留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近场动力学理论的准脆性材料损伤预测和断裂研究进展

赖欣 刘亚洵 刘立胜 李少凡 李君 梅海 张金咏

赖欣, 刘亚洵, 刘立胜, 李少凡, 李君, 梅海, 张金咏. 基于近场动力学理论的准脆性材料损伤预测和断裂研究进展. 力学进展, 待出版 doi: 10.6052/1000-0992-25-007
引用本文: 赖欣, 刘亚洵, 刘立胜, 李少凡, 李君, 梅海, 张金咏. 基于近场动力学理论的准脆性材料损伤预测和断裂研究进展. 力学进展, 待出版 doi: 10.6052/1000-0992-25-007
Lai X, Liu Y X, Liu L S, Li S F, Li J, Mei H, Zhang J Y. The Progress of Damage Prediction and Fracture Analysis of Quasi-brittle Materials Based on Peridynamic Theory. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-007
Citation: Lai X, Liu Y X, Liu L S, Li S F, Li J, Mei H, Zhang J Y. The Progress of Damage Prediction and Fracture Analysis of Quasi-brittle Materials Based on Peridynamic Theory. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-007

基于近场动力学理论的准脆性材料损伤预测和断裂研究进展

doi: 10.6052/1000-0992-25-007 cstr: 32046.14.1000-0992-25-007
基金项目: 国家自然科学基金 (52494933, 51932006)、隆中实验室开放基金 (2024KF-30)、中央高校基本科研业务费 (104972024KFYjc0067、104972024KFYjc0062) 资助项目、新材料力学理论与应用湖北省重点实验室开放基金及工程结构分析与安全评定湖北省重点实验室开放基金
详细信息
    作者简介:

    刘立胜, 武汉理工大学物理与力学学院院长, 教授, 博士生导师. 现任湖北省复合材料学会理事长, 湖北省力学学会常务理事. 长期从事国防应用研究及新材料力学、计算力学和冲击动力学理论和实验研究. 主持国家自然科学基金重大项目课题1项, 国家自然科学基金面上项目2项, 国家级国防项目4项, 参与国家级项目13项,主持横向项目15项. 在大型飞机 (C919、鲲龙600等) 的热载荷、轮起着陆载荷和水上迫降载荷的计算方法等方面获得了重要的研究成果, 产生了重大的经济效益和社会影响. 在材料冲击损伤断裂仿真理论、陶瓷微纳米力学行为等开展了研究, 发表SCI论文180余篇, 包括CMAME、IJP、JMPS、IJIE、JFM、Acta Mater、力学学报等力学和材料top期刊

    通讯作者:

    liulish@whut.edu.cn

  • 中图分类号: O34,O39

The Progress of Damage Prediction and Fracture Analysis of Quasi-brittle Materials Based on Peridynamic Theory

More Information
  • 摘要: 近场动力学作为一种以积分方程为特征的非局部连续介质力学理论, 在模拟裂纹萌生以及裂纹沿任意路径扩展时较传统连续介质理论具有显著优势, 特别在描述脆性以及准脆性材料的瞬态损伤与断裂问题中具有良好的适用性. 本文首先概述了近场动力学的基本理论以及材料断裂与损伤的失效准则. 其次详细介绍了近年来多种脆性以及准脆性材料 (陶瓷、混凝土、玻璃、岩石等) 在近场动力学框架下的损伤预测和断裂建模研究. 最后讨论了该类材料在近场动力学理论中值得深入研究的问题.

     

  • 图  1  近场动力学模型变形前后示意图

    图  2  陶瓷板动态冲击损伤模式(Liu等(2022)). (a)正面冲击数值算例, (b)侧面冲击数值算例

    图  3  三维带有中心圆孔的脆性板在热冲击下的三维热断裂过程(Wang等(2019))

    图  4  实验与IH-PD模型计算结果在不同加载速率下的裂纹模式(Wu等(2021)). (a) 0.304 m/s, (b) 3.318 m/s, (c) 0.491 m/s, (d) 3.993 m/s, (e) 1.375 m/s, (f) 3.967 m/s

    图  5  不同弹丸初速作用下钢筋混凝土板的损伤模式(Ma等(2023))

    图  6  双缺口板在不同时刻的温度演变(Pathrikar等(2021)). (a) t = 40 μs, (b) t = 50 μs, (c) t = 65 μs, (d) t = 90 μs

    图  7  夹层玻璃板前后表面断裂模式的实验与近场动力学模拟结果(Wu等(2021)). (a) 实验结果正面, (b) 实验结果背面, (c) 模拟结果正面, (d) 模拟结果背面

    图  8  不同试样水力裂缝实验与模拟结果对比(Qin等(2024)). (a) 试样1实验结果, (b) 试样1模拟结果, (c) 试样2实验结果, (d) 试样2模拟结果

