留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空化水动力学非定常特性研究进展及展望

季斌 程怀玉 黄彪 罗先武 彭晓星 龙新平

季斌, 程怀玉, 黄彪, 罗先武, 彭晓星, 龙新平. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019, 49(1): 201906. doi: 10.6052/1000-0992-17-012
引用本文: 季斌, 程怀玉, 黄彪, 罗先武, 彭晓星, 龙新平. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019, 49(1): 201906. doi: 10.6052/1000-0992-17-012
JI Bin, CHENG Huaiyu, HUANG Biao, LUO Xianwu, PENG Xiaoxing, LONG Xinping. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 201906. doi: 10.6052/1000-0992-17-012
Citation: JI Bin, CHENG Huaiyu, HUANG Biao, LUO Xianwu, PENG Xiaoxing, LONG Xinping. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 201906. doi: 10.6052/1000-0992-17-012

空化水动力学非定常特性研究进展及展望

doi: 10.6052/1000-0992-17-012
基金项目: 感谢国家自然科学基金重点项目(11332009,51239005)、重大研究计划(91752105)、优秀青年基金(51822903),面上项目(11772239, 11772305, 51679005, 51576143, 11472197,51376100)、青年基金项目(51206087)和北京市自然科学基金面上项目(3172029)的资助.
详细信息
    作者简介:

    null

    作者简介:季斌, 1982年生, 武汉大学水利水电学院副教授.主要从事空化水动力学应用基础研究. 主持国家自然科学基金项目3项,发表SCI论文49篇(第一作者或通讯作者29篇), 6篇论文入选ESI高被引论文,1篇论文被评为``2015年中国百篇最具影响国际学术论文'',1篇论文获 J. Hydrodyn.2014年高被引论文奖,1篇论文被列为 Int. J. Multiphase Flow期刊主页统计近5年被引用次数最多的论文, 获省部级科技奖励3项,2015年入选湖北省``楚天学者计划'', 2017年获湖北省杰出青年基金,2018年获国家自然科学基金优秀青年科学基金.

  • 中图分类号: O352;

Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation

  • 摘要: 空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况, 分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中, 对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主, 同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.

     

  • [1] 曹伟, 魏英杰, 王聪, 邹振祝, 黄文虎. 2006. 超空泡技术现状、问题与应用. 力学进展, 36: 571-579

    (Cao W, Wei Y J, Wong C, Zou Z Z, Huang W H.2006. Current status, problems and applications of supercavitation technology. Advances in Mechanics, 36: 571-579).
    [2] 陈广豪. 2016. 附着型非定常空化流体动力特性与机理研究. [博士论文]. 北京: 北京理工大学

    (Chen G H.2016. Study on the dynamic characteristics and physical mechanism of attached unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing Institute of Technology).
    [3] 高远, 黄彪, 吴钦, 王国玉. 2015.绕水翼空化流动及振动特性的实验研究. 力学学报, 47: 1009-1016

    (Gao Y, Huang B, Wu Q, Wang G Y.2015. Experimental investigationof the vibration characteristics of hydrofoil in cavitating flow. Chinese J. Theo. Appl. Mech., 47: 1009-1016).
    [4] 顾巍, 何友声, 胡天群. 2001.空泡尾流场中的速度脉动与子波分析. 水动力学研究与进展(A辑), 16: 238-245

    (Gu W, He Y S, Hu T Q.2001. Velocity fluctuation inthe cavitating wake and its wavelet analysis. Journal of Hydrodynamics, 16: 238-245).
    [5] 何友声, 刘桦, 赵岗. 1997. 二维空泡流的脉动性态研究.力学学报, 29: 1-7

    (He Y S, Liu H, Zhao G.1997. A study onpulsation of two-dimentional cavitation flow. Acta MechanicaSinica, 29: 1-7).
    [6] 黄彪. 2012. 非定常空化流动机理及数值计算模型研究.[博士论文]. 北京: 北京理工大学

    (Huang B.2012. Physical andnumerical investigation of unsteady cavitating flows. [PhDThesis]. Beijing: Beijing Institute of Technology).
    [7] 计志也. 1992. 空蚀研究现状. 力学进展, 22: 58-63

    (Xu ZY.1992. Some recent advances in cavitation damage research. Advances in Mechanics, 22: 58-63).
    [8] 刘桦, 李家春, 何友声, 孟庆国. 2007.``十一五''水动力学发展规划的建议. 力学进展, 37: 142-146

    (LiuH, Li J C, He Y S, Meng G Q.2007. Suggestion on the researchframe programme on hydrodynamics for the eleventh five year plan. Advances in Mechanics, 37: 142-146).
    [9] 潘森森. 1979. 空化机理的近代研究. 力学进展, 9: 14-36

    (Pan S S.1979. Modern research of cavitation mechanism. Advances in Mechanics, 9: 14-36).
    [10] 潘森森. 1985. 空化核最新研究评述. 力学进展, 15:329-332

    (Pan S S.1985. Critical review on cavitation nucleiresearch. Advances in Mechanics, 15: 329-332).
    [11] 潘森森, 彭晓星. 2013. 空化机理. 第1版. 北京: 国防工业出版社

