留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声学黑洞结构应用中的力学问题

季宏丽 黄薇 裘进浩 成利

季宏丽, 黄薇, 裘进浩, 成利. 声学黑洞结构应用中的力学问题[J]. 力学进展, 2017, 47(1): 333-384. doi: 10.6052/1000-0992-16-033
引用本文: 季宏丽, 黄薇, 裘进浩, 成利. 声学黑洞结构应用中的力学问题[J]. 力学进展, 2017, 47(1): 333-384. doi: 10.6052/1000-0992-16-033
JI Hongli, HUANG Wei, QIU Jinhao, CHENG Li. Mechanics problems in application of acoustic black hole structures[J]. Advances in Mechanics, 2017, 47(1): 333-384. doi: 10.6052/1000-0992-16-033
Citation: JI Hongli, HUANG Wei, QIU Jinhao, CHENG Li. Mechanics problems in application of acoustic black hole structures[J]. Advances in Mechanics, 2017, 47(1): 333-384. doi: 10.6052/1000-0992-16-033

声学黑洞结构应用中的力学问题

doi: 10.6052/1000-0992-16-033
详细信息
    通讯作者:

    裘进浩, 南京航空航天大学教授, 博士生导师, 国家“千人计划”特聘专家, 教育部长江学者特聘教授, 美国机械工程学会会士(ASME Fellow). 1983和1986年分别于南京航空航天大学获得工学学士和工学硕士学位, 1996年获日本东北大学工学博士学位. 2004年晋升为日本东北大学教授, 是日本七所帝国大学第一位华人正教授. 2005年5月至7月任法国里昂国立应用科学技术学院(INSA-Lyon) 特聘教授. 2006年受聘于2005年度教育部长江学者特聘教授并回南京航空航天大学任教, 现任机械结构力学与控制国家重点实验室副主任, 并享受国务院特殊津贴.长期从事智能材料与结构研究, 包括结构的振动与噪声控制、流动控制、结构健康监测、能量回收、自适应结构、压电器件的精密传感与驱动技术等.自2006年作为项目首席承担了国家973计划, 国家自然科学基金重点项目, 国家863项目, 教育部重大培育基金, 江苏省攀登项目, 以及总装预研等多个研究项目.在国内外核心期刊上发表论文300余篇, 在国际会议上发表论文260余篇, 其中230余篇被SCI收录.申请国家发明专利70余项, 30余项已获授权.目前担任J. Intell. Mat. Syst. Struct., Int. J. Appl. Electromagnet. Mech., Int. J. of Aeron. Space Sci., Frontier of Mech. Eng.等多个国际学术刊物的副主编和编委.E-mail: qiu@nuaa.edu.cn

  • 中图分类号: TB535

Mechanics problems in application of acoustic black hole structures

More Information
    Corresponding author: QIU Jinhao
  • 摘要: 声学黑洞(acoustic black hole, ABH) 效应是利用薄壁结构几何参数或者材料特性参数的梯度变化, 使波在结构中的传播速度逐渐减小, 理想情况下波速减小至零从而不发生反射的现象.实现声学黑洞效应的主要方法是将薄板结构的厚度按照一定规律裁剪, 利用声学黑洞可以将结构中传播的波动能量聚集在特定的位置.声学黑洞对波的聚集具有宽频高效、实现方法简单灵活等特点, 在薄壁结构的减振降噪、能量回收等应用中具有明显的优势.本文介绍声学黑洞效应的基本原理、相关力学问题的研究进展和有待进一步探究的问题, 包括声学黑洞结构的建模与分析方法、实验研究方法及进展、声学黑洞结构中波的传播与操控, 以及声学黑洞在工程应用中的相关问题.

