kinetic analysis using master plot methods. International Journal of Hydrogen Energy, 91: 1245-1252 doi: 10.1016/j.ijhydene.2024.10.227 [131] Du Y, Sun Z, Huang Q. 2025. Leakage process and spontaneous ignition of hydrogen within a tube after releasing from the storage container with pressures up to 20 MPa. Process Safety and Environmental Protection, 193: 217-227 doi: 10.1016/j.psep.2024.11.041 [132] Entezari E, Velázquez JLG, Sabzali H, et al. 2024. An empirical model of the kinetics of hydrogen-induced cracking in pipeline steel, using statistical distribution models and considering microstructural characteristics and hydrogen diffusion parameters. Corrosion Science, 241: 112556 doi: 10.1016/j.corsci.2024.112556 [133] Fang Q, Ji D. 2023. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type Ⅳ hydrogen storage vessels. Materials Today Communications, 35: 106302 doi: 10.1016/j.mtcomm.2023.106302 [134] Gong L, Duan Q L, Liu J L, et al. 2019. Effect of burst disk parameters on the release of high-pressure hydrogen. Fuel, 235: 485-494 doi: 10.1016/j.fuel.2018.08.044 [135] Grschl C, Meyer R, Holtappels K, et al. 2011. A New Technology for Hydrogen Safety: Glass Structures as a Storage System. International Conference and Exhibition on Hydrogen, Fuel Cells and Electric Drives [136] Gu P, Xing L, Wang Y, et al. 2021. Transient flow field and performance analysis of a claw pump for FCVs. International Journal of Hydrogen Energy, 46(1): 984-997. doi: 10.1016/j.ijhydene.2020.09.154 [137] Gu X C, Zhang J D, Pan Y, et al. 2020. Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field. Safety Science, 122: 104532 doi: 10.1016/j.ssci.2019.104532 [138] Guo J, Yang J, Zhao Y, et al. 2014. Investigations on temperature variation within a type III cylinder during the hydrogen gas cycling test. International journal of hydrogen energy, 39: 13926-13934 doi: 10.1016/j.ijhydene.2014.03.097 [139] Gao R, Xing B, Yang C, et al. 2024. Synergic effects of temperature and pressure on the hydrogen diffusion and dissolution behaviour of X80 pipeline steel. Corrosion Science, 240: 112468 doi: 10.1016/j.corsci.2024.112468 [140] Gao Z, Fan C, Yin Z, et al. 2024. Electrochemical hydrogen Compression: Module design and membrane development. Chemical Engineering Journal, 488: 150733 doi: 10.1016/j.cej.2024.150733 [141] Guo S, Xu L, Dong S, et al. 2023. Finite element modeling of hydrogen atom diffusion and distribution at corrosion defect on aged pipelines transporting hydrogen. International Journal of Hydrogen Energy, 48(36): 13566-13577 doi: 10.1016/j.ijhydene.2022.12.287 [142] Han M G, Chang S H. 2015. Failure analysis of a Type III hydrogen pressure vessel under impact loading induced by free fall. Composite Structures, 127: 288-297 doi: 10.1016/j.compstruct.2015.03.027 [143] Hausmann P. 2021. Tank valve: US 10948087 B2[P] [144] Heidary H, Kermani M J, Prasad A K, et al. 2017. Numerical modelling of in-line and staggered blockages in parallel flow field channels of PEM fuel cells. International journal of hydrogen energy, 42(4): 2265-2277 doi: 10.1016/j.ijhydene.2016.10.076 [145] Henriksen M, Gaathaug A V, Lundberg J. 2019. Determination of underexpanded hydrogen jet flame length with a complex nozzle geometry. International Journal of Hydrogen Energy, 4(17): 8988-8996 [146] Hooker P, Hall J, Hoyes J R, et al. 2017. Hydrogen jet fires in a passively ventilated enclosure. International Journal of Hydrogen Energy, 42(11): 7577-7588 doi: 10.1016/j.ijhydene.2016.07.246 [147] Hossain M, Islam Z S, Colley-Davies A, et al. 2013. Water dynamics inside a cathode channel of a polymer electrolyte membrane fuel cell. Renewable Energy, 50: 763-779 doi: 10.1016/j.renene.2012.08.041 [148] Houf W G, Evans G H, Schefer R W. 2009. Analysis of jet flames and unignited jets from unintended releases of hydrogen. International Journal of Hydrogen Energy, 34(14): 5961-5969 doi: 10.1016/j.ijhydene.2009.01.054 [149] Hua Z, Zhang X, Zheng J, et al. 2017. Hydrogen-enhanced fatigue life analysis of Cr–Mo steel high-pressure vessels. International Journal of Hydrogen Energy, 42(16): 12005-12014 doi: 10.1016/j.ijhydene.2017.02.103 [150] Huang M, Wang Z, Lu K, et al. 2021. In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. Journal of Membrane Science, 630: 119302 doi: 10.1016/j.memsci.2021.119302 [151] Hui J , Guo L, Jian G, et al. 2015. Study on gasification kinetics of hydrogen production from lignite in supercritical water. Journal of Xian Jiaotong University, 40(24): 7523-7529 [152] Hwang J J, Cho C C, Wu W, et al. 2015. Numerical and experimental investigation into passive hydrogen recovery scheme using vacuum ejector. Journal of Power Sources, 275: 539-546 doi: 10.1016/j.jpowsour.2014.11.057 [153] Hamacher J, Stary A, Stops L, et al. 2023. Modeling the thermodynamic behavior of cryo-compressed hydrogen tanks for trucks. Cryogenics, 135: 103743 doi: 10.1016/j.cryogenics.2023.103743 [154] Hüner, B. 2024. Mathematical modeling of an integrated photovoltaic-assisted PEM water electrolyzer system for hydrogen production. International Journal of Hydrogen Energy, 79: 594-608 doi: 10.1016/j.ijhydene.2024.07.041 [155] Huo W, Wu P, Xie B, et al. 2023. Elucidating non-uniform assembling effect in large-scale PEM fuel cell by coupling mechanics and performance models. Energy Conversion and Management, 277: 116668 doi: 10.1016/j.enconman.2023.116668 [156] Jakel C, Kelm S, Reinecke E A, et al. 2014. Validation strategy for CFD models describing safety-relevant scenarios including LH2 /GH2 release and the use of passive auto-catalytic recombiners. International Journal of Hydrogen Energy, 39(35): 20371-20377 doi: 10.1016/j.ijhydene.2014.04.056 [157] Jenssen D, Berger O, Krewer U. 2017. Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation. Applied Energy, 195: 324-333 doi: 10.1016/j.apenergy.2017.03.002 [158] Jiahao C, Xiaohan J, Chuang X, et al. 2015. Design and validation of new cavity profiles for diaphragm stress reduction in a diaphragm compressor[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 90(1): 012083. [159] Jiang Y M, Pan X H, Yan W Y, et al. 2019. Pressure dynamics, self-ignition, and flame propagation of hydrogen jet discharged under high pressure. International Journal of Hydrogen Energy, 44(40): 22661-22670 doi: 10.1016/j.ijhydene.2019.03.268 [160] Jilakara S, Vaithianathan J V, Natarajan S, et al. 2015. An experimental study of turbocharged hydrogen fuelled internal combustion engine. SAE International Journal of Engines, 8(1): 314-325 doi: 10.4271/2015-26-0051 [161] Jin H, Lu Y, Liao B, et al. 2010. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International journal of hydrogen energy, 35(13): 7151-7160 doi: 10.1016/j.ijhydene.2010.01.099 [162] Kang X, Gao X, Liu Z, et al. 2023. Modeling and development of a liquid piston hydrogen compressor with a double buffer structure: A new insight. International Journal of Hydrogen Energy, 48(33): 12410-12423 doi: 10.1016/j.ijhydene.2022.12.129 [163] Kim H J, Lee M G. 2022. Analysis of hydrogen trapping behaviour in plastically deformed quenching and partitioning steel in relation to microstructure evolution by phase transformation. Journal of Alloys and Compounds, 904: 164018 doi: 10.1016/j.jallcom.2022.164018 [164] Kim M S, Ryu J H, Oh S J, et al. 2020. Numerical investigation on influence of gas and turbulence model for type III hydrogen tank under discharge condition. Energies, 13: 6432 doi: 10.3390/en13236432 [165] Kim M S, Chu C H, Kim Y K, et al. 2024. Analysis of internal behavior of electrochemical hydrogen compressors at high pressures. Renewable Energy, 234: 121165 doi: 10.1016/j.renene.2024.121165 [166] Kim S, Lee Y M. 2015. Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 43: 1-32 doi: 10.1016/j.progpolymsci.2014.10.005 [167] Kobayashi H, Naruo Y, Maru Y, et al. 2018. Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion. International Journal of Hydrogen Energy, 43(37): 17928-17937 doi: 10.1016/j.ijhydene.2018.07.145 [168] Kohli D K, Khardekr R K, Singh R, et al. 2008. Glass micro-container based hydrogen storage scheme. International Journal of Hydrogen Energy, 33(1): 417-422 doi: 10.1016/j.ijhydene.2007.07.044 [169] Krzeminski P, Leverette L, Malamis S, et al. 2017. Membrane bioreactors a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 527: 207-227 doi: 10.1016/j.memsci.2016.12.010 [170] Kumar S S, Himabindu V. 2019. Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2(3): 442-454 doi: 10.1016/j.mset.2019.03.002 [171] Kuroki T, Sakoda N, Shinzato K, et al. 2018. Prediction of transient temperature of hydrogen flowing from pre-cooler of refueling station to inlet of vehicle tank. International journal of Hydrogen Energy, 43(3): 1846-1854 doi: 10.1016/j.ijhydene.2017.11.033 [172] Kashinga RJ, Liu S, Zhang T, et al. 2024. A deformation-diffusion interactive model to study crack-tip behaviour and predict crack growth rate under fatigue and hydrogen-embrittlement conditions. Engineering Fracture Mechanics, 312: 110642 doi: 10.1016/j.engfracmech.2024.110642 [173] Kondratyev S, Baskanbayeva D, Yelemessov K, et al. 2024. Control of hydrogen leaks from storage tanks and fuel supply systems to mining transport infrastructure facilities. International Journal of Hydrogen Energy, 95: 212-216 doi: 10.1016/j.ijhydene.2024.11.182 [174] Kumbhat DS, Ebigbo A. 2024. Effect of relative permeability hysteresis on plume dynamics, wellbore flow regime, and storage efficiency in underground hydrogen storage. International Journal of Hydrogen Energy, 91: 243-255 doi: 10.1016/j.ijhydene.2024.09.403 [175] Lee H, Kim A, Lee B, et al. 2020. Comparative numerical analysis for an efficient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor. Energy Conversion and Management, 213: 112839 doi: 10.1016/j.enconman.2020.112839 [176] Lee J, Yoon S, Park H, et al. 2024. Influence of key design variables on the performance and mechanical behavior of an electrochemical hydrogen compressor. Journal of Power Sources, 594: 234043 doi: 10.1016/j.jpowsour.2023.234043 [177] Lee J W, Lee C S, Lee J H, et al. 2020. Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer. Polymers, 12(12): 2821 doi: 10.3390/polym12122821 [178] Li P Y, Wang Z, Qiao Z H, et al. 2015. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 495: 130-168 doi: 10.1016/j.memsci.2015.08.010 [179] Li P, Duan Q L, Zeng Q, et al. 2019. Experimental study of spontaneous ignition induced by sudden hydrogen release through tubes with different shaped cross-sections. International Journal of Hydrogen Energy, 44(42): 23821-23831 doi: 10.1016/j.ijhydene.2019.07.083 [180] Li R, Malalasekera W, Ibrahim S. 2018. Numerical study of vented hydrogen explosions in a small scale obstructed chamber. International Journal of Hydrogen Energy, 43(34): 16667-16683 doi: 10.1016/j.ijhydene.2018.07.078 [181] Li X F, Chen Q, Chen M J, et al. 2019. Modeling of under expanded hydrogen jets through square and rectangular slot nozzles. International journal of hydrogen energy, 44(12): 6353-6365 doi: 10.1016/j.ijhydene.2019.01.079 [182] Li X, Chowdhury B R, He Q, et al. 2021. Validation of two-layer model for under expanded hydrogen jets. International Journal of Hydrogen Energy, 46(23): 12545-12554 doi: 10.1016/j.ijhydene.2020.08.204 [183] Li Y C, Bi M S, Yan C C, et al. 2019. Inerting effect of carbon dioxide on confined hydrogen explosion. International Journal of Hydrogen Energy, 44(40): 22620-22631 doi: 10.1016/j.ijhydene.2019.04.181 [184] Liang Y, Pan X M, Zhang C M, et al. 2019. The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station. International journal of hydrogen energy, 44(40): 22608-22619 doi: 10.1016/j.ijhydene.2019.05.140 [185] Liu G, Qin Y, Liu Y. 2021. Numerical simulation of hydrogen filling process in novel high-pressure microtube storage device. International journal of hydrogen energy, (46-74 [186] Liu Y L, Wei J J, Lei G, et al. 2018. Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions. International journal of hydrogen energy, 43(15): 7643-7651 doi: 10.1016/j.ijhydene.2018.02.180 [187] Lorenzini-Gutierrez D, Kandlikar S G, Hernandez-Guerrero A, et al. 2015. Residence time of water film and slug flow features in fuel cell gas channels and their effect on instantaneous area coverage ratio. Journal of power sources, 279: 567-580 doi: 10.1016/j.jpowsour.2015.01.041 [188] Lu W, Yang Z, Huang H, et al. 2020. Piperidinium-functionalized poly (vinylbenzyl chloride) cross-linked by polybenzimidazole as an anion exchange membrane with a continuous ionic transport pathway. Industrial & Engineering Chemistry Research, 59(48): 21077-21087 [189] Lu Y, Guo L, Zhang X, et al. 2012. Hydrogen production by supercritical water gasification of biomass: explore the way to maximum hydrogen yield and high carbon gasification efficiency. International Journal of Hydrogen Energy, 37(4): 3177-3185 doi: 10.1016/j.ijhydene.2011.11.064 [190] Lu Y, Li Z, Zhang M, et al. 2021. The application of thermal-calculation methods in the design and syngas prediction of entrained-flow coal gasifiers. Energy Conversion and Management, 245: 114627 doi: 10.1016/j.enconman.2021.114627 [191] Lu Y, Zhang T, Dong X. 2016. Numerical analysis of heat transfer and solid volume fraction profiles around a horizontal tube immersed in a supercritical water fluidized bed. Applied Thermal Engineering, 93: 200-213 doi: 10.1016/j.applthermaleng.2015.09.026 [192] Li J, Wang T, Yang Q, et al. 2023. Towards fast and safe hydrogen filling for the fuel vehicle: A variable mass flow filling strategy based on a real-time thermodynamic model. International Journal of Hydrogen Energy, 48(53): 20406-20418 doi: 10.1016/j.ijhydene.2023.03.001 [193] Li L, Guo Z, Ma Y, et al. 2025. Multi-scale hydrogen embrittlement prediction model of low alloy steel based on multi-dimensional defect reconstruction. Engineering Fracture Mechanics, 313: 110644 doi: 10.1016/j.engfracmech.2024.110644 [194] Li MF, Zhang H, Henein H, et al. 2024. Hydrogen trapping in precipitates of high-strength steel: Insights into various coherent and stress conditions. International Journal of Hydrogen Energy, 92: 1356-1365 doi: 10.1016/j.ijhydene.2024.10.373 [195] Li X, Dong C, Liu Y, et al. 2024. Study on the effect of hydrogen cycle pressure relief time on the hydrogen permeability and mechanical properties of polyamide liner materials for type IV hydrogen storage cylinders of HFCVs. International Journal of Hydrogen Energy, 95: 993-1003 doi: 10.1016/j.ijhydene.2024.11.291 [196] Li Y, Wang W, Pan M, et al. 2023. Fatigue life analysis of high-pressure seamless steel cylinder for hydrogen using autofrettage design. International Journal of Pressure Vessels and Piping, 206: 105065 doi: 10.1016/j.ijpvp.2023.105065 [197] Lin X, Yin C, Ren L, et al. 2023. A one- and three-dimensional coupled model and simulation investigation for the large-scale oil-heating type Mg-based hydrogen storage tank. Chemical Engineering Journal, 472: 144943 doi: 10.1016/j.cej.2023.144943 [198] Liu K, Jiang J, He C, et al. 2023. Numerical analysis of the diffusion and explosion characteristics of hydrogen-air clouds in a plateau hydrogen refuelling station. International Journal of Hydrogen Energy, 48(100): 40101-40116 doi: 10.1016/j.ijhydene.2023.07.155 [199] Liu P, Lang P, Chen Z, et al. 2023. Relevance of chemical structure in different wood wastes to pyrolysis behavior: Kinetics and hydrogen release. Journal of the Energy Institute, 111: 101416 doi: 10.1016/j.joei.2023.101416 [200] Liu W, Dong Y K, Jiang L L, et al. 2024. Studying injection-extraction induced thermal stress on hydrogen storage cavern in bedded salt rocks. International Journal of Hydrogen Energy, 94: 626-638 doi: 10.1016/j.ijhydene.2024.11.071 [201] Liu X, Zhao M, Feng M, et al. 2023. Study on mechanisms of methane/hydrogen blended combustion using reactive molecular dynamics simulation. International Journal of Hydrogen Energy, 48(4): 1625-1635 doi: 10.1016/j.ijhydene.2022.10.050 [202] Liu X M, Liu Z, Yu Y, et al. 2023. Mechanical Behavior and Failure Analysis of Diaphragm in Diaphragm Compressor for Hydrogen Refueling Station. In: World Hydrogen Technology Convention. Singapore: Springer Nature Singapore, 35-43 [203] Liu X Y, Sun Z Y, Yi Y. 2024. Progress in spontaneous ignition of hydrogen during high-pressure leakage with the considerations of pipeline storage and delivery. Applications in Energy and Combustion Science, 20: 100290 doi: 10.1016/j.jaecs.2024.100290 [204] Makarov D, Shentsov V, Kuznetsov M, et al. 2018. Pressure peaking phenomenon: Model validation against unignited release and jet fire experiments. International journal of hydrogen energy, 43(19): 9454-9469 doi: 10.1016/j.ijhydene.2018.03.162 [205] Mancusi E, Fontana É, de Souza A A U, et al. 2014. Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design. International journal of hydrogen energy, 39(5): 2261-2273 doi: 10.1016/j.ijhydene.2013.11.106 [206] Melideo D, Baraldi D, Echevarria N D M, et al. 2019. Effects of some key-parameters on the thermal stratification in hydrogen tanks during the filling process. International journal of hydrogen energy, 44(26): 13569-13582 doi: 10.1016/j.ijhydene.2019.03.187 [207] Meng B, Gu C, Zhang L, et al. 2017. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. International Journal of Hydrogen Energy, 42(11): 7404-7412 doi: 10.1016/j.ijhydene.2016.05.145 [208] Minor G, Djilali N, Sinton D, et al. 2009. Flow within a water droplet subjected to an air stream in a hydrophobic microchannel. Fluid Dynamics Research, 41(4): 22 [209] Mohammedi A, Sahli Y, Moussa H B. 2020. 3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels. Fuel, 263: 116713 doi: 10.1016/j.fuel.2019.116713 [210] Molkov V, Dadashzadeh M, Makarov D. 2019. Physical model of onboard hydrogen storage tank thermal behaviour during fuelling. International Journal of Hydrogen Energy, 44(8): 4374-4384 doi: 10.1016/j.ijhydene.2018.12.115 [211] Molkov V, Saffers J B. 2013. Hydrogen jet flames. International journal of hydrogen energy, 38(19): 8141-8158 doi: 10.1016/j.ijhydene.2012.08.106 [212] Moradi R, Groth K M. 2019. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23): 12254-12269. doi: 10.1016/j.ijhydene.2019.03.041 [213] Mularski J, Pawlak-Kruczek H, Modlinski N. 2020. A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics. Fuel, 271: 117620 doi: 10.1016/j.fuel.2020.117620 [214] Major Š. 2023. Fracture modeling of a weld damaged by hydrogen embrittlement. Procedia Structural Integrity, 48: 230-237 doi: 10.1016/j.prostr.2023.07.153 [215] Molkov V, Ebne-Abbasi H, Makarov D. 2024. Liquid hydrogen refuelling at HRS: Description of sLH2 concept, modelling approach and results of numerical simulations. International Journal of Hydrogen Energy, 93: 285-296 doi: 10.1016/j.ijhydene.2024.10.392 [216] Núnez A, Vial R, Evensen C, et al. 2023. Numerical and experimental investigation of irradiance profiles on suspended particles in a flat disk photoreactor for hydrogen generation. Chemical Engineering Science, 282: 119298 doi: 10.1016/j.ces.2023.119298 [217] Ma Y, Zhao M, Bai F, et al. 2024. Numerical simulation and experimental verification of solar PVT coupled PEM electrolyzer system for hydrogen production. Fuel, 365: 131323. doi: 10.1016/j.fuel.2024.131323 [218] Niño-Navarro C, Chairez I, Torres-Bustillos L, et al. 2016. Effects of fluid dynamics on enhanced biohydrogen production in a pilot stirred tank reactor: CFD simulation and experimental studies. International Journal of Hydrogen Energy, 41(33): 14630-14640 doi: 10.1016/j.ijhydene.2016.06.236 [219] Ogawa Y, Birenis D, Matsunaga H, et al. 2018. The role of intergranular fracture