    (Pan S S, Peng X X.2013. Physical Mechanism of Cavitation. 1stedn. Beijing: National Defense Industry Press).
    [12] 时素果, 王国玉, 黄彪. 2011.绕栅中水翼空化流动的数值和实验研究. 力学学报, 43: 625-629

    (Shi S G, Wang G Y, Huang B.2011. The structure analysis aboutthe cavitation flow around the cascade hydrofoil by numerical andexperimental study. Chinese J. Theo. Appl. Mech., 43:625-629).
    [13] 时素果, 王国玉. 2012. 一种修正的低温流体空化流动计算模型.力学学报, 44: 269-277

    (Shi S G, Wang G Y.2012. A modifiedkubota cavitation model for computations of cryogenic cavitatingflows. Chinese J. Theo. Appl. Mech., 44: 269-277).
    [14] 谭磊, 曹树良. 2010. 基于滤波器湍流模型的水翼空化数值模拟.江苏大学学报(自然科学版), 31: 683-686

    (Tan L, Cao S L.2010.Numerical simulation of hydrofoil cavitation based on filter-basedmodel. Journal of Jiangsu University ( Natural Science Edition), 31: 683-686).
    [15] 王福军. 2016. 流体机械旋转湍流计算模型研究进展.农业机械学报, 47: 1-14

    (Wang F J.2016. Research progress ofcomputational model for rotating turbulent flow in fluidmachinery. Transactions of the Chinese Society forAgricultural Machinery, 47: 1-14)
    [16] 王一伟, 黄晨光, 杜特专, 方新, 梁乃刚. 2012.航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 44: 39-48

    (Wang Y W, Huang C G, Du T Z, Fang X, Liang N G.2012. Mechanismanalysis about cavitation collapse load of underwater vehicles ina vertical launching process. Chinese J. Theo. Appl. Mech.,44: 39-48).
    [17] 王一伟, 黄晨光, 方新, 杜特专, 于娴娴. 2013.水下回转航行体的云状空化回射流运动特征研究. 水动力学研究与进展,28: 23-29

    (Wang Y W, Huang C G, Fang X, Du T Z, Yu X X.2013. Characteristics of the re-entry jet in the cloud cavitatingflow over a submerged axisymmetric projectile. Chinese Journal of Hydrodynamics, 28: 23-29)
    [18] 王一伟, 黄晨光. 2018. 高速航行体水下发射水动力学研究进展.力学进展, 48: 201805

    (Wang Y W, Huang C G.2018. Research progresson hydrodynamics of high speed vehicles in the underwaterlaunching process. Advances in Mechanics, 48: 201805)
    [19] 徐海兵. 2004. 空化水洞总体设计以及相关的几个问题.[硕士论文]. 大连: 大连理工大学

    (Xu H B.2004. Collectivity designof cavitation tunnel and some relative problems. [Master Thesis].Dalian: Dalian University of Technology).
    [20] 阎超, 于剑, 徐晶磊, 范晶晶, 高瑞泽, 姜振华. 2011.CFD模拟方法的发展成就与展望. 力学进展, 41: 562-589

    (Yan C,Yu J, Xu J L, Fan J J, Gao R Z, Jiang Z H.2011. On theachievements and prospects for the methods of computational fluiddynamics. Advances in Mechanics, 41: 562-589).
    [21] 于娴娴, 王一伟, 黄晨光, 杜特专. 2014.轴对称航行体通气云状空化非定常特征研究. 船舶力学, 18: 499-506

    (YuX X, Wang Y W, Huang C G, Du T Z.2014. Unsteady characteristicsof ventilated cloud cavity around symmetrical bodies. Journalof Ship Mechanics, 18: 499-506)
    [22] 张博, 王国玉, 黄彪, 余志毅. 2009.云状空化非定常脱落机理的数值与实验研究. 力学学报, 41:651-659

    (Zhang B, Wang G Y, Huang B, Yu Z Y.2009. Numerical andexperimental studies on unsteady shedding mechanisms of cloudcavitation. Chinese J. Theo. Appl. Mech., 41:651-659).
    [23] 张凌新, 闻仲卿, 邵雪明. 2013. 多泡相互作用对气泡溃灭的影响.力学学报, 45: 861-867

    (Zhang L X, Wen Z Q, Shao X M.2013.Investigation of bubble-bubble interaction effect during thecollapse of multi-bubble system. Chinese J. Theo. Appl.Mech., 45: 861-867).
    [24] 张孝石. 2017. 水下航行体空化流动与压力脉动特性研究.[博士论文]. 哈尔滨: 哈尔滨工业大学

    (Zhang X S.2017. Study on thecavitating flows and pressure fluctuation for underwater vehicle.[PhD Thesis]. Harbin: Harbin Institute of Technology.)
    [25] 赵新华, 孙尧, 安伟光, 莫宏伟. 2009.超空泡航行体控制问题研究进展. 力学进展, 39: 537-545

    (Zhao XH, Sun Y, An W G, Mo H W.2009. Advances in supercavitationvehicle control technology. Advances in Mechanics, 39:537-545).
    [26] 赵宇, 王国玉, 黄彪, 胡常莉, 陈广豪, 吴钦. 2014.非定常空化流动涡旋运动及其流体动力特性. 力学学报, 46:191-200