     

  • 图  1  一维声学黑洞结构中弹性波的传播

    图  2  内嵌于薄板结构中的二维声学黑洞

    图  3  典型的一维声学黑洞结构的楔形边缘

    图  4  两侧附着阻尼材料的有截断的一维声学黑洞结构

    图  5  声学黑洞区域覆盖不同厚度的阻尼层时反射系数随截断长度的变化规律

    图  6  阻尼层的弹性模量对反射系数的影响

    图  7  弯曲波倾斜入射到声学黑洞楔形边缘

    图  8  局部区域覆盖了阻尼层的声学黑洞结构的截面示意图

    图  9  反射系数R1与激励频率之间的关系(实线:厚度700 μm的阻尼层; 点虚线:厚度10 μm的阻尼层; 虚线:黑洞区域不贴阻尼层; 点线:无声学黑洞的均匀梁结构粘贴厚度700 μm的阻尼层) (Georgiev et al. 2011)

    图  10  一维声学黑洞结构中弹性波的传播

    图  11  厚度变化的阻尼材料对系统阻尼损失因子的影响, 厚度均匀的阻尼材料对应厚度为hd=0.005 cm, 阻尼材料分布的位置为xd=1~2 cm (Tang et al. 2016)

    图  12  阻尼层的刚度对系统响应的影响

    图  13  二维声学黑洞结构中弯曲波射线示意图

    图  14  声学黑洞结构h(r)=εrm中的弯曲波传播轨迹. (a) m=2, (b) m=3

    图  15  圆形声学黑洞板(移除其中的一部分为显示厚度的变化规律)

    图  16  圆形声学黑洞板的截面示意图

    图  17  特定频率下的位移响应. (a) f=0.22 kHz, (b) f=1.85 kHz, (c) f=3.74 kHz, (d) f=0.49 kHz, (e) f=1.20 kHz, (f) f=2.20 kHz, (g) f=0.98 kHz, (h) f=1.90 kHz, (i) f=3.10 kHz (O'Boy & Krylov 2011)

    图  18  带黑洞的圆板和不带黑洞环板在同一点处的机械导纳w˙ (Rm, θ=0, ω)/p (Rf) 的比较(O'Boy & Krylov 2011)

    图  19  (a) 辐射声功率在频域上的幅值, (b) 对应的结构表面加速度(其中黑色实线表示均匀板, 红色虚线为25个周期排布声学黑洞的板结构) (声学黑洞由于截断会在中心形成小孔) (Conlon et al. 2015b)

    图  20  (a) 模态损失因子, (b) 周期排布25个声学黑洞时板结构辐射声功率的幅频特性(其中黑色实线表示声学黑洞中心圆孔较大的情况, 红色虚线表示声学黑洞中心圆孔(ABH-SH) 较小的情况) (Conlon et al. 2015)

    图  21  (a) 数值仿真模型: (a1) 声学黑洞结构, (a2) 声学黑洞与阻尼材料(ABH-Damp) 结合, (a3) 声学黑洞与阻尼材料和动力吸振器(ABH-DVA) 结合; (b) 数值仿真结果(Jia et al. 2015)

    图  22  二维声学黑洞板结构的位移场. (a) 声学黑洞结构h=ε(r -r1)2 + h1, (b) 声学黑洞结构h=εr2

    图  23  非完美声学黑洞结构中不同截面位置上功率流随时间的变化

    图  24  内嵌二维声学黑洞的椭圆板的弯曲振动模型

    图  25  实验测量所得椭圆形板的速度场对比图. (a) 不含声学黑洞的椭圆板(8 671 Hz), (b) 含有声学黑洞的椭圆板(8 117 Hz)

    图  26  实验测量所得椭圆形板的点导纳对比图, 实线表示含声学黑洞并粘贴阻尼材料, 虚线表示不含声学黑洞但在同一位置粘贴同样面积的阻尼材料, 点划线表示不含声学黑洞但在整个试件上粘贴阻尼材料(Georgiev et al. 2011)

    图  27  结构的机械导纳. (a) 不含声学黑洞的结构, (b) 含有声学黑洞的结构(O'Boy & Krylov 2011)

    图  28  (a) 含有6个二维声学黑洞的板结构, (b) 板结构的加速度响应(实线为含有6个二维声学黑洞的板结构, 虚线为厚度均匀分布的板)