  • [1] Abdoh D A. 2024. Three-dimensional modeling of impact fractures in brittle materials via peridynamics. Engineering Fracture Mechanics, 297: 109884. doi: 10.1016/j.engfracmech.2024.109884
    [2] Agwai A, Guven I, Madenci E. 2011. Predicting crack propagation with peridynamics: a comparative study. International journal of fracture, 171(1): 65-78. doi: 10.1007/s10704-011-9628-4
    [3] Battistini A, Haynes T A, Jones L, et al. 2024. Bond‐based peridynamics model of 3‐point bend tests of ceramic‐composite interfaces. Journal of the American Ceramic Society, 107(9): 6004-6018. doi: 10.1111/jace.19905
    [4] Bazazzadeh S, Morandini M, Zaccariotto M, et al. 2021. Simulation of chemo-thermo-mechanical problems in cement-based materials with Peridynamics. Meccanica (Milan), 56(9): 2357-2379. doi: 10.1007/s11012-021-01375-7
    [5] Bazazzadeh S, Mossaiby F, Shojaei A. 2020. An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Engineering fracture mechanics, 223: 106708. doi: 10.1016/j.engfracmech.2019.106708
    [6] Bie Y, Ren H, Rabczuk T, et al. 2024. The fully coupled thermo-mechanical dual-horizon peridynamic correspondence damage model for homogeneous and heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 420: 116730. doi: 10.1016/j.cma.2023.116730
    [7] Bobaru F, Ha Y D, Hu W. 2012. Damage progression from impact in layered glass modeled with peridynamics. Central European Journal of Engineering, 2(4): 551-561.
    [8] Bobaru F, Zhang G. 2015. Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. International journal of fracture, 196(1-2): 59-98. doi: 10.1007/s10704-015-0056-8
    [9] Can U, Silling S A, Guven I. 2025. Peridynamic modeling of shocks and high-velocity impact with the Johnson-Holmquist-Beissel ceramic model. International Journal of Impact Engineering, 197: 105181. doi: 10.1016/j.ijimpeng.2024.105181
    [10] Cao Y, Kazembeyki M, Tang L, et al. 2021. Modeling the nanoindentation response of silicate glasses by peridynamic simulations. Journal of the American Ceramic Society, 104(7): 3531-3544. doi: 10.1111/jace.17720
    [11] Casolo S, Diana V. 2018. Modelling laminated glass beam failure via stochastic rigid body-spring model and bond-based peridynamics. Engineering Fracture Mechanics, 190: 331-346. doi: 10.1016/j.engfracmech.2017.12.028
    [12] Chen J, Jiang W, Wang Q, et al. 2019. Peridynamic analysis of drill-induced borehole damage. Engineering Failure Analysis, 104: 47-66. doi: 10.1016/j.engfailanal.2019.05.028
    [13] Chen J, Liao H, Yang B, et al. 2019. Adaptive modeling of rock crack mechanism during drilling operation based on modified peridynamics. Engineering fracture mechanics, 217: 106538. doi: 10.1016/j.engfracmech.2019.106538
    [14] Chen W, Gu X, Zhang Q, et al. 2021. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Engineering Fracture Mechanics, 242: 107463. doi: 10.1016/j.engfracmech.2020.107463
    [15] Chen X, Chen X, Chan A, et al. 2022. A FDEM Parametric Investigation on the Impact Fracture of Monolithic Glass. Buildings, 12(3): 271. doi: 10.3390/buildings12030271
    [16] Chen X, Yu H. 2023. A novel micropolar peridynamic model for rock masses with arbitrary joints. Engineering Fracture Mechanics, 281: 109099. doi: 10.1016/j.engfracmech.2023.109099
    [17] Chen Z, Chu X. 2021. Peridynamic Modeling and Simulation of Fracture Process in Fiber-Reinforced Concrete. Computer Modeling in Engineering & Sciences, 127(1): 241-272.
    [18] Cheng Y, Huang J, Ou X, et al. 2023. Dynamic mechanical properties and failure mechanism of magnesium aluminum spinel based on experiments and peridynamic simulations. Journal of the European Ceramic Society, 43(16): 7581-7598. doi: 10.1016/j.jeurceramsoc.2023.08.027
    [19] Cheng Z, Ren X, Zhang J, et al. 2024. Peridynamics thermomechanical coupling simulation of damage in engineered cementitious composite-concrete bonding specimens under high temperature. Engineering Fracture Mechanics, 306: 110211. doi: 10.1016/j.engfracmech.2024.110211
    [20] Cheng Z, Wang Z, Luo Z. 2019. Dynamic Fracture Analysis for Shale Material by Peridynamic Modelling. Computer Modeling in Engineering & Sciences, 118(3): 509-527.
    [21] Cheng Z, Zhang J, Tang J, et al. 2024. Peridynamic model of ECC-concrete composite beam under impact loading. Engineering Fracture Mechanics, 295: 109791. doi: 10.1016/j.engfracmech.2023.109791
    [22] Chu B, Liu Q, Liu L, et al. 2020. A Rate-Dependent Peridynamic Model for the Dynamic Behavior of Ceramic Materials. Computer Modeling in Engineering & Sciences, 124(1): 151-178.
    [23] Diana V, Casolo S. 2019. A bond-based micropolar peridynamic model with shear deformability: Elasticity, failure properties and initial yield domains. International journal of solids and structures, 160: 201-231. doi: 10.1016/j.ijsolstr.2018.10.026
    [24] Diana V, Labuz J F, Biolzi L. 2020. Simulating fracture in rock using a micropolar peridynamic formulation. Engineering fracture mechanics, 230: 106985. doi: 10.1016/j.engfracmech.2020.106985
    [25] Dipasquale D, Sarego G, Zaccariotto M, et al. 2017. A discussion on failure criteria for ordinary state-based peridynamics. Engineering Fracture Mechanics, 186: 378-398. doi: 10.1016/j.engfracmech.2017.10.011
    [26] Du W, Fu X, Sheng Q, et al. 2020. Study on the failure process of rocks with closed fractures under compressive loading using improved bond-based peridynamics. Engineering fracture mechanics, 240: 107315. doi: 10.1016/j.engfracmech.2020.107315
    [27] Fan Y, You H, Tian X, et al. 2022. A meshfree peridynamic model for brittle fracture in randomly heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 399: 115340. doi: 10.1016/j.cma.2022.115340
    [28] Feng K, Zhou X. 2023. Peridynamic simulation of the mechanical responses and fracturing behaviors of granite subjected to uniaxial compression based on CT heterogeneous data. Engineering with computers, 39(1): 307-329. doi: 10.1007/s00366-021-01549-7
    [29] Foster J T, Silling S A, Chen W. 2011. An energy based failure criterion for use with peridynamic states. International Journal for Multiscale Computational Engineering, 9(6).
    [30] Friedrich L F, Colpo A B, Kosteski L E, et al. 2022. A novel peridynamic approach for fracture analysis of quasi-brittle materials. International Journal of Mechanical Sciences, 227: 107445. doi: 10.1016/j.ijmecsci.2022.107445
    [31] Gao C, Zhou Z, Li L, et al. 2021. Strength reduction model for jointed rock masses and peridynamics simulation of uniaxial compression testing. Geomechanics and geophysics for geo-energy and geo-resources. , 7(2).
    [32] Gao C, Zhou Z, Li Z, et al. 2020. Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation. Tunnelling and Underground Space Technology, 97: 103289. doi: 10.1016/j.tust.2020.103289
    [33] Gao C, Zhou Z, Li Z, et al. 2021. Peridynamics Simulation of Water Inrush Channels Evolution Process Due to Rock Mass Progressive Failure in Karst Tunnels. International Journal of Geomechanics, 21(4): 1-15.
    [34] Gerstle W, Sau N, Silling S. 2005. Peridynamic modeling of plain and reinforced concrete structures.
    [35] Gerstle W, Sau N, Silling S. 2007. Peridynamic modeling of concrete structures. Nuclear Engineering and Design, 237(12-13): 1250-1258. doi: 10.1016/j.nucengdes.2006.10.002
    [36] Ghajari M, Iannucci L, Curtis P. 2014. A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Computer methods in applied mechanics and engineering, 276: 431-452. doi: 10.1016/j.cma.2014.04.002
    [37] Giannakeas I N, Papathanasiou T K, Bahai H. 2018. Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM. Journal of the European Ceramic Society, 38(8): 3037-3048. doi: 10.1016/j.jeurceramsoc.2017.12.039
    [38] Gu X, Li X, Xia X, et al. 2023. A robust peridynamic computational framework for predicting mechanical properties of porous quasi-brittle materials. Composite structures, 303: 116245. doi: 10.1016/j.compstruct.2022.116245
    [39] Gu X, Zhang Q. 2020. A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica (Milan), 55(3): 547-566. doi: 10.1007/s11012-020-01138-w
    [40] Guski V, Verestek W, Rapp D, et al. 2021. Microstructural investigation of plasma sprayed ceramic coatings focusing on the effect of the splat boundary for SOFC sealing applications using peridynamics. Theoretical and Applied Fracture Mechanics, 112: 102926. doi: 10.1016/j.tafmec.2021.102926
    [41] Guven I, Zelinski B J. (2014, 1-1-2014). Peridynamic modeling of damage and fracture in EM windows and domes.
    [42] Ha Y D. 2019. Dynamic fracture analysis for 2D multilayered glass structures considering interlayer effects. Journal of Mechanical Science and Technology, 33(8): 3641-3648. doi: 10.1007/s12206-019-0704-4
    [43] Ha Y D. 2020. An extended ghost interlayer model in peridynamic theory for high-velocity impact fracture of laminated glass structures. Computers & Mathematics with Applications, 80(5): 744-761.
    [44] Ha Y D, Bobaru F. 2010. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture, 162(1-2): 229-244. doi: 10.1007/s10704-010-9442-4
    [45] Ha Y D, Bobaru F. 2011. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics, 78(6): 1156-1168. doi: 10.1016/j.engfracmech.2010.11.020