    (Zhao Y, Wang G Y, Huang B, Hu C L, Chen G H, Wu Q.2014.Study of turbulent vortex and hydraulic dynamics in transientsheet/cloud cavitating flows. Chinese J. Theo. Appl. Mech.,46: 191-200).
    [27] 赵宇. 2016. 叶顶间隙旋涡空化数值计算模型与流动机理研究.[博士论文]. 北京: 北京理工大学

    (Zhao Y.2016. Numerical andphysical investigation of tip leakage vortex cavitating flows.[PhD Thesis]. Beijing: Beijing Institute of Technology).
    [28] Adrian R J.1994. Statistical properties of particle imagevelocimetry measurements in turbulent flow. SPIE MilestoneSeries MS, 99: 191-191.
    [29] Arakeri V H.1979. Cavitation inception//Proceedings of theIndian Academy of Sciences Section C: Engineering Sciences, 2: 149-177.
    [30] Arakeri V H.2006. Viscous effects on the position ofcavitation separation from smooth bodies. Journal of Fluid Mechanics, 68: 779-799.
    [31] Arndt R E A, Ippen A T.1968. Rough surface effects oncavitation inception. Journal of Basic Engineering, 90: 249-261.
    [32] Arndt R E A.1981. Cavitation in fluid machinery andhydraulic structures. Annual Review of Fluid Mechanics, 13: 273-328.
    [33] Arndt R E A, Song C, Kjeldsen M, He J, Keller A.2000.Instability of partial cavitation: a numerical/experimentalapproach//Proceedings of the 23rd Symposium on NavalHydrodynamics.
    [34] Arndt R E A.2002. Cavitation in vortical flows. Review of Fluid Mechanics, 34: 143-175.
    [35] Arndt R E A, Wosnik M, Qin Q.2006. Experimental andnumerical investigation of large scale structures in cavitatingwakes//36th AIAA Fluid Dynamics Conference and Exhibit, SanFrancisco, California.
    [36] Arndt R E A.2012. Some Remarks on Hydrofoil Cavitation. Journal of Hydrodynamics, 24: 305-314.
    [37] Astolfi J A, Dorange P, Billard J Y, Tomas I C.2000. Anexperimental investigation of cavitation inception and developmenton a two-dimensional Eppler hydrofoil. Journal of FluidsEngineering, 122: 164-173.
    [38] Aw M S, Paniwnyk L, Losic D.2016. The progressive role ofacoustic cavitation for non-invasive therapies, contrast imagingand blood-tumor permeability enhancement. Expert Opin. DrugDeliv., 13: 1383-1396.
    [39] Bachert R, Ludwig G, Stoffel B, Frobenius M, Schilling R.2003. Three-dimensional unsteady cavitation effects on a singlehydrofoil and in a radial pump--measurements and numericalsimulations//Fifth International Symposium on Cavitation.
    [40] Basara B, Krajnovic S, Girimaji S, Pavlovic Z.2011.Near-wall formulation of the partially averaged Navier Stokesturbulence model. AIAA Journal, 49: 2627-2636.
    [41] Batten P, Goldberg U, Chakravarthy S.2004. Interfacingstatistical turbulence closures with large-eddy simulation. AIAA Journal, 42: 485-492.
    [42] Bensow R E, Bark G.2010. Implicit LES predictions of thecavitating flow on a propeller. Journal of Fluids Engineering, 132: 041302.
    [43] Bie H Y, Liu J T, Hao Z R, Wu Y L.2015. Turbulencesimulations of flow past a circular cylinder based on a nonlinearpartially averaged Navier-Stokes (PANS) method. Modern Physics Letters B, 29: 13.
    [44] Brennen C, Acosta A.1976. The dynamic transfer functionfor a cavitating inducer. Journal of Fluids Engineering,98: 182-191.
    [45] Brennen C E.1995. Cavitation and Bubble Dynamics. Oxford:Oxford University Press.
    [46] Bustamante M C, Singh D, Cronin D S.2018. PolymericHopkinson Bar-Confinement Chamber Apparatus to Evaluate Fluid Cavitation. Exp. Mech., 58: 55-74.
    [47] Callenaere M, Franc J P, Michel J, Riondet M.2001. Thecavitation instability induced by the development of a re-entrantjet. Journal of Fluid Mechanics, 444: 223-256.
    [48] Cangioli G, Manfrida G.1997. Improvements to acoustictechniques for the detection of cavitation inception. Houille Blanche-Rev. Int., 52: 123-128.
    [49] Carnelli D, Karimi A, Franc J P.2011. Application ofspherical nanoindentation to determine the pressure of cavitationimpacts from pitting tests. Journal of Materials Research,27: 91-99.
    [50] Ceccio S L.2009. Friction drag reduction of external flowswith bubble and gas injection. Annual Review of Fluid Mechanics, 42: 183-203.
    [51] Chen C, Nicolet C, Yonezawa K, Farhat M, Avellan F,Tsujimoto Y.2008. One-dimensional analysis of full load drafttube surge. Journal of Fluids Engineering, 130:041106.
    [52] Chen G H, Wang G Y, Huang B, Hu C L, Wang Z Y, Wang J.2015. Numerical investigation of dynamics of unsteady sheet/cloudcavitating flow using a compressible fluid model. Modern Physics Letters B, 29: 1450269.
    [53] Chen Y, Chen X, Li J, Gong Z, Lu C.2017. Large eddysimulation and investigation on the flow structure of thecascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Engineering, 129: 1-19.