    图  29  (a) 复合材料蜂窝板, (b) 不同的声学黑洞截面示意图

    图  30  热效应声学黑洞结构实验设备示意图

    图  31  (a) 光学实验系统, (b) 测量结果

    图  32  激光超声实验系统

    图  33  激光超声实验测量的不同时刻的波场

    图  34  四种涡轮叶片试件. (a) 未扭曲的参考叶片, (b) 未扭曲含有一维声学黑洞边缘的叶片, (c) 扭曲的参考叶片, (d) 扭曲含有一维声学黑洞边缘的叶片

    图  35  四种涡轮叶片试件上的流动显示图. (a) 未扭曲的参考叶片, (b) 未扭曲含有一维声学黑洞边缘的叶片, (c) 未扭曲含有一维声学黑洞边缘的叶片边缘粘贴普通阻尼材料, (d) 未扭曲含有一维声学黑洞边缘的叶片边缘粘贴阻尼材料(该材料还原了参考叶片的几何外形)

    图  36  尖端直径按照幕函数形式减小的杆(尖端粘贴吸收材料)

    图  37  一维声学黑洞内嵌于网球拍的拍柄中

    图  38  汽车的引擎外壳结合二维声学黑洞板的样品图

    图  39  人工耳蜗实验设备

    图  40  (a) 声学黑洞管道结构示意图, (b) 实物图

    图  41  一维声学黑洞结构中弯曲波聚集而形成高能量密度区域

    图  42  在结构中等间距排布5个声学黑洞, 并在厚度变化区域粘贴压电换能器

    图  43  能量回收效果的数值计算结果图

    图  44  机电糯合模型

  • [1] 阚君武, 唐可洪, 王淑云, 杨志刚, 贾杰, 曾平. 2008.压电悬臂梁发电装置的建模与仿真分析.光学精密工程, 16: 71 http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200801015.htm

    Kan J W, Tang K H, Wang S Y, Yang Z G, Jia J, Zeng P. 2008. Modeling and siulation of piezoelectric cantilever generators. Optics and Precision Engineering, 16: 71. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200801015.htm
    [2] 赵娟, 刘伟群, 刘永斌, 冯志华. 2010.压电等应变梁能量回收装置研究.压电与声光, 32: 406-409 http://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201003021.htm