    [46] Ha Y D, Lee J, Hong J. 2015. Fracturing patterns of rock-like materials in compression captured with peridynamics. Engineering fracture mechanics, 144: 176-193. doi: 10.1016/j.engfracmech.2015.06.064
    [47] Hou K, Hua W, Xiao Y, et al. 2024. Insights into the failure mechanisms of cement-treated recycled aggregate materials (CRAMs) under uniaxial compression via peridynamics. Construction and Building Materials, 451: 138726. doi: 10.1016/j.conbuildmat.2024.138726
    [48] Hu W, Ha Y D, Bobaru F. 2012. Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering, 217-220: 247-261.
    [49] Hu W, Wang Y, Yu J, et al. 2013. Impact damage on a thin glass plate with a thin polycarbonate backing. International Journal of Impact Engineering, 62: 152-165. doi: 10.1016/j.ijimpeng.2013.07.001
    [50] Hu Y, Madenci E, Phan N. 2017. Peridynamic Modeling of Cracking in Ceramic Matrix Composites. In R. R. Ambriz, D. Jaramillo, G. Plascencia & M. Nait Abdelaziz (Eds.), (pp. 341-354). Switzerland: Springer International Publishing AG.
    [51] Huang D, Lu G D, Wang M W. 2014. Peridynamic Modeling of Concrete Structures. Applied Mechanics and Materials, 638-640: 1725-1729.
    [52] Huang D, Lu G, Liu Y. 2015. Nonlocal Peridynamic Modeling and Simulation on Crack Propagation in Concrete Structures. Mathematical Problems in Engineering, 2015: 1-11.
    [53] Huang D, Lu G, Qiao P. 2015. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 94-95: 111-122.
    [54] Huang D, Zhang Q, Qiao P. 2011. Damage and progressive failure of concrete structures using non-local peridynamic modeling. Science China Technological Sciences, 54(3): 591-596. doi: 10.1007/s11431-011-4306-3
    [55] Huang J, Feng L, Zhang X, et al. 2025. Shock induced damage and failure mechanisms of magnesium aluminate spinel based on an atomistically calibrated bond-based peridynamic model. International Journal of Solids and Structures, 314: 113316. doi: 10.1016/j.ijsolstr.2025.113316
    [56] Huang X, Kong X, Chen Z, et al. 2021. Peridynamics modelling of dynamic tensile failure in concrete. International Journal of Impact Engineering, 155: 103918. doi: 10.1016/j.ijimpeng.2021.103918
    [57] Huang X, Li S, Jin Y, et al. 2019. Analysis on the influence of Poisson’s ratio on brittle fracture by applying uni-bond dual-parameter peridynamic model. Engineering Fracture Mechanics, 222: 106685. doi: 10.1016/j.engfracmech.2019.106685
    [58] Huang Y, Zhang H, Zhou J, et al. 2022. Efficient quasi-brittle fracture simulations of concrete at mesoscale using micro CT images and a localizing gradient damage model. Computer Methods in Applied Mechanics and Engineering, 400: 115559. doi: 10.1016/j.cma.2022.115559
    [59] Jafaraghaei Y, Yu T, Bui T Q. 2022. Peridynamics simulation of impact failure in glass plates. Theoretical and Applied Fracture Mechanics, 121: 103424. doi: 10.1016/j.tafmec.2022.103424
    [60] Jeon B, Ahmed R J S A. 2015. Peridynamic simulations of brittle structures with thermal residual deformation: strengthening and structural reactivity of glasses under impacts. Proceedings: Mathematical, Physical and Engineering Sciences(No. 2183): 1-14.
    [61] Jiang H, Jiang F, Hu D, et al. 2019. Numerical modeling of compressive failure mechanisms in ceramic materials at high strain rates. Computer Methods in Applied Mechanics and Engineering, 347: 806-826. doi: 10.1016/j.cma.2019.01.006
    [62] Jin Y, Li L, Jia Y, et al. 2021. Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method. Computers and Geotechnics, 133: 103998. doi: 10.1016/j.compgeo.2021.103998
    [63] Katiyar A, Foster J T, Ouchi H, et al. 2014. A peridynamic formulation of pressure driven convective fluid transport in porous media. Journal of Computational Physics, 261: 209-229. doi: 10.1016/j.jcp.2013.12.039
    [64] Kilic B, Madenci E. 2009. Prediction of crack paths in a quenched glass plate by using peridynamic theory. International journal of fracture, 156(2): 165-177. doi: 10.1007/s10704-009-9355-2
    [65] Lai X, Liu L, Li S, et al. 2018. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. International Journal of Impact Engineering, 111: 130-146. doi: 10.1016/j.ijimpeng.2017.08.008
    [66] Lee J, Ha Y D, Hong J. 2017. Crack coalescence morphology in rock-like material under compression. International journal of fracture, 203(1-2): 211-236. doi: 10.1007/s10704-016-0138-2
    [67] Lee J, Hong J. 2016. Dynamic crack branching and curving in brittle polymers. International Journal of Solids and Structures, 100-101: 332-340.
    [68] Li H, Liu J, Wang L, et al. 2023. Study on mechanical properties and energy change of rock materials in whole splitting process based on peridynamics. Sci Rep, 13(1): 3221. doi: 10.1038/s41598-023-30394-5
    [69] Li H, Yang S, Sun B, et al. 2024. Thermal effects on mode I fracture of sandstone: Accurate crack identification in thermal-mechanical coupled peridynamic simulations. Journal of Rock Mechanics and Geotechnical Engineering.
    [70] Li J, Li S, Lai X, et al. 2022. Peridynamic stress is the static first Piola–Kirchhoff Virial stress. International Journal of Solids and Structures, 241: 111478. doi: 10.1016/j.ijsolstr.2022.111478
    [71] Li L, Chen X, Gao C, et al. 2025. Peridynamics simulating of dynamics crack propagation in rock mass under blasting load. Simulation Modelling Practice and Theory, 140: 103079. doi: 10.1016/j.simpat.2025.103079
    [72] Li M, Lu W, Oterkus E, et al. 2020. Thermally-induced fracture analysis of polycrystalline materials by using peridynamics. Engineering analysis with boundary elements, 117: 167-187. doi: 10.1016/j.enganabound.2020.04.016
    [73] Li W, Guo L. 2018. Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method. Construction and Building Materials, 161: 665-675. doi: 10.1016/j.conbuildmat.2017.12.002
    [74] Li X, Gu X, Xia X, et al. 2024. Peridynamic simulation of micro-internal damage and macro-mechanical properties of cement paste under freeze-thaw cycles. Journal of Building Engineering, 93: 109759. doi: 10.1016/j.jobe.2024.109759
    [75] Li Y, Liu Q, Liu L, et al. 2023. The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB2 Ceramics Ablation Behavior. Computer Modeling in Engineering & Sciences, 135(1): 417-439.
    [76] Liu M, Wang Q, Lu W. 2017. Peridynamic simulation of brittle-ice crushed by a vertical structure. International Journal of Naval Architecture and Ocean Engineering, 9(2): 209-218. doi: 10.1016/j.ijnaoe.2016.10.003
    [77] Liu Y, Li W, Guan J, et al. 2024. Improved fully coupled peridynamic model for analyzing the compressive behaviour of concrete under sulfate attack. Ocean Engineering, 310: 118790. doi: 10.1016/j.oceaneng.2024.118790
    [78] Liu Y, Liu L, Mei H, et al. 2022. A modified rate-dependent peridynamic model with rotation effect for dynamic mechanical behavior of ceramic materials. Computer Methods in Applied Mechanics and Engineering, 388: 114246. doi: 10.1016/j.cma.2021.114246
    [79] Lu J, Zhang Y, Muhammad H, et al. 2018. Peridynamic Model for the Numerical Simulation of Anchor Bolt Pullout in Concrete. Mathematical Problems in Engineering, 2018: 1-10.
    [80] Ma P, Li S, Wang X, et al. 2022. Numerical simulation of crack propagation and coalescence in rock materials by the peridynamic method based on strain energy density theory. Computational Geosciences, 26(6): 1379-1396. doi: 10.1007/s10596-022-10172-4
    [81] Ma P, Li S, Zhou H, et al. 2021. Peridynamic method to determine energy absorption characteristics of ordinary glass under impact load. International journal of crashworthiness, 26(2): 227-235. doi: 10.1080/13588265.2019.1701890
    [82] Ma Q, Huang D, Wu L, et al. 2023. An extended peridynamic model for analyzing interfacial failure of composite materials with non-uniform discretization. Theoretical and Applied Fracture Mechanics, 125: 103854. doi: 10.1016/j.tafmec.2023.103854
    [83] Ma Q, Huang D, Wu L, et al. 2023. An improved peridynamic model for quasi-static and dynamic fracture and failure of reinforced concrete. Engineering Fracture Mechanics, 289: 109459. doi: 10.1016/j.engfracmech.2023.109459
    [84] Ma Q, Wu L, Huang D. 2022. An extended peridynamic model for dynamic fracture of laminated glass considering interfacial debonding. Composite Structures, 290: 115552. doi: 10.1016/j.compstruct.2022.115552
    [85] Madenci E, Oterkus S. 2016. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. Journal of the mechanics and physics of solids, 86: 192-219. doi: 10.1016/j.jmps.2015.09.016
    [86] Mehrmashhadi J, Bahadori M, Bobaru F. 2020. On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Engineering fracture mechanics, 240: 107355. doi: 10.1016/j.engfracmech.2020.107355
    [87] Mi P, Liu J, Zhou Z, et al. 2023. The dynamic compressive properties of B4C ceramic by plasma spraying multilayer Co/Ni–TiCN coatings. Ceramics International, 49(4): 6708-6712. doi: 10.1016/j.ceramint.2022.10.221
    [88] Mirsayar M. 2023. A generalized model for dynamic mixed‐mode fracture via state‐based peridynamics. Fatigue & Fracture of Engineering Materials & Structures, 46(1): 244-258.
    [89] Mitts C, Naboulsi S, Przybyla C, et al. 2020. Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite. Engineering fracture mechanics, 235: 107074. doi: 10.1016/j.engfracmech.2020.107074
