摘要:
当高温引起了流动介质物性变化的时候, 介质微团的物理化学变化显著地改变了介质流动的宏观规律, 超出了气体动力学基本假设和研究范畴, 高温气体动力学诞生了. 当航空航天技术不断拓展人类活动空间的时候, 在探索下一代空天飞行核心技术的过程中, 高温气体动力学发展了. 高温气体动力学是技术科学发展的典范, 在应用驱动学科机制的作用下, 引领着气体动力学的发展与创新. 本文选择了高温气体动力学的四个主要研究领域, 进行了综述和分析, 期望能够助力高温气体流动的学科发展. 第一部分是关于高超声速地面试验装置和测量技术, 重点介绍了三种典型高焓激波风洞, 它们的应用已经能够产生和测量的气流速度达到了1.5 ~ 10 km/s的范围, 可以模拟20 ~ 100 km的飞行高度. 先进科学试验装置对于学科前沿的拓展和流体物理新现象的发现是非常重要的, 该研究领域的进展也凸显了这个道理. 第二部分介绍了高超声速气体流动的理论与实验, 包括物理数学模型的建立、计算方法的发展和实验观测. 到目前为止, 高温气体流动物理模型的发展远低预期, 局限在早期物理模型的应用和改进; 计算方法发展迅速, 能够计算的流动现象越来越多, 准确度也越来越高; 地面实验观测研究进展可期, 表现在一些复现高超声速飞行条件下的大模型实验, 揭示的气动物理现象与飞行试验数据一致良好. 第三部分是关于超声速燃烧和超燃冲压发动机. 这是一个已经持续热了几十年的前沿领域, 虽然理论和技术研究进展巨大、飞行试验硕果累累, 但是超燃冲压发动机依然难以满足工程需求, 超声速燃烧理论依然难以解决超燃冲压发动机研发遇到的问题. 所以, 超声速燃烧和超燃冲压发动机研究都亟需理论创新和技术突破. 第四部分是关于爆轰物理和斜爆轰发动机. 斜爆轰发动机与超燃冲压发动机概念皆生于同一时代, 但它仅在最近20多年才得到重新关注. 爆轰理论和斜爆轰研究都有了创新性突破, 斜爆轰发动机设计方法和风洞实验技术也有了长足的进展. 斜爆轰冲压发动机利用了自然界燃烧速度最快、热效率最高、进气压缩损失最小的增压燃烧现象作为其热力循环, 有着独特的优势. 最后, 论文对于上述研究领域的理论技术及其实践进行了总结和展望, 期望能够给该学科发展提供一些有益的启示.
姜宗林. 高温气体动力学研究的理论、技术及其实践. 力学进展, 待出版. doi: 10.6052/1000-0992-25-023.