    Zhao J, Liu W Q, Liu Y B, Feng Z H. 2010. Research on uniform-stain piezoelectric energy harvesting mechanicsm. Piezoelectrics & Acoustooptics, 32: 406-409. http://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201003021.htm
    [3] Bailey C D. 1978. Direct analytical solutions to non-uniform beam problems. Journal of Sound and Vibration, 56: 501-507. doi: 10.1016/0022-460X(78)90292-4
    [4] Bayod J J. 2011. Experimental study of vibration damping in a modifled elastic wedge of power-law proflle. Journal of Vibration and Acoustics, 133: 061003. doi: 10.1115/1.4003591
    [5] Bowyer E P, Krylov V V. 2012. Sound radiation of rectangular plates containing tapered indentations of power-law proflle//Proceedings of Meetings on Acoustics. Kansas City, Missouri, Acoustical Society of America through the American Institute of Physics, 18: 030002-030002.
    [6] Bowyer E P, Krylov V V. 2014a. Damping of flexural vibrations in turbofan blades using the acoustic black hole efiect. Applied Acoustics, 76: 359-365. doi: 10.1016/j.apacoust.2013.09.009
    [7] Bowyer E P, Krylov V V. 2014b. Experimental investigation of damping flexural vibrations in glass flbre composite plates containing one-and two-dimensional acoustic black holes. Composite Structures, 107: 406-415. doi: 10.1016/j.compstruct.2013.08.011
    [8] Bowyer E P, Krylov V V. 2015a. Experimental study of sound radiation by plates containing circular indentations of power-law proflle. Applied Acoustics, 88: 30-37. doi: 10.1016/j.apacoust.2014.07.014
    [9] Bowyer E P, Krylov V V. 2015b. A review of experimental investigations into the acoustic black hole efiect and its applications for reduction of flexural vibrations and structure-borne sound.
    [10] Bowyer E P, Krylov V V, O'Boy D J. 2012a. Damping of flexural vibrations in rectangular plates by slots of power-law froflle//Proceedings of the Acoustics 2012 Nantes Conference. Nantes, France: 2187-2192.
    [11] Bowyer E P, Krylov V V, O'Boy D J. 2012b. Damping of flexural vibrations in rectangular plates by slots of power-law proflle//Acoustics 2012.
    [12] Bowyer E P, Lister J, Krylov V V, O'Boy D J. 2012. Experimental study of damping flexural vibrations in tapered turbofan blades//Acoustics 2012.
    [13] Bowyer E P, Nash P, Krylov V V. 2013. Damping of flexural vibrations in glass flbre composite plates and honeycomb sandwich panels containing indentations of power-law proflle. Acoustical Society of America, 18: 030004.
    [14] Bowyer E P, O'Boy D J, Krylov V V. 2012. Damping of flexural vibrations in composite plates and panels containing one-and two-dimensional acoustic black holes//Acoustics 2012.
    [15] Bowyer E P, O'Boy D J, Krylov V V, Gautier F. 2010. Experimental investigation of damping flexural vibrations using two-dimensional acoustic "black holes"//Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, Belgium, 1181-1192.
    [16] Bowyer E P, O'Boy D J, Krylov V V, Gautier F. 2013. Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law proflle. Applied Acoustics, 74: 553-560. doi: 10.1016/j.apacoust.2012.10.004
    [17] Bowyer E P, O'Boy D J, Krylov V V, Horner J L. 2012. Efiect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law proflle. Applied Acoustics, 73: 514-523. doi: 10.1016/j.apacoust.2011.12.010
    [18] Cheng L. 1996. Vibroacoustic modeling of mechanically coupled structures: Artiflcial spring technique applied to light and heavy mediums. Shock and Vibration, 3: 193-200. doi: 10.1155/1996/343429
    [19] Cheng L, Lapointe R. 1995. Vibration attenuation of panel structures by optimally shaped viscoelastic coating with added weight considerations. Thin-walled structures, 21: 307-326. doi: 10.1016/0263-8231(95)93617-U
    [20] Climente A, Torrent D, Sáanchez-Dehesa J. 2014. Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters, 105: 064101. doi: 10.1063/1.4893153
    [21] Climente A, Torrent D, Sáanchez-Dehesa J. 2013. Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114: 214903. doi: 10.1063/1.4839375