    [90] Naumenko K, Pander M, Würkner M. 2022. Damage patterns in float glass plates: Experiments and peridynamics analysis. Theoretical and Applied Fracture Mechanics, 118: 103264. doi: 10.1016/j.tafmec.2022.103264
    [91] Negi A, Kumar S. 2022. A continuous–discontinuous localizing gradient damage framework for failure analysis of quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 390: 114434. doi: 10.1016/j.cma.2021.114434
    [92] Nguyen C T, Oterkus S, Oterkus E, et al. 2023. Fatigue crack prediction in ceramic material and its porous media by using peridynamics. Procedia Structural Integrity, 46: 80-86. doi: 10.1016/j.prostr.2023.06.014
    [93] Niazi S, Chen Z, Bobaru F. 2021. Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis. Theoretical and Applied Fracture Mechanics, 112: 102855. doi: 10.1016/j.tafmec.2020.102855
    [94] Ono M, Miyasaka S, Takato Y, et al. 2019. Higher Toughness of Metal-nanoparticle-implanted Sodalime Silicate Glass with Increased Ductility. Sci Rep, 9(1): 15387. doi: 10.1038/s41598-019-51733-5
    [95] Oterkus S, Madenci E, Oterkus E. 2017. Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Engineering Geology, 225: 19-28. doi: 10.1016/j.enggeo.2017.02.001
    [96] Ouchi H, Katiyar A, York J, et al. 2015. A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Computational mechanics, 55(3): 561-576. doi: 10.1007/s00466-015-1123-8
    [97] Pan Z, Yang J, Wang X, et al. 2024. Scratch-induced micro-fracture behaviour and translational failure of glass: An experimental and numerical study. Thin-Walled Structures, 205: 112341. doi: 10.1016/j.tws.2024.112341
    [98] Pathrikar A, Tiwari S B, Arayil P, et al. 2021. Thermomechanics of damage in brittle solids: A peridynamics model. Theoretical and applied fracture mechanics, 112: 102880. doi: 10.1016/j.tafmec.2020.102880
    [99] Platt P, Mella R, DeMaio W, et al. 2017. Peridynamic simulations of the tetragonal to monoclinic phase transformation in zirconium dioxide. Computational materials science, 140: 322-333. doi: 10.1016/j.commatsci.2017.09.001
    [100] Prakash N, Deng B, Stewart R J, et al. 2022. Investigation of microscale fracture mechanisms in glass–ceramics using peridynamics simulations. Journal of the American Ceramic Society, 105(6): 4304-4320. doi: 10.1111/jace.18350
    [101] Qin M, Yang D, Chen W, et al. 2021. Hydraulic fracturing model of a layered rock mass based on peridynamics. Engineering Fracture Mechanics, 258: 108088. doi: 10.1016/j.engfracmech.2021.108088
    [102] Qin M, Yang D, Chen W. 2022. Numerical investigation of the effects of fracturing fluid parameters on hydraulic fracture propagation in jointed rock mass based on peridynamics. Engineering Analysis with Boundary Elements, 135: 38-51. doi: 10.1016/j.enganabound.2021.11.016
    [103] Qin M, Yang D, Chen W. 2023. Numerical Investigation of Hydraulic Fracturing in a Heterogeneous Rock Mass Based on Peridynamics. Rock mechanics and rock engineering, 56(6): 4485-4505. doi: 10.1007/s00603-023-03299-y
    [104] Qin M, Yang D, Jia Y, et al. 2024. Peridynamics modeling of hydraulic fracture interaction with natural fractures in fractured rock mass. Engineering Fracture Mechanics, 307: 110299. doi: 10.1016/j.engfracmech.2024.110299
    [105] Rabczuk T, Ren H. 2017. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 225: 42-48. doi: 10.1016/j.enggeo.2017.05.001
    [106] Ren B, Wu C T, Askari E. 2017. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. International Journal of Impact Engineering, 99: 14-25. doi: 10.1016/j.ijimpeng.2016.09.003
    [107] Ren H, Zhuang X, Zhu H, et al. 2024. Variational damage model: A novel consistent approach to fracture. Computers & Structures, 305: 107518.
    [108] Rivera J, Berjikian J, Ravinder R, et al. 2019. Glass Fracture Upon Ballistic Impact: New Insights From Peridynamics Simulations. Frontiers in materials, 6.
    [109] Saber M, Hosseini-Toudeshky H. 2023. Interphase characterization of glass/epoxy composite using peridynamic method and micro tensile test. Composite interfaces, 30(8): 827-848. doi: 10.1080/09276440.2023.2179237
    [110] Sakhavand N. 2011. Parallel simulation of reinforced concrete sructures using peridynamics., University of New Mexico, New Mexico.
    [111] Scabbia F, Gasparrini C, Zaccariotto M, et al. 2025. A peridynamic model for oxidation and damage in zirconium carbide ceramics. International Journal of Heat and Mass Transfer, 237: 126414. doi: 10.1016/j.ijheatmasstransfer.2024.126414
    [112] Shang X, Zhou J, Liu F, et al. 2023. A peridynamics study for the free-surface-assisted rock fragmentation caused by TBM disc cutters. Computers and Geotechnics, 158: 105380. doi: 10.1016/j.compgeo.2023.105380
    [113] Shang X, Zhou J, Liu F, et al. 2025. Three-dimensional peridynamics modeling of rock cutting considering disc cutter rolling motion. Acta Geotechnica, 20(4): 1643-1660. doi: 10.1007/s11440-025-02595-x
    [114] Shen F, Zhang Q, Huang D. 2013. Damage and Failure Process of Concrete Structure under Uniaxial Compression Based on Peridynamics Modeling. Mathematical Problems in Engineering, 2013: 1-5.
    [115] Shou Y, Zhou X. 2020. A coupled thermomechanical nonordinary state‐based peridynamics for thermally induced cracking of rocks. Fatigue & Fracture of Engineering Materials & Structures, 43(2): 371-386.
    [116] Shou Y, Zhou X. 2021. A coupled hydro-mechanical non-ordinary state-based peridynamics for the fissured porous rocks. Engineering Analysis with Boundary Elements, 123: 133-146. doi: 10.1016/j.enganabound.2020.12.001
    [117] Silling S A. 2000. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [118] Silling S A. 2010. Linearized Theory of Peridynamic States. Journal of elasticity, 99(1): 85-111. doi: 10.1007/s10659-009-9234-0
    [119] Silling S A, Askari E. (2004, 1-1-2004). Peridynamic modeling of impact damage.
    [120] Silling S A, Askari E. 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83(17-18): 1526-1535.
    [121] Silling S A, Epton M, Weckner O, et al. 2007. Peridynamic States and Constitutive Modeling. Journal of Elasticity, 88(2): 151-184. doi: 10.1007/s10659-007-9125-1
    [122] Song R, Han F, Mei Y, et al. 2022. A Hybrid Local/Nonlocal Continuum Mechanics Modeling of Damage and Fracture in Concrete Structure at High Temperatures. Computer Modeling in Engineering & Sciences, 133(2): 389-412.
    [123] Song X, Khalili N. 2019. A peridynamics model for strain localization analysis of geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 43(1): 77-96. doi: 10.1002/nag.2854
    [124] Stewart R J, Jeon B. 2019. Decoupling Strength and Grid Resolution in Peridynamic Theory. Journal of peridynamics and nonlocal modeling (Online), 1(2): 97-106. doi: 10.1007/s42102-019-00008-8
    [125] Sun B, Liu S, Han W, et al. 2025. Peridynamics-based reformulation of HJC constitutive model for concrete failure analysis under impact. International Journal of Impact Engineering, 201: 105269. doi: 10.1016/j.ijimpeng.2025.105269
    [126] Sun G, Wang J, Tang S, et al. 2024. A dynamic damage constitutive model and three-dimensional internal crack propagation of rock-like materials in bond-based peridynamic. Theoretical and Applied Fracture Mechanics, 130: 104320. doi: 10.1016/j.tafmec.2024.104320
    [127] Sun G, Wang J, Yu H, et al. 2023. An extended peridynamic bond-based constitutive model for simulation of crack propagation in rock-like materials. Computational geosciences, 27(5): 829-851. doi: 10.1007/s10596-023-10234-1
    [128] Sun W K, Yin B B, Sun J, et al. 2024. Modeling via peridynamics for crack propagation in laminated glass under fire. Composite structures, 338: 118112. doi: 10.1016/j.compstruct.2024.118112
    [129] Tian D, Zhou X. 2023. Investigating time-dependent behavior of rocks using kinematic-constraint-inspired non-ordinary state-based peridynamics. Computers and Geotechnics, 158: 105368. doi: 10.1016/j.compgeo.2023.105368
    [130] Tian D, Zhou X. 2024. The kinematic-constraint-inspired non-ordinary state-based peridynamics with fractional viscoelastic-viscoplastic constitutive model to simulating time-dependent deformation and failure of rocks. Computer Methods in Applied Mechanics and Engineering, 424: 116873. doi: 10.1016/j.cma.2024.116873
    [131] Tian F, Liu Z, Zhou J, et al. 2024. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mechanics and Rock Engineering, 57(7): 4835-4871. doi: 10.1007/s00603-024-03788-8
    [132] Tu J, Xu N, Mei G. 2025. A peridynamics modeling approach for pre-cracked rock cracking processes under impact by integrating Drucker-Prager plasticity model and efficient contact model. Journal of Rock Mechanics and Geotechnical Engineering.
    [133] Tune S, Schultz R, Guven I, et al. (2014, 1-1-2014). Peridynamic simulation of the effects of coatings, substrate properties, incident angle, and tilt on sand impact damage in transparent ceramic windows.
    [134] Tuniki B K. 2012. Peridynamic constitutive model for concrete., University of New Mexico, New Mexico.
    [135] Wang F, Ma Y E, Guo Y, et al. 2020. Study on Thermally Induced Crack Propagation Behavior of Functionally Graded Materials Using a Modified Peridynamic Model. Advances in Materials Science and Engineering, 2020: 1-17.