    [54] Cheng H Y, Long X P, Ji B, Zhu Y, Zhou J J.2016. Numericalinvestigation of unsteady cavitating turbulent flows aroundtwisted hydrofoil from the Lagrangian viewpoint. Journal of Hydrodynamics, 28: 709-712.
    [55] Chesnakas C J, Jessup S D.2003. Tip-vortex inducedcavitation on a ducted propulsor//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Hawaii, USA, 1: 257-267.
    [56] Coutier-Delgosha O, Devillers J-F, Pichon T, Vabre A, WooR, Legoupil S.2006. Internal structure and dynamics of sheetcavitation. Physics of Fluids, 18: 017103.
    [57] Coutier-Delgosha O, Stutz B, Vabre A, Legoupil S.2007.Analysis of cavitating flow structure by experimental andnumerical investigations. Journal of Fluid Mechanics, 578: 171-222.
    [58] Crespo A.1969. Sound and shock waves in liquids containingbubbles. Physics of Fluids, 12: 2274-2282.
    [59] Davidson L.2014. The PANS k-epsilon model in a zonalhybrid RANS-LES formulation. International Journal of Heatand Fluid Flow, 46: 112-126.
    [60] De M K, Hammitt F G.1982. New method for monitoring andcorrelating cavitation noise to erosion capability. Journal of Fluids Engineering, 104: 434-441.
    [61] Delannoy Y, Kueny J L.1990. Two phase flow approach inunsteady cavitation modelling//ASME Cavitation and Multiphase Flow Forum, 98: 153-160.
    [62] Dreyer M, Decaix J, Münch-Alligné C, Farhat M.2014. Mind the gap: a new insight into the tip leakage vortexusing stereo-PIV. Experiments in Fluids, 55: 1849.
    [63] Du T Z, Wang Y W, Liao L J, Huang C G.2016. A numericalmodel for the evolution of internal structure of cavitation cloud. Physics of Fluids, 28: 077103.
    [64] Ducoin A, André Astolfi J, Sigrist J-F.2012. Anexperimental analysis of fluid structure interaction on a flexiblehydrofoil in various flow regimes including cavitating flow. European Journal of Mechanics - B/Fluids, 36: 63-74.
    [65] Ducoin A, Deniset~ F, André A~J, Sigrist J F.2009.Numerical and experimental investigation of hydrodynamiccharacteristics of deformable hydrofoils. Journal of Shipresearch, 53: 214-226.
    [66] Ducoin A, Young Y L, Sigrist J F.2010. Hydroelasticresponses of a flexible hydrofoil in turbulent, cavitatingflow//ASME 2010 7th International Symposium on Fluid-StructureInteractions, Flow-Sound Interactions, and Flow-Induced Vibrationand Noise, Quebec, Canada, 3: 493-502.
    [67] Dular M, Bachert R, Schaad C, Stoffel B.2007.Investigation of a re-entrant jet reflection at an inclined cavityclosure line. European Journal of Mechanics - B/Fluids, 26: 688-705.
    [68] Dular M, Bachert R, Stoffel B, Širok B.2005.Experimental evaluation of numerical simulation of cavitating flowaround hydrofoil. European Journal of Mechanics-B/Fluids,24: 522-538.
    [69] Egerer C P, Schmidt S J, Hickel S, Adams N A.2016.Efficient implicit LES method for the simulation of turbulentcavitating flows. Journal of Computational Physics, 316: 453-469.
    [70] Foeth E J, van Doorne C W H, van Terwisga T, Wieneke B.2006. Time resolved PIV and flow visualization of 3D sheetcavitation. Experiments in Fluids, 40: 503-513.
    [71] Foeth E J.2008. The structure of three-dimensional sheetcavitation. [PhD Thesis]. TU Delft: Delft University of Technology.
    [72] Foeth E J, van Terwisga T, van Doorne C.2008. On thecollapse structure of an attached cavity on a three-dimensionalhydrofoil. Journal of Fluids Engineering, 130: 071303.
    [73] Franc J P, Michel J M.2005. Fundamentals of Cavitation.Netherlands: Springer Netherlands.
    [74] Freitag M, Klein M.2006. An improved method to assess thequality of large eddy simulations in the context of implicitfiltering. Journal of Turbulence, 7: 1-11.
    [75] Friedrichs J, Kosyna G.2003. Unsteady PIV flow fieldanalysis of a centrifugal pump impeller under rotatingcavitation//Fifth International Symposium on Cavitation, Osaka,Japan.
    [76] Ganesh H, Makiharju S A, Ceccio S L.2016. Bubbly shockpropagation as a mechanism for sheet-to-cloud transition ofpartial cavities. Journal of Fluid Mechanics, 802:37-78.
    [77] Gavaises M, Villa F, Koukouvinis P, Marengo M, Franc J P.2015. Visualisation and les simulation of cavitation cloudformation and collapse in an axisymmetric geometry. International Journal of Multiphase Flow, 68: 14-26.
    [78] Girimaji S S, Srinivasan R, Jeong E.2003. PANS turbulencemodel for seamless transition between RANS and LES: fixed-pointanalysis and preliminary results//ASME/JSME 2003 4th Joint FluidsSummer Engineering Conference, Honolulu, Hawaii, USA, 2:1901-1909.