    [22] Conlon S C, Fahnline J B, Semperlotti F, Feurtado P A. 2014. Enhancing the low frequency vibration reduction performance of plates with embedded acoustic black holes. Inter-noise and Noise-con Congress and Conference Proceedings InterNoise14, Australia, 175-182.
    [23] Conlon S C, Fahnline J B, Semperlotti F. 2015a. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes. J Acoust Soc Am, 137: 447-457. doi: 10.1121/1.4904501
    [24] Conlon S C, Fahnline J B, Shepherd M R, Feurtado P A. 2015b. Vibration control using grids of Acoustic Black Holes: How many is enough.
    [25] Conway H. 1958. Some special solutions for the flexural vibration of discs of varying thickness. Archive of Applied Mechanics, 26: 408-410.
    [26] Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V. 2012. Piezoelectric buckled beams for random vibration energy harvesting. Smart materials and structures, 21: 035021. doi: 10.1088/0964-1726/21/3/035021
    [27] Denis V, Gautier F, Pelat A, Poittevin J. 2015. Measurement and modelling of the reflection coe-cient of an Acoustic Black Hole termination. Journal of Sound and Vibration, 349: 67-79. doi: 10.1016/j.jsv.2015.03.043
    [28] Denis V, Pelat A, Gautier F, Elie B. 2014. Modal Overlap Factor of a beam with an acoustic black hole termination. Journal of Sound and Vibration, 333: 2475-2488. doi: 10.1016/j.jsv.2014.02.005
    [29] Dubois M, Farhat M, Bossy E, Enoch S, Guenneau S, Sebbah P. 2013. Flat lens for pulse focusing of elastic waves in thin plates. Applied Physics Letters, 103: 071915. doi: 10.1063/1.4818716
    [30] El-Ouahabi A A, Krylov V V, O'Boy D J. 2015. Investigation of the acoustic black hole termination for sound waves propagating in cylindrical waveguides//Inter-noise and Noise-con Congress and Conference Proceedings, Institute of Noise Control Engineering.
    [31] Elishakofi I. 2000. Axisymmetric vibration of inhomogeneous clamped circular plates: an unusual closedform solution. Journal of Sound and Vibration, 233: 723-734. doi: 10.1006/jsvi.1999.2825
    [32] Erturk A, Inman D. 2011a. Broadband piezoelectric power generation on high-energy orbits of the bistable Du-ng oscillator with electromechanical coupling. Journal of Sound and Vibration, 330: 2339-2353. doi: 10.1016/j.jsv.2010.11.018
    [33] Erturk A, Inman D J. 2011b. Piezoelectric Energy Harvesting. John Wiley & Sons.
    [34] Fíelix S, Pagneux V. 2002. Multimodal analysis of acoustic propagation in three-dimensional bends. Wave Motion, 36: 157-168. doi: 10.1016/S0165-2125(02)00009-4
    [35] Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X. 2006. Ultrasonic metamaterials with negative modulus. Nature materials, 5: 452-456. doi: 10.1038/nmat1644
    [36] Foucaud S, Michon G, Gourinat Y, Pelat A, Gautier F. 2012. Immersed acoustic black hole as a travelling wave absorber: understanding artiflcial cochlear mechanics//Acoustics 2012.
    [37] Gang W, Li H S, Yao Z L, Ji H W. 2006. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chinese Physics, 15: 1843. doi: 10.1088/1009-1963/15/8/036
    [38] Gautier F, Moulet M H, Pascal J C. 2006. Reflection, transmission and coupling of longitudinal and flexural waves at beam junctions. Part Ⅰ: measurement methods. Acta Acustica United with Acustica, 92: 982-997.
    [39] Georgiev V, Cuenca J, Bermudez M M, Gautier F, Simon L. 2010. Recent progress in vibration reduction using Acoustic Black Hole efiect//10ème Congrès Françcais d'Acoustique.
    [40] Georgiev V B, Cuenca J, Gautier F, Simon L, Krylov V V. 2011. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole efiect. Journal of Sound and Vibration, 330: 2497-2508. doi: 10.1016/j.jsv.2010.12.001
    [41] Georgiev V B, Cuenca J, Moleron Bermudez M, Gautier F, Simon L, Krylov V V. 2009. Numerical and experimental investigation of the acoustic black hole efiect for vibration damping in beams and elliptical plates//Euronoise 2009, Edinburgh, Scotland.
    [42] Hou T, Qin H. 2012. Continuous and discrete Mexican hat wavelet transforms on manifolds. Graphical Models, 74: 221-232. doi: 10.1016/j.gmod.2012.04.010