    [136] Wang G, Lu D, Gao Y, et al. 2025. Viscoelastic peridynamic method for the interface in the reinforced concrete. Engineering Fracture Mechanics, 315: 110817. doi: 10.1016/j.engfracmech.2025.110817
    [137] Wang L, Chen W. 2025. A 3D Peridynamic Model for Thermal-Induced Cracking in Fractured Geological Media with Multiple Fractures. Rock Mechanics and Rock Engineering.
    [138] Wang Q Z, Hu Y L, Yu Y, et al. 2024. A peridynamic differential operator modeling approach for ceramic matrix composites microstructure with uniform or non-uniform discretization. Composite Structures, 344: 118282. doi: 10.1016/j.compstruct.2024.118282
    [139] Wang W, Zhu Q, Ni T, et al. 2023. An extended peridynamic model equipped with a new bond-breakage criterion for mixed-mode fracture in rock-like materials. Computer Methods in Applied Mechanics and Engineering, 411: 116016. doi: 10.1016/j.cma.2023.116016
    [140] Wang W, Zhu Q, Zhang J, et al. 2024. Peridynamic modeling of step-path failure in rock slopes. Computers and Geotechnics, 165: 105913. doi: 10.1016/j.compgeo.2023.105913
    [141] Wang Y. 2015. Peridynamic studies of interactions between stress waves and propagating cracks in brittle solids. Unpublished Ph. D. , The University of Nebraska - Lincoln.
    [142] Wang Y, Wu W. 2023. A bond-level energy-based peridynamics for mixed-mode fracture in rocks. Computer Methods in Applied Mechanics and Engineering, 414: 116169. doi: 10.1016/j.cma.2023.116169
    [143] Wang Y, Zhou X. 2019. Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes. International Journal of Rock Mechanics and Mining Sciences, 117: 31-48. doi: 10.1016/j.ijrmms.2019.03.007
    [144] Wang Y, Zhou X, Kou M. 2018. A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. International Journal of Fracture, 211(1-2): 13-42. doi: 10.1007/s10704-018-0273-z
    [145] Wang Y, Zhou X, Kou M. 2018. Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles. Ceramics International, 44(10): 11512-11542. doi: 10.1016/j.ceramint.2018.03.214
    [146] Wang Y, Zhou X, Kou M. 2019. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks. European Journal of Mechanics - A/Solids, 73: 282-305. doi: 10.1016/j.euromechsol.2018.09.007
    [147] Wang Y, Zhou X, Shou Y. 2017. The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics. International Journal of Mechanical Sciences, 128-129: 614-643.
    [148] Wang Y, Zhou X, Xu X. 2016. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 163: 248-273. doi: 10.1016/j.engfracmech.2016.06.013
    [149] Wang Y, Zhou X, Zhang T. 2019. Size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach. Mechanics of Materials, 137: 103133. doi: 10.1016/j.mechmat.2019.103133
    [150] Waxman R, Guven I. 2019. An experimental and peridynamic study of the erosion of optical glass targets due to sand and sphere microparticles. Wear, 428-429: 340-355.
    [151] Wondraczek L, Bouchbinder E, Ehrlicher A, et al. 2022. Advancing the Mechanical Performance of Glasses: Perspectives and Challenges. Advanced Materials, 34(14).
    [152] Wu H, Qi H, Li S, et al. 2024. Bond-associated non-ordinary state-based peridynamics for simulating damage evolution of thermal barrier coatings in aero-engine turbine blades. Engineering Fracture Mechanics, 311: 110536. doi: 10.1016/j.engfracmech.2024.110536
    [153] Wu L, Huang D, Ma Q, et al. 2022. Peridynamic modeling for impact failure of wet concrete considering the influence of saturation. International Journal of Damage Mechanics, 31(9): 1448-1474. doi: 10.1177/10567895221105654
    [154] Wu L, Huang D, Wang H, et al. 2023. A comparison study on numerical analysis for concrete dynamic failure using intermediately homogenized peridynamic model and meso-scale peridynamic model. International Journal of Impact Engineering, 179: 104657. doi: 10.1016/j.ijimpeng.2023.104657
    [155] Wu L, Huang D, Xu Y, et al. 2019. A Non-Ordinary State-Based Peridynamic Formulation for Failure of Concrete Subjected to Impacting Loads. Computer Modeling in Engineering & Sciences, 118(3): 561-581.
    [156] Wu L, Huang D, Xu Y, et al. 2020. A rate-dependent dynamic damage model in peridynamics for concrete under impact loading. International journal of damage mechanics, 29(7): 1035-1058. doi: 10.1177/1056789519901162
    [157] Wu L, Wang L, Huang D, et al. 2020. An ordinary state-based peridynamic modeling for dynamic fracture of laminated glass under low-velocity impact. Composite structures, 234: 111722. doi: 10.1016/j.compstruct.2019.111722
    [158] Wu L, Xu Y, Huang D, et al. 2021. Influences of temperature and impacting velocity on dynamic failure of laminated glass: Insights from peridynamic simulations. Composite Structures, 259: 113472. doi: 10.1016/j.compstruct.2020.113472
    [159] Wu P, Liu Y, Peng X, et al. 2023. Peridynamic modeling of freeze-thaw damage in concrete structures. Mechanics of advanced materials and structures, 30(14): 2826-2837. doi: 10.1080/15376494.2022.2064015
    [160] Wu P, Yang F, Chen Z, et al. 2021. Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete. Engineering Fracture Mechanics, 253: 107863. doi: 10.1016/j.engfracmech.2021.107863
    [161] Wu P, Zhao J, Chen Z, et al. 2020. Validation of a stochastically homogenized peridynamic model for quasi-static fracture in concrete. Engineering Fracture Mechanics, 237: 107293. doi: 10.1016/j.engfracmech.2020.107293
    [162] Wu Y, Zhou J, Tang J, et al. 2022. A Peridynamic Model for Dynamic Fracture of Layered Engineered Cementitious Composites. Acta Mechanica Solida Sinica, 35(4): 661-671. doi: 10.1007/s10338-022-00312-9
    [163] Xu C, Yuan Y, Zhang Y, et al. 2021. Peridynamic modeling of prefabricated beams post‐cast with steelfiber reinforced high‐strength concrete. Structural concrete : journal of the FIB, 22(1): 445-456.
    [164] Xu J, Yang Z, Wang Z, et al. 2023. Peridynamic simulation for the damage patterns of glass considering the influence of rate-dependence and pre-defects. Engineering Fracture Mechanics, 291: 109539. doi: 10.1016/j.engfracmech.2023.109539
    [165] Xu T, Jin Y, Tai Y. 2023. Peridynamic mesh-free simulation of glass and metal beads column collapses. International Journal of Mechanical Sciences, 256: 108485. doi: 10.1016/j.ijmecsci.2023.108485
    [166] Xu W, Jiao Y, Fish J. 2020. An atomistically-informed multiplicative hyper-elasto-plasticity-damage model for high-pressure induced densification of silica glass. Computational Mechanics, 66(1): 155-187. doi: 10.1007/s00466-020-01846-w
    [167] Xu Z, Zhang G, Chen Z, et al. 2018. Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. International journal of fracture, 209(1-2): 203-222. doi: 10.1007/s10704-017-0256-5
    [168] Yaghoobi A, Chorzepa M G. 2017. Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Engineering Fracture Mechanics, 169: 238-250. doi: 10.1016/j.engfracmech.2016.11.004
    [169] Yaghoobi A, Chorzepa M, Kim S, et al. 2017. Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics. Materials, 10(2): 162. doi: 10.3390/ma10020162
    [170] Yang D, Dong W, Liu X, et al. 2018. Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Engineering Fracture Mechanics, 199: 567-581. doi: 10.1016/j.engfracmech.2018.06.019
    [171] Yang S, Gu X, Xia X, et al. 2023. Explosion damage analysis of concrete structure with bond-associated non-ordinary state-based peridynamics. Engineering with Computers, 39(1): 607-624. doi: 10.1007/s00366-022-01620-x
    [172] Yang S, Gu X, Zhang Q, et al. 2021. Bond-associated non-ordinary state-based peridynamic model for multiple spalling simulation of concrete. Acta mechanica Sinica, 37(7): 1104-1135. doi: 10.1007/s10409-021-01055-5
    [173] Yang S, Li H, Du S, et al. 2025. Experiment and Peridynamics Simulation on Failure Mechanical Behavior of Cylindrical Sandstone Containing Two Persisting Fissures Under Conventional Triaxial Compression. Rock Mechanics and Rock Engineering, 58(3): 3129-3157. doi: 10.1007/s00603-024-04252-3
    [174] Yang S, Yang Z, Zhang P, et al. 2020. Experiment and peridynamic simulation on cracking behavior of red sandstone containing a single non-straight fissure under uniaxial compression. Theoretical and Applied Fracture Mechanics, 108: 102637. doi: 10.1016/j.tafmec.2020.102637
    [175] Yang X, Li F, Gao W, et al. 2023. A PDROD model of reinforced concrete based on peridynamics and rod elements. Engineering with Computers, 39(5): 3629-3650. doi: 10.1007/s00366-022-01774-8
    [176] Yang Z, Yang S, Chen M. 2020. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Computers and Geotechnics, 120: 103414. doi: 10.1016/j.compgeo.2019.103414
    [177] Yang Z, Yang S, Tian W. 2021. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments. International Journal of Rock Mechanics and Mining Sciences, 138: 104573. doi: 10.1016/j.ijrmms.2020.104573
    [178] Yao X, Huang D. 2022. Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing. Computers & Structures, 270: 106847.
    [179] Zhang G, Dai Z. 2024. A fully coupled thermomechanical peridynamic model for rock fracturing under blast loading considering initial pore damage. Computers and Geotechnics, 171: 106382. doi: 10.1016/j.compgeo.2024.106382