on hydrogen-assisted fatigue crack propagation in pure iron at a low stress intensity range. Materials Science and Engineering A, 733(aug.22): 316-328 [220] Okabayashi K, Tagashira K, Kawazoe K, et al. 2018. Non-steady characteristics of dispersion and ignitability for high-pressurized hydrogen jet discharged from a pinhole. International Journal of Hydrogen Energy, 44(17): 9071-9079 [221] Ouellette D, Ozden A, Ercelik M, et al. 2018. Assessment of different bio-inspired flow fields for direct methanol fuel cells through 3D modeling and experimental studies. International Journal of Hydrogen Energy, 43(2): 1152-1170 doi: 10.1016/j.ijhydene.2017.06.073 [222] Pan X H, Wang Q Y, Yan W Y, et al. 2020. Experimental study on pressure dynamics and self-ignition of pressurized hydrogen flowing into the L-shaped tubes. International Journal of Hydrogen Energy, 45(7): 5028-5038 doi: 10.1016/j.ijhydene.2019.11.161 [223] Pang L, Hu Q R, Zhao J J, et al. 2019. Numerical study of the effects of vent opening time on hydrogen explosions. International Journal of Hydrogen Energy, 44(29): 15689-15701 doi: 10.1016/j.ijhydene.2019.04.175 [224] Perng S W, Wu H W. 2019. Effect of sinusoidal-wavy channel of reformer on power of proton exchange membrane fuel cell. Applied Thermal Engineering, 162: 114269 doi: 10.1016/j.applthermaleng.2019.114269 [225] Popov B N, Lee J W, Djukic M B. 2018. Hydrogen permeation and hydrogen-induced cracking//Handbook of environmental degradation of materials. William Andrew Publishing, 133-162 [226] Park S, Abdullah MM, Seong K, Lee S. 2023. Kinetic analysis of dibenzyltoluene hydrogenation on commercial Ru/Al2O3 catalyst for liquid organic hydrogen carrier. Chemical Engineering Journal, 474: 145743 doi: 10.1016/j.cej.2023.145743 [227] Peng SY, Zhou DW, Wang B, et al. 2024. Comparative fracture analysis of API X52M and X52MH steels in high pressure hydrogen. International Journal of Hydrogen Energy, 95: 686-694 doi: 10.1016/j.ijhydene.2024.11.246 [228] Peng Z, Li Q, Sun J, et al. 2022. Ti-Cr-Mn-Fe-based alloys optimized by orthogonal experiment for 85 MPa hydrogen compression materials. Journal of Alloys and Compounds, 891: 161791 doi: 10.1016/j.jallcom.2021.161791 [229] Pöllinger A, Koch T, Krenn S, et al. 2023. Thermo-mechanical properties and internal architecture of PI composites for high-pressure hydrogen applications. Polymer, 289: 126500 doi: 10.1016/j.polymer.2023.126500 [230] Qi Y, Luo H, Zheng S, et al. 2014. Comparison of tensile and impact behavior of carbon steel in H2S environments. Materials & Design, 58: 234-241 [231] Qin C, Tian Y, Yang Z, et al. 2024. Quantitative analysis of hydrogen leakage flow measurement and calculation in the on-board hydrogen system pipelines. International Journal of Hydrogen Energy, 89: 1025-1039 doi: 10.1016/j.ijhydene.2024.09.381 [232] Ren S, Jia X, Li K, et al. 2024. Enhancement performance of a diaphragm compressor in hydrogen refueling stations by managing hydraulic oil temperature. Case Studies in Thermal Engineering, 53: 103905 doi: 10.1016/j.csite.2023.103905 [233] Rosen M A, Koohi-Fayegh S. 2016. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1: 10-29 doi: 10.1007/s40974-016-0005-z [234] Ruth M F, Jadun P, Gilroy N, et al. 2020. The technical and economic potential of the H2@ scale hydrogen concept within the United States. National Renewable Energy Lab. (NREL), Golden, CO (United States [235] Raut A, Fang H, Lin Y, et al. 2023. Effect of membrane mechanics on AEM fuel cell performance. Energy Advances, 2(1): 113-122 doi: 10.1039/D2YA00207H [236] Salazar V M, Kaiser S. 2011. Interaction of Intake-Induced Flow and Injection Jet in a Direct Injection Hydrogen Fueled Engine Measured by PIV. Sandia National Lab. (SNL-CA), Livermore, CA (United States [237] San Marchi C, Ronevich J. 2022. Implications of Gaseous Hydrogen on Welded Construction of Pipelines (TG discussion). Sandia National Lab. (SNL-CA), Livermore, CA (United States [238] Saravanan N, Nagarajan G. 2010. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source. Applied Energy, 87(7): 2218-2229 doi: 10.1016/j.apenergy.2010.01.014 [239] Sdanghi G, Maranzana G, Celzard A, et al. 2019. Review of the current technologies and performances of hydrogen compression for stationary and automotive applications. Renewable and Sustainable Energy Reviews, 102: 150-170 doi: 10.1016/j.rser.2018.11.028 [240] Shao X Y, Pu L, Li Q, et al. 2018. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions. International journal of hydrogen energy, 43(10): 5249-5260 doi: 10.1016/j.ijhydene.2018.01.139 [241] Shen C C, Ma L, Huang G, et al. 2018. Consequence assessment of high-pressure hydrogen storage tank rupture during fire test. Journal of Loss Prevention in the Process Industries, 55: 223-231 doi: 10.1016/j.jlp.2018.06.016 [242] Shen X B, He X C, Sun J H. 2015. A comparative study on premixed hydrogen-air and propane-air flame propagations with tulip distortion in a closed duct. Fuel, 161: 248-253 doi: 10.1016/j.fuel.2015.08.043 [243] Shen X B, Sun J H. 2012. Numerical simulation on the spontaneous ignition of leaking high pressure hydrogen from terminal unit. Physics Procedia, 33: 1833-1841 doi: 10.1016/j.phpro.2012.05.292 [244] Shinko T, Halm D, Benoit G, et al. 2021. Controlling factors and mechanisms of fatigue crack growth influenced by high pressure of gaseous hydrogen in a commercially pure iron. Theoretical and Applied Fracture Mechanics, 112: 102885 doi: 10.1016/j.tafmec.2020.102885 [245] Staykov A, Yamabe J, Somerday B P. 2014. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface. International Journal of Quantum Chemistry, 114(10): 626-635 doi: 10.1002/qua.24633 [246] Sun Y, Cheng Y F. 2021a. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions. International Journal of Hydrogen Energy, 46(69): 34469-34486 doi: 10.1016/j.ijhydene.2021.07.217 [247] Sun Y, Cheng Y F. 2021b. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure. International Journal of Hydrogen Energy, 46(44): 23100-23112 doi: 10.1016/j.ijhydene.2021.04.115 [248] Song Y, Liu Y, Zhang J. 2024. Detonation effect of hydrogen-oxygen mixtures at various initial pressures and hydrogen concentrations in obstructed channels. International Journal of Hydrogen Energy, 95: 773-783 doi: 10.1016/j.ijhydene.2024.11.293 [249] Takeno K, Okabayashi K, Kouchi A, et al. 2017. Concentration fluctuation and ignition characteristics during atmospheric diffusion of hydrogen spouted from high pressure storage. International Journal of Hydrogen Energy, 42(22): 15426-15434 doi: 10.1016/j.ijhydene.2017.04.062 [250] Tang H Y, Santamaria A, Park J, et al. 2011. Quantification of water in hydrophobic and hydrophilic flow channels subjected to gas purging via neutron imaging. Journal of Power Sources, 196: 9373-9381 doi: 10.1016/j.jpowsour.2011.05.057 [251] Thomas A, Szpunar J A. 2020. Hydrogen diffusion and trapping in X70 pipeline steel. International Journal of Hydrogen Energy, 45(3): 2390-2404 doi: 10.1016/j.ijhydene.2019.11.096 [252] Topolski K, Reznicek E P, Erdener B C, et al. 2022. Hydrogen Blending into Natural Gas Pipeline Infrastructure: Review of the State of Technology [253] Vecchi L, Simillion H, Montoya R, et al. 2018. Modelling of hydrogen permeation experiments in iron alloys: Characterization of the accessible parameters–Part I–The entry side. Electrochimica Acta, 262: 57-65 doi: 10.1016/j.electacta.2017.12.172 [254] Wan L, Xu Z, Xu Q, et al. 2022. Overall design of novel 3D-ordered MEA with drastically enhanced mass transport for alkaline electrolyzers. Energy & Environmental Science, 15(5): 1882-1892 [255] Wang G, Zhou J, Hu S, et al. 2014. Investigations of filling mass with the dependence of heat transfer during fast filling of hydrogen cylinders. International journal of hydrogen energy, 39: 4380-4388 doi: 10.1016/j.ijhydene.2013.12.189 [256] Wang H, Lu Y. 2021. Mesoscale-Structure-Dependent EMMS Drag Model for an SCW Fluidized Bed: Formulation of Conservation Equations Based on Structures in Subphases. Industrial & Engineering Chemistry Research, 60(49): 18136-18153 [257] Wang X, Li Z, Zhang M, et al. 2017. Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation. RSC advances, 7(17): 10503-10516 doi: 10.1039/C6RA28762J [258] Wang Y, Shakhshir S A, Li X. 2011. Development and impact of sandwich wettability structure for gas distribution media on PEM fuel cell performance. Applied Energy, 88: 2168-2175 doi: 10.1016/j.apenergy.2010.12.054 [259] Wang Z L, Zhang H, Pan X H, et al. 2020. Experimental and numerical study on the high-pressure hydrogen jet and explosion induced by sudden released into the air through tubes. International Journal of Hydrogen Energy, 45(7): 5086-5097 doi: 10.1016/j.ijhydene.2019.12.072 [260] Wasim M, Djukic M B. 2020. Hydrogen embrittlement of low carbon structural steel at macro-, micro-and nano-levels. International Journal of Hydrogen Energy, 45(3): 2145-2156 doi: 10.1016/j.ijhydene.2019.11.070 [261] Wilberforce T, El Hassan Z, Ogungbemi E, et al. 2019. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and sustainable energy reviews, 111: 236-260 doi: 10.1016/j.rser.2019.04.081 [262] Wilkes Inman J, Danehy P, Nowak R, et al. 2008. Fluorescence imaging study of impinging under expanded jets//46th AIAA Aerospace Sciences Meeting and Exhibit. 