    [43] Huang W, Ji H, Qiu J, Cheng L. 2016. Wave energy focalization in a plate with imperfect two-dimensional acoustic black hole indentation. Journal of Vibration and Acoustics, 138: 061004. doi: 10.1115/1.4034080
    [44] Jain R. 1972. Vibrations of circular plates of variable thickness under an inplane force. Journal of Sound and Vibration, 23: 407-414. doi: 10.1016/0022-460X(72)90499-3
    [45] Jia X, Du Y, Zhao K. 2015. Vibration control of variable thickness plates with embedded acoustic black holes and dynamic vibration absorbers//ASME 2015 Noise Control and Acoustics Division Conference at InterNoise 2015, American Society of Mechanical Engineers.
    [46] Kobayashi H, Sonoda K. 1991. Vibration and buckling of tapered rectangular plates with two opposite edges simply supported and the other two edges elastically restrained against rotation. Journal of Sound and Vibration, 146: 323-337. doi: 10.1016/0022-460X(91)90766-D
    [47] Kralovic V, Bowyer E P, Krylov V V, O'Boy D J. 2009. Experimental study on damping of flexural waves in rectangular plates by means of one-dimensional acoustic "Black Holes"//14th International Acoustic Conference.
    [48] Kralovic V, Krylov V V. 2007. Damping of flexural vibrations in tapered rods of power-law proflle: Experimental studies. Proceeding of the Institute of Acoustics, 29: 66-73.
    [49] Kravchun P. 1991. Generation and Methods of Reduction of Noise and Vibration. Moscow: Moscow University Press.
    [50] Krvlov V V. 1990a. Localized acoustic modes of a quadratic solid wedge. Physies Billelin, 45: 65-69.
    [51] Krylov V V. 1989. Conditions for validity of the geometrical-acoustics approximation in application to waves in an acute-angle solid wedge. Soviet Physics -Acoustics, 35: 176-180.
    [52] Krylov V V. 1990b. Geometrical-acoustics approach to the description of localized vibrational modes of an elastic solid wedge. Sovjet Physics-Technical Physics, 25: 137-140.
    [53] Krylov V V. 1995. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization. Applied Physics A, 61: 229-236. doi: 10.1007/BF01538187
    [54] Krylov V V. 1997. On the velocities of localized vibration modes in immersed solid wedges. Journal of Acoustical Society of America, 103: 767.
    [55] Krylov V V. 1998. On the velocities of localized vibration modes in immersed solid wedges. The Journal of the Acoustical Society of America, 103: 767-770. doi: 10.1121/1.421240
    [56] Krylov V V. 2004. New type of vibration dampers utilising the efiect of acoustic black holes". Acta Acustica united with Acustica, 90: 830-837.
    [57] Krylov V V. 2007. Propagation of plate bending waves in the vicinity of one-and two-dimensional acoustic black hole//Proceedings of the ECCOMAS International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2007). Rethymno, Crete, Greece: CD-ROM.
    [58] Krylov V V. 2014. Acoustic black holes: Recent developments in the theory and applications. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 61: 1296-1306. doi: 10.1109/TUFFC.2014.3036
    [59] Krylov V V, Shuvalov A. 2000. Propagation of localised flexural vibrations along plate edges described by a power law. Proceedings of the Institute of Acoustics, 22: 263-270.
    [60] Krylov V V, Tilman F J B S. 2004. Acoustic "black holes" for flexural waves as efiective vibration dampers. Journal of Sound and Vibration, 274: 605-619. doi: 10.1016/j.jsv.2003.05.010
    [61] Krylov V V, Winward E. 2005. Experimental evidence of the acoustic black hole efiect for flexural waves in tapered plates//Proceedings of the 12th International Congress on Suond and Vibration, Lisbon, Portugal.
    [62] Krylov V V, Winward R E T B. 2007. Experimental investigation of the acoustic black hole efiect for flexural waves in tapered plates. Journal of Sound and Vibration, 300: 43-49. doi: 10.1016/j.jsv.2006.07.035
    [63] Liu H, Lee C, Kobayashi T, Tay C J, Quan C. 2012. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21: 035005. doi: 10.1088/0964-1726/21/3/035005