    [180] Zhang G, Gazonas G A, Bobaru F. 2018. Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A peridynamic analysis. International journal of impact engineering, 113: 73-87. doi: 10.1016/j.ijimpeng.2017.11.010
    [181] Zhang H, Liu L, Lai X, et al. 2022. Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials. Materials, 15(20): 7401. doi: 10.3390/ma15207401
    [182] Zhang H, Liu Y, Liu L, et al. 2022. Implementation of OpenMP Parallelization of Rate-Dependent Ceramic Peridynamic Model. Computer Modeling in Engineering & Sciences, 133(1): 195-217.
    [183] Zhang H, Qiao P. 2018. A coupled peridynamic strength and fracture criterion for open-hole failure analysis of plates under tensile load. Engineering Fracture Mechanics, 204: 103-118. doi: 10.1016/j.engfracmech.2018.09.037
    [184] Zhang J, Chu X, Yu M. 2022. Bond-based Cosserat peridynamic simulation of early-age fracture in cement-based materials. Theoretical and Applied Fracture Mechanics, 122: 103603. doi: 10.1016/j.tafmec.2022.103603
    [185] Zhang J, Guo L. 2023. A fully coupled thermo-mechanical peridynamic model for cracking analysis of frozen rocks. Computers and Geotechnics, 164: 105809. doi: 10.1016/j.compgeo.2023.105809
    [186] Zhang J, Guo L. 2024. Peridynamic investigation on crack propagation mechanism of rock mass during excavation of tunnel group in cold regions. Mechanics of advanced materials and structures, 31(14): 3061-3076. doi: 10.1080/15376494.2023.2169791
    [187] Zhang J, Liu Y, Lai X, et al. 2023. A Modified Bond-Associated Non-Ordinary State-Based Peridynamic Model for Impact Problems of Quasi-Brittle Materials. Materials, 16(11): 4050. doi: 10.3390/ma16114050
    [188] Zhang J, Zhou X. 2022. Fracture process zone (FPZ) in quasi-brittle materials: Review and new insights from flawed granite subjected to uniaxial stress. Engineering Fracture Mechanics, 274: 108795. doi: 10.1016/j.engfracmech.2022.108795
    [189] Zhang L, Ouyang D, Mao R, et al. 2024. A study on the damage characteristics of glass under the combined effects of explosion and high temperature: An analysis using peridynamics. Engineering Failure Analysis, 159: 108084. doi: 10.1016/j.engfailanal.2024.108084
    [190] Zhang M, Chen S, Ji J, et al. 2024. Mechanisms governing crack speed in peridynamic model. Engineering Fracture Mechanics, 305: 110201. doi: 10.1016/j.engfracmech.2024.110201
    [191] Zhang N, Chang R, Li Y, et al. 2025. Parametric studies of ultra-high performance fiber-reinforced concrete components based on an efficient peridynamic modeling approach. Structures, 74: 108542. doi: 10.1016/j.istruc.2025.108542
    [192] Zhang T, Zhou X, Qian Q. 2022. The peridynamic Drucker‐Prager plastic model with fractional order derivative for the numerical simulation of tunnel excavation. International Journal for Numerical and Analytical Methods in Geomechanics, 46(9): 1620-1659. doi: 10.1002/nag.3361
    [193] Zhang X, Ding J, Zhang Y. 2023. A rate-dependent peridynamic model of reinforced concrete subjected to explosive loading. Engineering fracture mechanics, 292: 109666. doi: 10.1016/j.engfracmech.2023.109666
    [194] Zhang X, Ding J, Zhang Y. 2024. An improved peridynamic model for mechanical behavior of steel-concrete interface. Engineering Fracture Mechanics, 306: 110263. doi: 10.1016/j.engfracmech.2024.110263
    [195] Zhang Y, Deng H, Deng J, et al. 2019. Peridynamics simulation of crack propagation of ring-shaped specimen like rock under dynamic loading. International Journal of Rock Mechanics and Mining Sciences, 123: 104093. doi: 10.1016/j.ijrmms.2019.104093
    [196] Zhang Y, Deng H, Deng J, et al. 2020. Peridynamic simulation of crack propagation of non-homogeneous brittle rock-like materials. Theoretical and applied fracture mechanics, 106: 102438. doi: 10.1016/j.tafmec.2019.102438
    [197] Zhang Y, Deng J, Deng H, et al. 2018. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting. International Journal of Damage Mechanics, 28(7): 1038-1052.
    [198] Zhang Y, Huang D, Cai Z, et al. 2020. An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing. Engineering Fracture Mechanics, 234: 107086. doi: 10.1016/j.engfracmech.2020.107086
    [199] Zhang Y, Liu C, Deng H, et al. 2022. Peridynamic Simulation of Heterogeneous Rock Based on Digital Image Processing and Low-Field Nuclear Magnetic Resonance Imaging. International Journal of Geomechanics, 22(6).
    [200] Zhang Y, Liu C, Xiong X, et al. 2024. A coupled thermomechanical peridynamic correspondence model for damage prediction in a freezing rock. Computers and Geotechnics, 166: 105995. doi: 10.1016/j.compgeo.2023.105995
    [201] Zhang Y, Qiao P. 2019. A new bond failure criterion for ordinary state-based peridynamic mode II fracture analysis. International Journal of Fracture, 215(1-2): 105-128. doi: 10.1007/s10704-018-00341-x
    [202] Zhang Y, Wang Q, Oterkus S, et al. 2023. Numerical investigation of ice plate fractures upon rigid ball impact. Ocean Engineering, 287: 115824. doi: 10.1016/j.oceaneng.2023.115824
    [203] Zhang Y, Yang X, Wang X, et al. 2021. A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theoretical and Applied Fracture Mechanics, 113: 102930. doi: 10.1016/j.tafmec.2021.102930
    [204] Zhang Y, Yu S, Deng H. 2023. Peridynamic model of deformation and failure for rock material under the coupling effect of multi-physical fields. Theoretical and Applied Fracture Mechanics, 125: 103912. doi: 10.1016/j.tafmec.2023.103912
    [205] Zhao J, Chen Z, Mehrmashhadi J, et al. 2020. A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete. Engineering fracture mechanics, 229: 106969. doi: 10.1016/j.engfracmech.2020.106969
    [206] Zhao J, Lu G, Zhang Q, et al. 2021. Modelling of Contact Damage in Brittle Materials Based on Peridynamics. Computer Modeling in Engineering & Sciences, 129(2): 519-539.
    [207] Zheng J, Shen F, Gu X, et al. 2022. Simulating failure behavior of reinforced concrete T-beam under impact loading by using peridynamics. International Journal of Impact Engineering, 165: 104231. doi: 10.1016/j.ijimpeng.2022.104231
    [208] Zhou L, Zhu S, Zhu Z, et al. 2022. Improved peridynamic model and its application to crack propagation in rocks. Royal Society Open Science(No. 10): 221013.
    [209] Zhou L, Zhu S, Zhu Z. 2023. Cosserat ordinary state-based peridynamic model and numerical simulation of rock fracture. Computers and Geotechnics, 155: 105240. doi: 10.1016/j.compgeo.2022.105240
    [210] Zhou L, Zhu Z. 2024. A coupled thermo-mechanical peridynamic model for fracture behavior of granite subjected to heating and water-cooling processes. Journal of Rock Mechanics and Geotechnical Engineering, 16(6): 2006-2018. doi: 10.1016/j.jrmge.2023.07.021
    [211] Zhou X P X P, Shou Y D. 2017. Numerical Simulation of Failure of Rock-Like Material Subjected to Compressive Loads Using Improved Peridynamic Method. International Journal of Geomechanics(No. 3): 1-12.
    [212] Zhou X, Du E, Wang Y. 2022. Thermo-hydro-chemo-mechanical coupling peridynamic model of fractured rock mass and its application in geothermal extraction. Computers and Geotechnics, 148: 104837. doi: 10.1016/j.compgeo.2022.104837
    [213] Zhou X, Gu X, Wang Y. 2015. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks. International Journal of Rock Mechanics and Mining Sciences, 80: 241-254. doi: 10.1016/j.ijrmms.2015.09.006
    [214] Zhou X, Wang Y. 2016. Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics. International Journal of Rock Mechanics and Mining Sciences, 89: 235-249. doi: 10.1016/j.ijrmms.2016.09.010
    [215] Zhou X, Wang Y. 2021. State-of-the-Art Review on the Progressive Failure Characteristics of Geomaterials in Peridynamic Theory. Journal of Engineering Mechanics(No. 1): 0.
    [216] Zhou X, Wang Y, Qian Q. 2016. Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. European Journal of Mechanics - A/Solids, 60: 277-299. doi: 10.1016/j.euromechsol.2016.08.009
    [217] Zhou X, Wang Y, Shou Y. 2020. Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks. International Journal of Rock Mechanics and Mining Sciences, 132: 104383. doi: 10.1016/j.ijrmms.2020.104383
    [218] Zhou X, Wang Y, Xu X. 2016. Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. International journal of fracture, 201(2): 213-234. doi: 10.1007/s10704-016-0126-6
    [219] Zhou Z, Li Z, Gao C, et al. 2021. Peridynamic micro-elastoplastic constitutive model and its application in the failure analysis of rock masses. Computers and Geotechnics, 132: 104037. doi: 10.1016/j.compgeo.2021.104037
    [220] Zhu F, Zhao J. 2021. Peridynamic modelling of blasting induced rock fractures. Journal of the Mechanics and Physics of Solids, 153: 104469. doi: 10.1016/j.jmps.2021.104469
    [221] Zhu F, Zhao J, Ballarini R, et al. 2022. Peridynamic modeling of stochastic fractures in bolted glass plates. Mechanics Research Communications, 122: 103890. doi: 10.1016/j.mechrescom.2022.103890
    [222] Zhu Q, Ni T. 2017. Peridynamic formulations enriched with bond rotation effects. International journal of engineering science, 121: 118-129. doi: 10.1016/j.ijengsci.2017.09.004
    [223] 何德威, 黄丹, 徐业鹏. 2022. 基于态型近场动力学的淬火陶瓷破坏过程分析. 计算力学学报, 39(4): 512-517 (He D, Huang D, Xu Y. 2022. Analysis on failure of quenching ceramics using state-based peridynamics. Chinese Journal of Computational Mechanics, 39(4): 512-517)).

