留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子计算: 计算力学的新焦点

许永春 匡增涛 黄群 阳杰 胡衡

许永春, 匡增涛, 黄群, 阳杰, 胡衡. 量子计算: 计算力学的新焦点. 力学进展, 待出版 doi: 10.6052/1000-0992-24-039
引用本文: 许永春, 匡增涛, 黄群, 阳杰, 胡衡. 量子计算: 计算力学的新焦点. 力学进展, 待出版 doi: 10.6052/1000-0992-24-039
Xu Y C, Kuang Z T, Huang Q, Yang J, Hu H. Quantum computing: The new focus in computational mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-039
Citation: Xu Y C, Kuang Z T, Huang Q, Yang J, Hu H. Quantum computing: The new focus in computational mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-039

量子计算: 计算力学的新焦点

doi: 10.6052/1000-0992-24-039 cstr: 32046.14.1000-0992-24-039
基金项目: 国家科技部重点研发计划(2022YFE0113100)和国家自然科学基金项目(12432009, 11920101002, 12202322, 12172262)资助.
详细信息
    作者简介:

    胡衡, 宁夏大学教授, 武汉大学弘毅特聘客座教授. 主要从事计算固体力学与复合材料力学领域研究工作. 2006年获法国梅斯大学博士学位; 2007年在巴黎综合理工从事博士后研究工作; 2008至2023年任职武汉大学; 2024年入职宁夏大学. 入选教育部长江学者特聘教授, 主持国家自然科学基金重点项目、重点国际合作研究项目及国家重点研发计划重点专项等; 兼任Composite Structures联席主编(Co-Editor-in-Chief)、国际计算力学学会(IACM)理事、中国力学学会理事

    通讯作者:

    huheng@whu.edu.cn

  • 中图分类号: O302

Quantum computing: The new focus in computational mechanics

More Information
  • 摘要: 量子计算在算力上有望指数级超越经典计算, 然而亟需拓展实际应用场景. 计算力学应用场景丰富, 但面临多尺度、多物理场、极端环境等问题带来的算力挑战. 因此, 两者在算力和应用场景上的互补融合式发展前景广阔. 本文旨在梳理量子计算在计算力学中的应用现状, 并展望该领域未来的发展趋势.

     

  • 图  1  量子计算流程示意图(郭光灿 2022)

    图  2  编织型复合壳体的多尺度仿真对比(Kuang et al. 2025). (a) 量子计算增强的数据驱动计算均匀化方法. (b) 并发多尺度有限元方法

  • [1] 郭光灿. 2022. 颠覆: 迎接第二次量子革命. 北京: 科学出版社 (Guo G C. 2022. Subversion: Embracing the second quantum revolution. Beijing: Science Press).