    [64] Liu Z, Chan C, Sheng P. 2005. Analytic model of phononic crystals with local resonances. Physical Review B, 71: 014103. doi: 10.1103/PhysRevB.71.014103
    [65] Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P. 2000. Locally resonant sonic materials. Science, 289: 1734-1736. doi: 10.1126/science.289.5485.1734
    [66] Lomonosov A M, Yan S L, Han B, Zhang H C, Shen Z H. 2015. Orbital-type trapping of elastic Lamb waves. Ultrasonics, 64: 58-67.
    [67] Mironov M. 1988. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a flnite interval. Amer Inst Physics Circulation Fulflllment Div, 500 Sunnyside Blvd, Woodbury, NY 11797-2999. 34: 318-319.
    [68] Mironov M, Pislyakov V. 2002. One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero. Acoustical Physics, 48: 347-352. doi: 10.1134/1.1478121
    [69] Narimanov E E, Kildishev A V. 2009. Optical black hole: Broadband omnidirectional light absorber. Applied Physics Letters, 95: 041106. doi: 10.1063/1.3184594
    [70] Neu J, Krolla B, Paul O, Reinhard B, Beigang R, Rahm M. 2010. Metamaterial-based gradient index lens with strong focusing in the THz frequency range. Optics express, 18: 27748-27757. doi: 10.1364/OE.18.027748
    [71] Ng S, Araar Y. 1989. Free vibration and buckling analysis of clamped rectangular plates of variable thickness by the Galerkin method. Journal of sound and vibration, 135: 263-274. doi: 10.1016/0022-460X(89)90725-6
    [72] O'Boy D, Bowyer E P, Krylov V V. 2010. Damping of flexural vibrations in thin plates using one and two dimensional acoustic black hole efiect//10th International Conference on Recent Advances in Structural Dynamics, Southampton, UK, 12-14 July.
    [73] O'Boy D J, Krylov V V. 2011. Damping of flexural vibrations in circular plates with tapered central holes. Journal of Sound and Vibration, 330: 2220-2236. doi: 10.1016/j.jsv.2010.11.017
    [74] O'Boy D J, Krylov V V, Kralovic V. 2010. Damping of flexural vibrations in rectangular plates using the acoustic black hole efiect. Journal of Sound and Vibration, 329: 4672-4688. doi: 10.1016/j.jsv.2010.05.019
    [75] Pekeris C. 1946. Theory of propagation of sound in a half-space of variable sound velocity under conditions of formation of a shadow zone. The Journal of the Acoustical Society of America, 18: 295-315. doi: 10.1121/1.1916366
    [76] Peng S Z, Pan J. 2004. Acoustical wave propagator for time-domain flexural waves in thin plates. The Journal of the Acoustical Society of America, 115: 467. doi: 10.1121/1.1639905
    [77] Qiu J, Tan J Y, Liu L H, Hsu P f. 2011. Infrared radiative properties of two-dimensional square optical black holes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112: 2584-2591. doi: 10.1016/j.jqsrt.2011.08.002
    [78] Ross, D, Ungar E E, Kerwin E M Jr. 1960. Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminae. Ruzicka, J.E. ed. Structural Damping, Oxford: Pergamon Press, 49-87.
    [79] Press, Oxford 1960, 49-87.Semperlotti F, Zhu H. 2015. Acoustic meta-structures based on periodic acoustic black holes. The Journal of the Acoustical Society of America, 137: 2265-2265.
    [80] Singh B, Saxena V. 1995. Axisymmetric vibration of a circular plate with double linear variable thickness. Journal of Sound and Vibration, 179: 879-897. doi: 10.1006/jsvi.1995.0059
    [81] Singh B, Saxena V. 1996. Axisymmetric vibration of a circular plate with exponential thickness variation. Journal of sound and vibration, 192: 35-42. doi: 10.1006/jsvi.1996.0174
    [82] Spadoni A, Ruzzene M, Cunefare K. 2009. Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. Journal of Intelligent Material Systems and Structures, 20: 979-990. doi: 10.1177/1045389X08100041
    [83] Taher H R D, Omidi M, Zadpoor A, Nikooyan A. 2006. Free vibration of circular and annular plates with variable thickness and difierent combinations of boundary conditions. Journal of Sound and Vibration, 296: 1084-1092. doi: 10.1016/j.jsv.2006.03.022