    [79] Gnanaskandan A, Mahesh K.2015. A numerical method tosimulate turbulent cavitating flows. International Journal ofMultiphase Flow, 70: 22-34.
    [80] Gnanaskandan A, Mahesh K.2016. Numerical investigation ofnear-wake characteristics of cavitating flow over a circularcylinder. Journal of Fluid Mechanics, 790: 453-491.
    [81] Goncalves E, Patella R F.2009. Numerical simulation ofcavitating flows with homogeneous models. Computers & Fluids, 38: 1682-1696.
    [82] Gopalan S, Katz J.2000. Flow structure and modeling issuesin the closure region of attached cavitation. Physics ofFluids, 12: 895-911.
    [83] Gropper D, Wang L, Harvey T J.2016. Hydrodynamiclubrication of textured surfaces: A review of modeling techniquesand key findings. Tribol. Int., 94: 509-529.
    [84] Hart D P.1993. Cavitation and wake structure of unsteadytip vortex flows. [PhD Thesis]. California: California Instituteof Technology.
    [85] Hidalgo V, Luo X W, Escaler X, Ji B, Aguinaga A.2015.Implicit large eddy simulation of unsteady cloud cavitation arounda plane-convex hydrofoil. Journal of Hydrodynamics, 27: 815-823.
    [86] Higashi S, Yoshida Y, Tsujimoto Y.2002. Tip leakage vortexcavitation from the tip clearance of a single hydrofoil. JSME Int. J. Ser. B-Fluids Therm. Eng., 45: 662-671.
    [87] Hsiao C T, Ma J, Chahine G L.2017. Multiscale tow-phaseflow modeling of sheet and cloud cavitation. International Journal of Multiphase Flow, 90: 102-117.
    [88] Hu C L, Wang G Y, Chen G H, Huang B.2014. A modified PANSmodel for computations of unsteady turbulence cavitating flows. Sci. China-Phys. Mech. Astron., 57: 1967-1976.
    [89] %Huang B.2012. Physical and numerical investigation of%unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing%Institute of Technology.
    [90] Huang B, Wang G Y, Yu Z Y, Shi S G.2012. Detached-eddysimulation for time-dependent turbulent cavitating flows. Chinese Journal of Mechanical Engineering, 25: 484-490.
    [91] Huang B, Young Y L, Wang G, Shyy W.2013. Combinedexperimental and computational investigation of unsteady structureof sheet/cloud cavitation. Journal of Fluids Engineering,135: 071301.
    [92] Huang B, Wang G, Zhao Y.2014a. Numerical simulationunsteady cloud cavitating flow with a filter-based densitycorrection model. Journal of Hydrodynamics, 26: 26-36.
    [93] Huang B, Zhao Y, Wang G.2014b. Large eddy simulation ofturbulent vortex-cavitation interactions in transient sheet/cloudcavitating flows. Computers & Fluids, 92:113-124.
    [94] Iyer C O, Ceccio S L.2002. The influence of developedcavitation on the flow of a turbulent shear layer. Physics ofFluids, 14: 3414-3431.
    [95] Iyer P S, Mahesh K.2016. A numerical study of shear layercharacteristics of low-speed transverse jets. Journal ofFluid Mechanics, 790: 275-307.
    [96] Jeong E, Girimaji S S.2010. Partially averagedNavier-Stokes (PANS) method for turbulence simulations-flow past asquare cylinder. Journal of Fluids Engineering, 132:121203.
    [97] Ji B, Luo X W, Wu Y L, Xu H Y.2012. Unsteady cavitatingflow around a hydrofoil simulated using the partially-averagedNavier-Stokes model. Chin. Phys. Lett., 29: 5.
    [98] Ji B, Luo X, Wu Y, Peng X, Duan Y.2013. Numerical analysisof unsteady cavitating turbulent flow and shedding horse-shoevortex structure around a twisted hydrofoil. International Journal of Multiphase Flow, 51: 33-43.
    [99] Ji B, Luo X, Arndt R E A, Wu Y.2014. Numerical simulationof three dimensional cavitation shedding dynamics with specialemphasis on cavitation--vortex interaction. Ocean Engineering, 87: 64-77.
    [100] Ji B, Luo X W, Arndt R E A, Peng X, Wu Y.2015. Large EddySimulation and theoretical investigations of the transientcavitating vortical flow structure around a NACA66 hydrofoil. International Journal of Multiphase Flow, 68: 121-134.
    [101] Ji B, Long Y, Long X P, Qian Z D, Zhou J J.2017. LargeEddy Simulation of turbulent attached cavitating flow with specialemphasis on large scale structures in the hydrofoil wake andturbulence-cavitation interactions. Journal of Hydrodynamics, 29: 27-39.
    [102] Johansen S T, Wu J, Shyy W.2004. Filter-based unsteadyRANS computations. International Journal of Heat and FluidFlow, 25: 10-21.
    [103] Katz J.1984. Cavitation phenomena within regions of flowseparation. Journal of Fluid Mechanics, 140: 397-436.
    [104] Kawanami Y, Kato H, Yamaguchi H, Tanimura M, Tagaya Y.1997. Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 119: 788-794.
    [105] Khorrami M R, Singer B A, Berkman M E.Time-accuratesimulations and acoustic analysis of slat free shear layer. AIAA Journal, 40: 1284-1291.