    Guo G C. 2022. Subversion: Embracing the second quantum revolution. Beijing: Science Press.
    [2] Ali M, Kabel M. 2023. Performance study of variational quantum algorithms for solving the poisson equation on a quantum computer. Physical Review Applied, 20: 014054. doi: 10.1103/PhysRevApplied.20.014054
    [3] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F GSL, Buell D A. 2019. Quantum supremacy using a programmable superconducting processor. Nature, 574: 505-510. doi: 10.1038/s41586-019-1666-5
    [4] Bharadwaj S S, Sreenivasan K R. 2023. Hybrid quantum algorithms for flow problems. Proceedings of the National Academy of Sciences, 120: e2311014120. doi: 10.1073/pnas.2311014120
    [5] Bravo-Prieto C, LaRose R, Cerezo M, Subasi Y, Cincio L, Coles P J. 2023. Variational quantum linear solver. Quantum, 7: 1188. doi: 10.22331/q-2023-11-22-1188
    [6] Buhrman H, Cleve R, Watrous J, Petruccione F. 2001. Quantum fingerprinting. Physical Review Letters, 87: 167902. doi: 10.1103/PhysRevLett.87.167902
    [7] Chen Z, Ma T, Ye C, Xu L, Tan M, et al. 2024. Enabling large-scale and high-precision fluid simulations on near-term quantum computers. Computer Methods in Applied Mechanics and Engineering, 432: 117428. doi: 10.1016/j.cma.2024.117428
    [8] Coppersmith D. 1994. An approximate Fourier transform useful in quantum factoring. IBM Research Report: RC-19642.
    [9] Feynman R P. 1982. Simulating physics with computers. International Journal of Theoretical Physics, 21: 6-7.
    [10] Geers M G, Kouznetsova V G, Brekelmans W. 2010. Multi-scale computational homogenization: Trends and challenges. Journal of Computational and Applied Mathematics, 234: 2175-2182. doi: 10.1016/j.cam.2009.08.077
    [11] Georgescu I M, Ashhab S, Nori F. 2014. Quantum simulation. Reviews of Modern Physics, 86: 153-185. doi: 10.1103/RevModPhys.86.153
    [12] Giovannetti V, Lloyd S, Maccone L. 2008. Quantum random access memory. Physical Review Letters, 100: 160501. doi: 10.1103/PhysRevLett.100.160501
    [13] Givois F, Kabel M, Gauger N. 2022. QFT-based homogenization. arXiv preprint arXiv, 2207: 12949.
    [14] Grover L K. 2001. From Schrödinger’s equation to the quantum search algorithm. American Journal of Physics, 69: 769-777. doi: 10.1119/1.1359518
    [15] Harrow A W, Hassidim A, Lloyd S. 2009. Quantum algorithm for linear systems of equations. Physical Review Letters, 103: 150502. doi: 10.1103/PhysRevLett.103.150502
    [16] Henderson J M, Kath J, Golden J K, Percus A G, O’Malley D. 2024. Addressing quantum’s “fine print” with efficient state preparation and information extraction for quantum algorithms and geologic fracture networks. Scientific Reports, 14: 3592. doi: 10.1038/s41598-024-52759-0
    [17] Jin S, Liu N, Yu Y. 2023. Quantum simulation of partial differential equations: Applications and detailed analysis. Physical Review A, 108: 032603. doi: 10.1103/PhysRevA.108.032603
    [18] Kadowaki T, Nishimori, H. 1998. Quantum annealing in the transverse Ising model. Physical Review E, 58: 5355. doi: 10.1103/PhysRevE.58.5355
    [19] Key F, Freinberger L. 2024. A formulation of structural design optimization problems for quantum annealing. Mathematics, 12: 482. doi: 10.3390/math12030482
    [20] Kim Y, Eddins A, Anand S, Wei K X, Van Den Berg E, Rosenblatt S, Nayfeh H, Wu Y, Zaletel M, Temme K, Kandala A. 2023. Evidence for the utility of quantum computing before fault tolerance. Nature, 618: 500-505. doi: 10.1038/s41586-023-06096-3
    [21] Kirchdoerfer T, Ortiz M. 2016. Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 304: 81-101. doi: 10.1016/j.cma.2016.02.001
    [22] Kuang Z, Xu Y, Huang Q, Yang J, Kihal C E, Hu H. 2025. Quantum computing with error mitigation for data-driven computational mechanics. Composite Structures, 351: 118625. doi: 10.1016/j.compstruct.2024.118625
    [23] Leyton S K, Osborne T J. 2008. A quantum algorithm to solve nonlinear differential equations. arXiv preprint arXiv, 0812: 4423.
    [24] Li Y, Benjamin S C. 2017. Efficient variational quantum simulator incorporating active error minimization. Physical Review X, 7: 021050.
    [25] Liu B, Ortiz M, Cirak F. 2024. Towards quantum computational mechanics. Computer Methods in Applied Mechanics and Engineering, 432: 117403. doi: 10.1016/j.cma.2024.117403
    [26] Liu B F, Zhu L X, He G W. 2023. Quantum implementation of numerical methods for convection-diffusion equations: Toward computational fluid dynamics. Communications in Computational Physics, 33: 425-451. doi: 10.4208/cicp.OA-2022-0081
    [27] Liu J P, Kolden H Ø, Krovi H K, Loureiro N F, Trivisa K, Childs A M. 2021. Efficient quantum algorithm for dissipative nonlinear differential equations. Proceedings of the National Academy of Sciences, 118: 2026805118. doi: 10.1073/pnas.2026805118
    [28] Liu Y, Liu J, Raney J R, Wang P. 2024. Quantum computing for solid mechanics and structural engineering—A demonstration with variational quantum eigensolver. Extreme Mechanics Letters, 67: 102117. doi: 10.1016/j.eml.2023.102117
    [29] Lloyd S, Mohseni M, Rebentrost P. 2013. Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv, 1307: 0411.
    [30] Lloyd S, De Palma G, Gokler C, Kiani B, Liu Z W, Marvian M, Tennie F, Palmer T. 2020. Quantum algorithm for nonlinear differential equations. arXiv preprint, arXiv : 2011.06571.