    [84] Tang L, Cheng L. 2016. Loss of acoustic black hole efiect in a structure of flnite size. Applied Physics Letters, 109: 014102. doi: 10.1063/1.4955127
    [85] Tang L, Yang Y, Soh C K. 2013. Broadband Vibration Energy Harvesting Techniques. Advances in Energy Harvesting Methods, Springer: 17-61.
    [86] Tang L, Zhang S, Ji H, Cheng L, Qiu J. 2016. Characterization of acoustic black hole efiect using a 1-D fully-coupled and wavelet-decomposed semi-analytical model. Journal of Sound and Vibration, 374: 172-184. doi: 10.1016/j.jsv.2016.03.031
    [87] Torrent D, Pennec Y, Djafari-Rouhani B. 2014. Omnidirectional refractive devices for flexural waves based on graded phononic crystals. Journal of Applied Physics, 116: 224902. doi: 10.1063/1.4903972
    [88] Torrent D, Sáanchez-Dehesa J. 2007. Acoustic metamaterials for new two-dimensional sonic devices. New journal of physics, 9: 323. doi: 10.1088/1367-2630/9/9/323
    [89] Vocca H, Neri I, Travasso F, Gammaitoni L. 2012. Kinetic energy harvesting with bistable oscillators. Applied Energy, 97: 771-776. doi: 10.1016/j.apenergy.2011.12.087
    [90] Wang G, Wang J, Chen S, Wen J. 2011. Vibration attenuations induced by periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits. Smart Materials and Structures, 20: 125019. doi: 10.1088/0964-1726/20/12/125019
    [91] Wang H, Chen L. 2011. A cylindrical optical black hole using graded index photonic crystals. Journal of Applied Physics, 109: 103104. doi: 10.1063/1.3590336
    [92] Wang X, Yang J, Xiao J. 1995. On free vibration analysis of circular annular plates with non-uniform thickness by the difierential quadrature method. Journal of Sound and Vibration, 184: 547-551. doi: 10.1006/jsvi.1995.0332
    [93] Wang Z, Norris A. 1995. Waves in cylindrical shells with circumferential submembers: a matrix approach. Journal of Sound and Vibration, 181: 457-484. doi: 10.1006/jsvi.1995.0152
    [94] Wu X M, Lin J H, Kato S, Zhang K, Ren T, Liu L T. 2008. A frequency adjustable vibration energy harvester. Proceedings of PowerMEMS, 245-248.
    [95] Wu Y, Qiu J, Chao Z, Zhu K, Ji H. 2014. A Method to Improve the Visibility of the Damage-Reflected Wave. Chinese Journal of Lasers, 41: 0308001-0308020.
    [96] Xiao Y, Wen J, Wen X. 2012. Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators. New Journal of Physics, 14: 033042. doi: 10.1088/1367-2630/14/3/033042
    [97] Yan S, Lomonosov A M, Shen Z. 2016. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole. Journal of Applied Physics, 119: 214902. doi: 10.1063/1.4953221
    [98] Yang J. 1993. The vibration of a circular plate with varying thickness. Journal of Sound and Vibration, 165: 178-184. doi: 10.1006/jsvi.1993.1251
    [99] Yu D, Liu Y, Wang G, Zhao H, Qiu J. 2006. Flexural vibration band gaps in Timoshenko beams with locally resonant structures. Journal of Applied Physics, 100: 124901. doi: 10.1063/1.2400803
    [100] Zhang C, Qiu J, Ji H. 2014. Laser ultrasonic imaging for impact damage visualization in composite structure//EWSHM-7th European Workshop on Structural Health Monitoring.
    [101] Zhang S, Yin L, Fang N. 2009. Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett, 102: 194301. doi: 10.1103/PhysRevLett.102.194301
    [102] Zhao L, Conlon S, Semperlotti F. 2015. Experimental veriflcation of energy harvesting performance in plate-like structures with embedded acoustic black holes//INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering.
    [103] Zhao L, Conlon S C, Semperlotti F. 2014. Broadband energy harvesting using acoustic black hole structural tailoring. Smart Materials and Structures, 23: 065021. doi: 10.1088/0964-1726/23/6/065021
    [104] Zhu H, Semperlotti F. 2015. Phononic thin plates with embedded acoustic black holes. Physical Review B, 91: 39-43.
  • 加载中
图(44)
计量
  • 文章访问数:  4848
  • HTML全文浏览量:  1399
  • PDF下载量:  1196
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-21
  • 网络出版日期:  2017-01-10
  • 刊出日期:  2017-02-24

目录

    /

    返回文章
    返回