    [106] Klein M.2005. An attempt to assess the quality of largeeddy simulations in the context of implicit filtering. Flow Turbulence & Combustion, 75: 131-147.
    [107] Knapp R T.1955. Recent investigations of the mechanics ofcavitation and cavitation damage. Transactions of the ASME,77: 1045-1054.
    [108] Krajnovic S, Larusson R, Basara B.2012. Superiority ofPANS compared to LES in predicting a rudimentary landing gear flowwith affordable meshes. International Journal of Heat and Fluid Flow, 37: 109-122.
    [109] Laberteaux K, Ceccio S.2001. Partial cavity flows. Part 1.Cavities forming on models without spanwise variation. Journal of Fluid Mechanics, 431: 1-41.
    [110] Laberteaux K R, Ceccio S L.2001. Partial cavity flows.Part 2. Cavities forming on test objects with spanwise variation. Journal of Fluid Mechanics, 431: 43-63.
    [111] Lamson T C, Stinebring D R, Deutsch S, Rosenberg G, TarbellJ M.1991. Real-time in vitro observation of cavitation in aprosthetic heart valve. ASAIO Journal, 37: M351-M353.
    [112] Le Q, Franc J P, Michel J M.1993. Partial cavities:Pressure pulse distribution around cavity closure. Journal ofFluids Engineering, 115: 249-254.
    [113] Leroux J B, Astolfi J A, Billard J Y.2004. An experimentalstudy of unsteady partial cavitation. Journal of FluidsEngineering, 126: 94-101.
    [114] Linh Van N, Jean-Philippe L, Pierre C.2015. A Bayesianfusion model for space-time reconstruction of finely resolvedvelocities in turbulent flows from low resolution measurements. Journal of Statistical Mechanics: Theory and Experiment,2015: P10008.
    [115] Liu J T, Liu S H, Wu Y L, Jiao L, Wang L Q, Sun Y K.2012.Numerical investigation of the hump characteristic of apump-turbine based on an improved cavitation model. Computers & Fluids, 68: 105-111.
    [116] Long X P, Cheng H Y, Ji B, Arndt R E A.2017. Numericalinvestigation of attached cavitation shedding dynamics around theClark-Y hydrofoil with the FBDCM and an integral method. Ocean Engineering, 137: 247-261.
    [117] Long X P, Cheng H Y, Ji B, Arndt R E A, Peng X X.2018.Large eddy simulation and Euler--Lagrangian coupling investigationof the transient cavitating turbulent flow around a twistedhydrofoil. International Journal of Multiphase Flow, 100: 41-56.
    [118] Long Y, Long X P, Ji B, Huai W X, Qian Z D.2017.Verification and validation of URANS simulations of the turbulentcavitating flow around the hydrofoil. Journal ofHydrodynamics, 29: 610-620.
    [119] Lu N X, Bensow R E, Bark G.2014. Large eddy simulation ofcavitation development on highly skewed propellers. Journalof Marine Science and Technology, 19: 197-214.
    [120] Luo X W, Ji B, Peng X X, Xu H Y, Nishi M.2012. Numericalsimulation of cavity shedding from a three-dimensional twistedhydrofoil and induced pressure fluctuation by large-eddysimulation. Journal of Fluids Engineering, 134:041202.
    [121] Luo X W, Ji B, Tsujimoto Y.2016. A review of cavitation inhydraulic machinery. Journal of Hydrodynamics, Ser. B, 28: 335-358.
    [122] Ma J, Hsiao C-T, Chahine G L.2017. A physics basedmultiscale modeling of cavitating flows. Computers & Fluids, 145: 68-84.
    [123] Makiharju S A, Gabillet C, Paik B G, Chang N A, Perlin M,Ceccio S L.2013. Time-resolved two-dimensional X-ray densitometryof a two-phase flow downstream of a ventilated cavity. Experiments in Fluids, 54: 1561.
    [124] Marquillie M, Laval J P, Dolganov R.2008. Direct numericalsimulation of a separated channel flow with a smooth profile. Journal of Turbulence, 9: N1.
    [125] McCormick J B W.1962. On cavitation produced by a vortextrailing from a lifting surface. Journal of BasicEngineering, 84: 369-378.
    [126] Meyer R S, Billet M L, Holl J W.1992. Freestream nucleiand traveling-bubble cavitation. Journal of FluidsEngineering, 114: 672-679.
    [127] Morch K A.2015. Cavitation inception from bubble nuclei. Interface Focus, 5: 13.
    [128] Niedéiedzka A, Schnerr G H, Sobieski W.2016. Review ofnumerical models of cavitating flows with the use of thehomogeneous approach. Arch. Thermodyn., 37: 71-88.
    [129] Noordzij L, Van Wijngaarden L.2006. Relaxation effects,caused by relative motion, on shock waves in gas-bubble/liquidmixtures. Journal of Fluid Mechanics, 66: 115-143.
    [130] Örley F, Trummler T, Hickel S, Mihatsch M S, Schmidt S J, Adams N A.2015. Large-eddy simulation of cavitating nozzleflow and primary jet break-up. Physics of Fluids, 27:086101.
    [131] Peng G Y, Yang C X, Oguma Y, Shimizui S.2016. Numericalanalysis of cavitation cloud shedding in a submerged water jet. Journal of Hydrodynamics 28: 986-993.