    He D, Huang D, Xu Y. 2022. Analysis on failure of quenching ceramics using state-based peridynamics. Chinese Journal of Computational Mechanics, 39(4): 512-517).
    [224] 吴攀, 周志昆, 陈子光. 2022. 混凝土梁三点弯曲断裂模式转变的近场动力学模拟. 固体力学学报, 43(5): 614-624 (Wu P, Zhou Z, Chen Z. 2022. Fracture Mode Transition in Three-point Bending of Concrete Beams: A Peridynamic Investigation. Chinese Journal of Solid Mechanics, 43(5): 614-624)).

    Wu P, Zhou Z, Chen Z. 2022. Fracture Mode Transition in Three-point Bending of Concrete Beams: A Peridynamic Investigation. Chinese Journal of Solid Mechanics, 43(5): 614-624).
    [225] 张皓然. 2022. 陶瓷/金属复合结构抗侵彻近场动力学仿真方法研究. , 武汉理工大学, 武汉 (Zhang H. 2022. Study on peridynamics simulation method of anti-penetration of ceramic/metal composite structures. Wuhan: Wuhan University of Technology)).

    Zhang H. 2022. Study on peridynamics simulation method of anti-penetration of ceramic/metal composite structures. Wuhan: Wuhan University of Technology).
    [226] 李松波, 王志良, 申林方, 华涛, 李泽. 2024. 基于近场动力学方法的玻璃板冲击破坏数值模拟研究. 振动与冲击, 43(8): 294-302 (Li S, Wang Z, Shen L, Hua T, Li Z. 2024. Numerical simulation of glass panel impact damage based on peridynamics. Journal of Vibration and Shock, 43(8): 294-302)).