619 [263] Wang G, Tong Y, Liang L, et al. 2025. Indentation deformation mechanism of combined-strengthened modified layer in low-alloy steel under the influence of hydrogen. Corrosion Science, 242: 112579 doi: 10.1016/j.corsci.2024.112579 [264] Wang J, Wang S, Zhu Y, Wang Y, et al. 2023. Effect of cooling surface temperature difference on the performance of high-temperature PEMFCs. International Journal of Hydrogen Energy, 48(44): 16813-16828 doi: 10.1016/j.ijhydene.2023.01.125 [265] Wang K, Sun B, Luo Q, et al. 2023. Performance optimization design of direct injection turbocharged hydrogen internal combustion engine. Applications in Energy and Combustion Science, 16: 100204 doi: 10.1016/j.jaecs.2023.100204 [266] Wang Y, Xia A, Li R, et al. 2024. Probabilistic modeling of hydrogen pipeline failure utilizing limited statistical data. International Journal of Hydrogen Energy, 95: 1052-1066 doi: 10.1016/j.ijhydene.2024.11.285 [267] Wei A T, Jin B X, Liu A X, et al. 2020. Thermal-structural coupled analysis and improvement of the diaphragm compressor cylinder head for a hydrogen refueling station. International Journal of Hydrogen Energy, 45(1): 809-821. doi: 10.1016/j.ijhydene.2019.10.199 [268] Xiao J, Geng M. 2023. Analysis and treatment of gas pulsation in the pipeline of a hydrogen diaphragm compressor. In: World Hydrogen Technology Convention. Singapore: Springer Nature Singapore, 1-14 [269] Xiao J J, Kuznetsov M, Travis J R. 2018. Experimental and numerical investigations of hydrogen jet fire in a vented compartment. International Journal of Hydrogen Energy, 43(21): 10167-10184 doi: 10.1016/j.ijhydene.2018.03.178 [270] Xiao J, Travis J R, Breitung W. 2011. Hydrogen release from a high pressure gaseous hydrogen reservoir in case of a small leak. International Journal of Hydrogen Energy, 36(3): 2545-2554 doi: 10.1016/j.ijhydene.2010.05.069 [271] Xu X D, Jiang J, Jiang Y M, et al. 2020. Spontaneous ignition of high pressure hydrogen and boundary layer characteristics in tubes. International Journal of Hydrogen Energy, 45(39): 20515-20524 doi: 10.1016/j.ijhydene.2020.02.060 [272] Xue H, Wang L, Zhang H, et al. 2020. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. International journal of hydrogen energy, 5(28): 14500-14516 [273] Xue F, Lei Y, Cheng TL, et al. 2023. Phase-field modeling of crack growth and mitigation in solid oxide cells. International Journal of Hydrogen Energy, 48(26): 9845-9860 doi: 10.1016/j.ijhydene.2022.12.042 [274] Yan X, Biemolt J, Zhao K, et al. 2021. A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nature Communications, 12(1): 4143 doi: 10.1038/s41467-021-24284-5 [275] Yan X, Guan C, Zhang Y, et al. 2019. Flow field design with 3D geometry for proton exchange membrane fuel cells. Applied Thermal Engineering, 147: 1107-1114 doi: 10.1016/j.applthermaleng.2018.09.110 [276] Ye J, Du Z, Xie J, et al. 2023. Transient flow performance and heat transfer characteristic in the cylinder of hydraulic driving piston hydrogen compressor during compression stroke. International Journal of Hydrogen Energy, 48(19): 7072-7084 doi: 10.1016/j.ijhydene.2022.06.319 [277] Yu J, Men H J, Qu Y M, et al. 2020. Performance of Ni-Fe bimetal based cathode for intermediate temperature solid oxide electrolysis cell. Solid State Ionics, 346: 115203. doi: 10.1016/j.ssi.2019.115203 [278] Yu X, Wang C J, He Q Z. 2019. Numerical study of hydrogen dispersion in a fuel cell vehicle under the effect of ambient wind. International Journal of Hydrogen Energy, 44(40): 22671-22680 doi: 10.1016/j.ijhydene.2019.03.234 [279] Yan H, Kim J, Tasan C. 2024. An in-situ investigation of microstructure neighborhood effects on hydrogen-induced dislocation activity. International Journal of Hydrogen Energy, 93: 1524-1534 doi: 10.1016/j.ijhydene.2024.09.179 [280] Yoo JY, Choi H, Lee H, et al. 2023. A computational-fluid-dynamics study on scaling up a single flat membrane reactor for on-site hydrogen production. Chemical Engineering Research and Design, 200: 670-681 doi: 10.1016/j.cherd.2023.11.023 [281] Yuan K, Liu Z, Li X. 2024. Effects of structure parameter and material property on thermal performance of on-board hydrogen storage tanks during fast refueling. International Journal of Hydrogen Energy, 81: 1145-1155 doi: 10.1016/j.ijhydene.2024.07.342 [282] Yuan K, Liu Z. 2024. A structural mechanics analysis on a Type IV hydrogen storage tank during refueling and discharging. Engineering Failure Analysis, 165: 108822 doi: 10.1016/j.engfailanal.2024.108822 [283] Yun S, Lee J, Cho H, et al. 2023. Process design and improvement for hydrogen production based on thermodynamic analysis: Practical application to real-world on-site hydrogen refueling stations. Journal of Cleaner Production, 423: 138745 doi: 10.1016/j.jclepro.2023.138745 [284] Zafra A, Belzunce J, Rodríguez C. 2020. Hydrogen diffusion and trapping in 42CrMo4 quenched and tempered steel: Influence of quenching temperature and plastic deformation. Materials Chemistry and Physics, 55: 123599 [285] Zeng Q, Duan Q L, Li P, et al. 2020. An experimental study of the effect of 2.5% methane addition on self-ignition and flame propagation during high-pressure hydrogen release through a tube. International Journal of Hydrogen Energy, 2020,45(4): 3381-3390 [286] Zeng X, Ge Y, Shen J, et al. 2017. The optimization of channels for a proton exchange membrane fuel cell applying genetic algorithm. International journal of heat and mass transfer, 105: 81-89 doi: 10.1016/j.ijheatmasstransfer.2016.09.068 [287] Zhang B. 2016. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture. Combustion and Flame, 169: 333-339 doi: 10.1016/j.combustflame.2016.05.003 [288] Zhang C, Shen S B, Wen J X, et al. 2020. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition. Fuel, 265: 116810 doi: 10.1016/j.fuel.2019.116810 [289] Zhang J B, Zhang X, Huang W W, et al. 2020. Isentropic analysis and numerical investigation on high-pressure hydrogen jets with real gas effects. International Journal of Hydrogen Energy, 45(39): 20256-20265 doi: 10.1016/j.ijhydene.2020.01.111 [290] Zhang Q, Feng J, Wen J, et al. 2018. 3D transient CFD modelling of a scroll-type hydrogen pump used in FCVs. International Journal of Hydrogen Energy, 43(41): 19231-19241 doi: 10.1016/j.ijhydene.2018.08.158 [291] Zhang S, Ma H, Huang X, et al. 2020. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel. Process Safety and Environmental Protection, 140: 100-110. doi: 10.1016/j.psep.2020.04.025 [292] Zhang T, Lu Y. 2021. A method to deal with constant wall flux boundary condition in a fluidized bed by CFD-DEM. Chemical Engineering Journal, 406: 126880 doi: 10.1016/j.cej.2020.126880 [293] Zhang T, Wan Z, Lu Y. 2023. Particle convective heat transfer near the wall in a supercritical water fluidized bed by single particle model coupled with CFD-DEM. Particuology, 73: 47-58 doi: 10.1016/j.partic.2022.03.005 [294] Zhao L, Li F, Li Z, et al. 2019. Thermodynamic analysis of the emptying process of compressed hydrogen tanks. international journal of hydrogen energy, 44(7): 3993-4005 doi: 10.1016/j.ijhydene.2018.12.091 [295] Zhao X, Dong B, Li W. 2018. Analysis of freezing process about falling droplet using the lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 28(10): 2442-2462 [296] Zheng J, Liu X, Xu P, et al. 2012. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 37(1): 1048-1057 doi: 10.1016/j.ijhydene.2011.02.125 [297] Zheng K, Yang X F, Yu M G, et al. 2019. Effect of N2 and CO2 on explosion behavior of syngas/air mixtures in a closed duct. International Journal of Hydrogen Energy, 44(51): 28044-28055 doi: 10.1016/j.ijhydene.2019.09.053 [298] Zheng X X, Böttger A J, Jansen K M B, et al. 2020. Aging of polyphenylene sulfide-glass composite and polysulfone in highly oxidative and strong alkaline environments. Frontiers in Materials, 7: 610440 doi: 10.3389/fmats.2020.610440 [299] Zhevago N K, Glebov V I. 2007. Hydrogen storage in capillary arrays. Energy Conversion and Management, 48(5): 1554-1559 doi: 10.1016/j.enconman.2006.11.017 [300] Zhou C, Zheng J, Gu C, et al. 2017. Sealing performance analysis of rubber O-ring in high-pressure gaseous hydrogen based on finite element method. International Journal of Hydrogen Energy, 42(16): 11996-12004 doi: 10.1016/j.ijhydene.2017.03.039 [301] Zhou H, Dong P, Zhu S, et al. 2021. Design and theoretical analysis of a liquid piston hydrogen compressor. Journal of Energy Storage, 41: 102861 doi: 10.1016/j.est.2021.102861 [302] Zhou S, Jia X, Yan H, et al. 2021. A novel profile with high efficiency for hydrogen-circulating Roots pumps used in FCVs. International Journal of Hydrogen Energy, 46(42): 22122-22133 doi: 10.1016/j.ijhydene.2021.04.038 [303] Zou Q, Tian Y, Han F. 2019. Prediction of state property during hydrogen leaks from high-pressure hydrogen storage systems. International Journal of Hydrogen Energy, 44(39): 22394-22404 doi: 10.1016/j.ijhydene.2019.06.126 [304] Zou J, Han N, Yan J, et al. 2020. Electrochemical compression technologies for high-pressure hydrogen: current status, challenges and perspective. Electrochemical Energy Reviews, 3: 690-729 doi: 10.1007/s41918-020-00077-0 [305] Zhang J, Cheng YF. 2023. Study by finite element modeling of hydrogen atom diffusion and distribution at a dent on existing pipelines for hydrogen transport. Journal of Cleaner Production, 418: 138165 doi: 10.1016/j.jclepro.2023.138165 [306] Zhang R, Cai J, Zhang T, et al. 2023. Performance analysis and optimization of a TEG-based compression hydrogen storage waste heat recovery system. Renewable Energy, 219: 119521 doi: 10.1016/j.renene.2023.119521 [307] Zhang Y, Gu J, Pan S, et al. 2023. Numerical study on the influence of liner geometry and lay-up sequence on the fatigue life of composite hydrogen storage vessel. International Journal of Pressure Vessels and Piping, 205: 104986 doi: 10.1016/j.ijpvp.2023.104986 [308] Zhang Z, Wang L, Huang W et al. 2025. Stress corrosion cracking mechanisms in bridge cable steels: Anodic dissolution or hydrogen embrittlement. International Journal of Hydrogen Energy, 97: 46-56 doi: 10.1016/j.ijhydene.2024.11.408 [309] Zhang Z, Yu F, Qu D. 2023. Analysis of millisecond collision of composite high pressure hydrogen storage cylinder. International Journal of Hydrogen Energy, 48(30): 11578-11591 doi: 10.1016/j.ijhydene.2022.07.221 -