    [132] Peng X X, Ji B, Cao Y, Xu L, Zhang G, Luo X, Long X.2016.Combined experimental observation and numerical simulation of thecloud cavitation with U-type flow structures on hydrofoils. International Journal of Multiphase Flow, 79: 10-22.
    [133] Peng X X, Wang B, Li H, Xu L, Song M.2017. Generation ofabnormal acoustic noise: Singing of a cavitating tip vortex. Physical Review Fluids, 2: 053602.
    [134] Prosperetti A.2017. Vapor Bubbles. Annual Review ofFluid Mechanics, 49: 221-248.
    [135] Reboud J L, Stutz B, Coutier O.1998. Two phase flowstructure of cavitation: experiment and modeling of unsteadyeffects//3rd International Symposium on Cavitation.
    [136] Reisman G E, Wang Y C, Brennen C E.1998. Observations ofshock waves in cloud cavitation. Journal of Fluid Mechanics,355: 255-283.
    [137] Reuter F, Gonzalez-Avila S R, Mettin R, Ohl C D.2017. Flowfields and vortex dynamics of bubbles collapsing near a solidboundary. Physical Review Fluids, 2: 064202.
    [138] Roache P J.1998. Verification and validation incomputational science and engineering. United States: HermosaPublishers.
    [139] Roohi E, Zahiri A P, Passandideh-Fard M.2013. Numericalsimulation of cavitation around a two-dimensional hydrofoil usingVOF method and LES turbulence model. Applied MathematicalModelling, 37: 6469-6488.
    [140] Salvador F J, Martinez-Lopez J, Romero J V, Rosello M D.2013. Computational study of the cavitation phenomenon and itsinteraction with the turbulence developed in diesel injectornozzles by Large Eddy Simulation (LES). Mathematical andComputer Modelling, 57: 1656-1662.
    [141] Schnerr G H, Sauer J.2001. Physical and numerical modelingof unsteady cavitation dynamics//Proceedings of 4th internationalConference on Multi-Phase Flow, New Orleans.
    [142] Schnerr G H, Sezal I H, Schmidt S J.2008. Numericalinvestigation of three-dimensional cloud cavitation with specialemphasis on collapse induced shock dynamics. Physics ofFluids, 20: 040703.
    [143] Senocak I, Shyy W.2004. Interfacial dynamics-basedmodelling of turbulent cavitating flows, Part-1: Model developmentand steady-state computations. International Journal forNumerical Methods in Fluids, 44: 975-995.
    [144] Shamsborhan H, Coutier-Delgosha O, Caignaert G, Abdel NourF.2010. Experimental determination of the speed of sound incavitating flows. Experiments in Fluids, 49:1359-1373.
    [145] Singh S, Choi J K, Chahine G L.2013. Characterization ofcavitation fields from measured pressure signals of cavitatingjets and ultrasonic horns. Journal of Fluids Engineering,135: 091302.
    [146] Singhal A K, Athavale M M, Li H, Jiang Y.2002.Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124: 617.
    [147] Song M, Xu L, Peng X, Tang D.2017. An acoustic approach todetermine tip vortex cavitation inception for an ellipticalhydrofoil considering nuclei-seeding. International Journalof Multiphase Flow, 90: 79-87.
    [148] Sou A, Hosokawa S, Tomiyama A.2007. Effects of cavitationin a nozzle on liquid jet atomization. International Journalof Heat and Mass Transfer, 50: 3575-3582.
    [149] Sou A, Bicer B, Tomiyama A.2014. Numerical simulation ofincipient cavitation flow in a nozzle of fuel injector. Computers & Fluids, 103: 42-48.
    [150] Speziale C G.1997. Computing non-equilibrium turbulentflows with time-dependent RANS and VLES//Fif- teenth InternationalConference on Numerical Methods in Fluid Dynamics, Monterey, CA,USA, 490: 123-129.
    [151] Srinivasan V, Salazar A J, Saito K.2009. Numericalsimulation of cavitation dynamics using acavitation-induced-momentum-defect (CIMD) correction approach. Applied Mathematical Modelling, 33: 1529-1559.
    [152] Stern F, Wilson R V, Coleman H W, Paterson E G.2001.Comprehensive, approach to verification and validation of cfdsimulations---Part I: Methodology and procedures. Journal ofFluids Engineering, 123: 792-802.
    [153] Stutz B, Reboud J L.1997a. Experiments on unsteadycavitation. Experiments in fluids, 22: 191-198.
    [154] Stutz B, Reboud J L.1997b. Two-phase flow structure ofsheet cavitation. Physics of Fluids, 9: 3678-3686.
    [155] Stutz B, Reboud J L.2000. Measurements within unsteadycavitation. Experiments in Fluids, 29: 545-552.
    [156] Stutz B, Legoupil S.2003. X-ray measurements withinunsteady cavitation. Experiments in Fluids, 35, 130-138.
    [157] Travin A, Shur M, Strelets M, Spalart P.2000.Detached-eddy simulations past a circular cylinder. FlowTurbul. Combust., 63: 293-313.