    Li S, Wang Z, Shen L, Hua T, Li Z. 2024. Numerical simulation of glass panel impact damage based on peridynamics. Journal of Vibration and Shock, 43(8): 294-302).
    [227] 武立伟, 马启鹏, 黄丹. 2023. 饱和混凝土冲击破坏的近场动力学建模分析. 振动与冲击, 42(1): 28-37 (Wu L, Ma Q, Huang D. 2023. Near field dynamic modeling of saturated concrete impact failure. Journal of Vibration and Shock, 42(1): 28-37)).

    Wu L, Ma Q, Huang D. 2023. Near field dynamic modeling of saturated concrete impact failure. Journal of Vibration and Shock, 42(1): 28-37).
    [228] 沈峰, 章青, 顾鑫. 2019. 弹丸侵彻混凝土靶板破坏过程的近场动力学模拟. 重庆大学学报, 42(1): 64-69 (Shen F, Zhang Q, Gu X. 2019. Peridynamics modeling for projectile penetrating into concrete. Journal of Chongqing University (Natural Science Edition), 42(1): 64-69)).

    Shen F, Zhang Q, Gu X. 2019. Peridynamics modeling for projectile penetrating into concrete. Journal of Chongqing University (Natural Science Edition), 42(1): 64-69).
    [229] 王帅, 刘宁, 周飞. 2019. 陶瓷靶板冲击破坏近场动力学研究. 兵器装备工程学报, 40(7): 30-34 (Wang S, Liu N, Zhou F. 2019. Peridynamics Study on Impact Damage of Ceramic Target Plate. Journal of Ordnance Equipment Engineering, 40(7): 30-34)).

    Wang S, Liu N, Zhou F. 2019. Peridynamics Study on Impact Damage of Ceramic Target Plate. Journal of Ordnance Equipment Engineering, 40(7): 30-34).
    [230] 王木飞, 李志强, 张英杰. 2022. 爆炸载荷作用下夹层玻璃动态响应的近场动力学数值模拟. 太原理工大学学报, 53(5): 869-876 (Wang M, Li Z, Zhang Y. 2022. Peridynamic Simulation of Dynamic Responses of Laminated Glass under Explosion Loading. Journal of Taiyuan University of Technology, 53(5): 869-876)).

    Wang M, Li Z, Zhang Y. 2022. Peridynamic Simulation of Dynamic Responses of Laminated Glass under Explosion Loading. Journal of Taiyuan University of Technology, 53(5): 869-876).
    [231] 秦洪远, 黄丹, 章青. 2017. 混凝土复合型裂纹扩展的非局部近场动力学建模分析. 计算力学学报, 34(3): 274-279 (Qin H, Huang D, Zhang Q. 2017. Non-local peridynamic modelling of mixed-mode fracture of concrete. Chinese Journal of Computational Mechanics, 34(3): 274-279)).

    Qin H, Huang D, Zhang Q. 2017. Non-local peridynamic modelling of mixed-mode fracture of concrete. Chinese Journal of Computational Mechanics, 34(3): 274-279).
    [232] 胡晓东, 齐欣, 赵仕兴, 张丽君, 余志祥. 2023. 基于近场动力学的落锤冲击PVB夹层玻璃数值模拟. 建筑结构, 53(7): 90-97 (Hu X, Xin Q, Zhao S, Zhang L, Yu Z. 2023. Numerical simulation of drop hanImer impact on PVB laminated glass based On peridynamics. Building Structure, 53(7): 90-97)).

    Hu X, Xin Q, Zhao S, Zhang L, Yu Z. 2023. Numerical simulation of drop hanImer impact on PVB laminated glass based On peridynamics. Building Structure, 53(7): 90-97).
    [233] 蒋雷雷, 沈克纯, 潘光, 黄毅华. 2024. 基于态基近场动力学的碳化硅陶瓷圆柱壳体断裂损伤分析1. 力学学报, 56(4): 991-1005 (Jiang L, Shen K, Pan G, Huang Y. 2024. Fracture Damage Analysis of Silicon Carbide Ceramic Cylinderical Shells based on State-based Peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 56(4): 991-1005)).

    Jiang L, Shen K, Pan G, Huang Y. 2024. Fracture Damage Analysis of Silicon Carbide Ceramic Cylinderical Shells based on State-based Peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 56(4): 991-1005).
    [234] 顾鑫, 章青, 黄丹. 2016. 基于近场动力学方法的混凝土板侵彻问题研究. 振动与冲击, 35(6): 52-58 (Gu X, Zhang Q, Huang D. 2016. Peridynamics used in solving penetration problem of concrete slabs. Journal of Vibration and Shock, 35(6): 52-58)).

    Gu X, Zhang Q, Huang D. 2016. Peridynamics used in solving penetration problem of concrete slabs. Journal of Vibration and Shock, 35(6): 52-58).
    [235] 马鹏飞, 李树忱, 袁超, 周慧颖, 王曼灵, 王修伟. 2021. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟. 岩土工程学报, 43(6): 1109-1117 (Ma P, Li S, Yuan C, Zhou H, Wang M, Wang X. 2021. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion. Chinese Journal of Geotechnical Engineering, 43(6): 1109-1117)).

    Ma P, Li S, Yuan C, Zhou H, Wang M, Wang X. 2021. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion. Chinese Journal of Geotechnical Engineering, 43(6): 1109-1117).
    [236] 黄小华, 李双, 金艳丽, 叶兆青. 2020. 冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析. 振动与冲击, 39(20): 204-215 (HUANG X, Li S, Jin Y, Ye Z. 2020. Effect of Poisson's ratio on the fracture of brittle materials under impact loading via peridynamics. Journal of Vibration and Shock, 39(20): 204-215)).

    HUANG X, Li S, Jin Y, Ye Z. 2020. Effect of Poisson's ratio on the fracture of brittle materials under impact loading via peridynamics. Journal of Vibration and Shock, 39(20): 204-215).
  • 加载中
图(8)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 录用日期:  2014-03-04
  • 网络出版日期:  2014-05-06

目录

    /

    返回文章
    返回