    [158] Tsujimoto Y.2007. Stability analysis of cavitating flowsthrough inducers. Fluid Dynamics of Cavitation and CavitatingTurbopumps, 496: 191-210.
    [159] Wang C C, Huang B, Wang G Y, Zhang M D, Ding N.2017.Unsteady pressure fluctuation characteristics in the process ofbreakup and shedding of sheet/cloud cavitation. InternationalJournal of Heat and Mass Transfer, 114: 769-785.
    [160] Wang G, Senocak I, Shyy W, Ikohagi T, Cao S.2001. Dynamicsof attached turbulent cavitating flows. Progress in AerospaceSciences, 37: 551-581.
    [161] Wang G, Ostoja-Starzewski M.2007. Large eddy simulation ofa sheet/cloud cavitation on a NACA0015 hydrofoil. AppliedMathematical Modelling, 31: 417-447.
    [162] Wang Y, Qiu L, Reitz R D, Diwakar R.2014. Simulatingcavitating liquid jets using a compressible and equilibriumtwo-phase flow solver. International Journal of MultiphaseFlow, 63: 52-67.
    [163] Wang Y W, Huang C G, Du T Z, Wu X Q, Fang X, Liang N G, WeiY P.2012. Shedding phenomenon of ventilated partial cavitationaround an underwater projectile. Chinese Physics Letters,29: 014601.
    [164] Wang Z, Huang B, Wang G, Zhang M, Wang F.2015.Experimental and numerical investigation of ventilated cavitatingflow with special emphasis on gas leakage behavior and re-entrantjet dynamics. Ocean Engineering, 108: 191-201.
    [165] Wei Y P, Wang Y W, Fang X, Huang C G, Duan Z P.2011. Ascaled underwater launch system accomplished by stress wavepropagation technique. Chinese Physics Letters, 28:024601.
    [166] Westerweel J.1997. Fundamentals of digital particle imagevelocimetry. Measurement Science and Technology, 8:1379-1392.
    [167] Wosnik M, Arndt R, Ain Q.2006. Identification of largescale structures in the wake of cavitating hydrofoils using LESand time-resolved PIV//Proceedings of 26th Symposium on NavalHydrodynamics, Rome, Italy.
    [168] Wu J, Wang G, Shyy W.2005. Time-dependent turbulentcavitating flow computations with interfacial transport andfilter-based models. International Journal for NumericalMethods in Fluids, 49: 739-761.
    [169] Wu J Z, Ma H Y, Zhou M D.2006. Vorticity and VortexDynamics. Berlin: Springer.
    [170] Wu Q, Huang B, Wang G, Gao Y.2015. Experimental andnumerical investigation of hydroelastic response of a flexiblehydrofoil in cavitating flow. International Journal ofMultiphase Flow, 74: 19-33.
    [171] Xiao L Z, Long X P, Lyu Q, Xu M S.2014. LES investigationon cavity shedding of a Clark-Y hydrofoil under different attackangle with an integration method//IOP Conference Series:Earth and Environmental Science, 22: 052011.
    [172] Xing T, Stern F.2010. Factors of safety for richardsonextrapolation. Journal of Fluids Engineering, 132:061403.
    [173] Xing T.2015. A general framework for verification andvalidation of large eddy simulations. Journal ofHydrodynamics, 27: 163-175.
    [174] Ye Y, Li G.2016. Modelling of hydrodynamic cavitatingflows considering the bubble-bubble interaction. International Journal of Multiphase Flow, 84: 155-164.
    [175] Young Y L, Kinnas S A.2003. Numerical modeling ofsupercavitating propeller flows. Journal of Ship Research,47: 48-62.
    [176] Zhang L X, Zhang N, Peng X X, Wang B L, Shao X M.2015. Areview of studies of mechanism and prediction of tip vortexcavitation inception. Journal of Hydrodynamics, 27:488-495.
    [177] Zhang Y, Gopalan S, Katz J.1998. On the flow structure andturbulence in the closure region of attached cavitation//22thSymposium on Naval Hydrodynamics.
    [178] Zhang Y, Zhang Y, Qian Z, Ji B, Wu Y.2016. A review ofmicroscopic interactions between cavitation bubbles and particlesin silt-laden flow. Renewable and Sustainable EnergyReviews, 56: 303-318.
    [179] Zhao Y, Wang G, Huang B.2016. A cavitation model forcomputations of unsteady cavitating flows. Acta MechanicaSinica, 32: 273-283.
    [180] Zima P, Furst T, Sedlar M, Komarek M, HuzlikR.2016. Determination of frequencies of oscillations of cloudcavitation on a 2-D hydrofoil from high-speed camera observations.Journal of Hydrodynamics, 28: 369-378.
    [181] ŽnidarČiČ A, Coutier-Delgosha O, Marquillie M.2015. A new algorithm for DNS simulations of cavitating flowsusing homogeneous mixture approach//AIP Conference Proceedings,1648: 030018.
    [182] Zwart P J, Gerber A G, Belamri T.2004. A two-phase flowmodel for predicting cavitation dynamics//Proceedings of the 5thInternational Conference on Multiphase Flow, Yokohama, Japan.
  • 加载中
计量
  • 文章访问数:  4787
  • HTML全文浏览量:  719
  • PDF下载量:  1243
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-18
  • 刊出日期:  2019-02-08

目录

    /

    返回文章
    返回