    [31] Lu Z, Yang Y. 2024. Quantum computing of reacting flows via Hamiltonian simulation. Proceedings of the Combustion Institute, 40: 105440. doi: 10.1016/j.proci.2024.105440
    [32] Lubasch M, Joo J, Moinier P, Kiffner M, Jaksch D. 2020. Variational quantum algorithms for nonlinear problems. Physical Review A, 101: 010301. doi: 10.1103/PhysRevA.101.010301
    [33] Lundstrom M. 2003. Moore’s law forever. Science, 299: 210-211. doi: 10.1126/science.1079567
    [34] Lye K O, Mishra S, Ray D. 2020. Deep learning observables in computational fluid dynamics. Journal of Computational Physics, 410: 109339. doi: 10.1016/j.jcp.2020.109339
    [35] Morales M E, Pira L, Schleich P, Koor K, Costa P, An D, Lin L, Rebentrost P, Berry D W. 2024. Quantum linear system solvers: A survey of algorithms and applications. arXiv preprint, arXiv : 2411.02522.
    [36] Meng Z, Yang Y. 2023. Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation. Physical Review Research, 5: 033182. doi: 10.1103/PhysRevResearch.5.033182
    [37] Meng Z, Zhong J, Xu S, Wang K, Chen J, et al. 2024. Simulating unsteady fluid flows on a superconducting quantum processor. Communications Physics, 7: 349.
    [38] Montanaro A, Pallister S. 2016. Quantum algorithms and the finite element method. Physical Review A, 93: 032324. doi: 10.1103/PhysRevA.93.032324
    [39] Moulinec H, Suquet P. 1998. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157: 69-94. doi: 10.1016/S0045-7825(97)00218-1
    [40] Mukherjee S, Lu D, Raghavan B, Breitkopf P, Dutta S, Xiao M, Zhang W. 2021. Accelerating large-scale topology optimization: State-of-the-art and challenges. Archives of Computational Methods in Engineering, 1-23.
    [41] Nielsen M A, Chuang I L. 2010. Quantum computation and quantum information. Cambridge: Cambridge University Press.
    [42] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O’brien J L. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213. doi: 10.1038/ncomms5213
    [43] Preskill J. 2018. Quantum computing in the NISQ era and beyond. Quantum, 2: 79. doi: 10.22331/q-2018-08-06-79
    [44] Raisuddin O M, De S. 2022. FEqa: Finite element computations on quantum annealers. Computer Methods in Applied Mechanics and Engineering, 395: 115014. doi: 10.1016/j.cma.2022.115014
    [45] Rebentrost P, Mohseni M, Lloyd S. 2014. Quantum support vector machine for big data classification. Physical Review Letters, 113: 130503. doi: 10.1103/PhysRevLett.113.130503
    [46] Sato Y, Kondo R, Hamamura I, Onodera T, Yamamoto N. 2024. Hamiltonian simulation for hyperbolic partial differential equations by scalable quantum circuits. Physical Review Research, 6: 033246. doi: 10.1103/PhysRevResearch.6.033246
    [47] Schaller R R. 1997. Moore’s law: Past, present and future. IEEE spectrum 34 : 52-59.
    [48] Shao H J, Wang Y X, Zhu D Z, Zhu Y S, Sun H N, Chen S Y, Zhang C, Fan Z J, Deng Y, Yao X C, Chen Y A, Pan J W. 2024. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature 632 : 1-6.
    [49] Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J. 2019. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 365: 574-577. doi: 10.1126/science.aay0600
    [50] Temme K, Bravyi S, Gambetta J M. 2017. Error mitigation for short-depth quantum circuits. Physical Review Letters, 119: 180509. doi: 10.1103/PhysRevLett.119.180509
    [51] Trahan C J, Loveland M, Davis N, Ellison E. 2023. A variational quantum linear solver application to discrete finite-element methods. Entropy, 25: 580. doi: 10.3390/e25040580
    [52] Wiebe N, Kapoor A, Svore K M. 2015. Quantum nearest-neighbor algorithms for machine learning. Quantum Information and Computation, 15: 318-358.
    [53] Wils K, Chen B Y. 2023. A symbolic approach to discrete structural optimization using quantum annealing. Mathematics, 11: 3451. doi: 10.3390/math11163451
    [54] Xiao J, Endo K, Muramatsu M, Nomura R, Moriguchi S, Terada K. 2024. Application of factorization machine with quantum annealing to hyperparameter optimization and metamodel-based optimization in granular flow simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 48: 3432-3451. doi: 10.1002/nag.3800
    [55] Xu Y, Kuang Z, Huang Q, Yang J, Hamid Z, Potier-Ferry M, Huang K, Zhang J-C, Fan H, Hu H. 2024a, A robust quantum nonlinear solver based on the asymptotic numerical method. arXiv preprint, arXiv : 2412.03939.
    [56] Xu Y, Yang J, Kuang Z, Huang Q, Huang W, Hu H. 2024b. Quantum computing enhanced distance-minimizing data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 419: 116675. doi: 10.1016/j.cma.2023.116675
    [57] Xue C, Wu Y, Guo G. 2021. Quantum newton’s method for solving the system of nonlinear equations. World Scientific Publishing Company, 11: 2140004. doi: 10.1142/S201032472140004X
    [58] Xue C, Xu X, Wu Y, Guo G. 2022. Quantum algorithm for solving a quadratic nonlinear system of equations. Physical Review A, 106: 032427. doi: 10.1103/PhysRevA.106.032427
    [59] Yarkoni S, Raponi E, Bäck T, Schmitt S. 2022. Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics, 85: 104001. doi: 10.1088/1361-6633/ac8c54
    [60] Ye Z, Qian X, Pan W. 2023. Quantum topology optimization via quantum annealing. IEEE Transactions on Quantum Engineering, 4: 1-15. doi: 10.1109/TQE.2023.3266410
    [61] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, et al. 2020. Quantum computational advantage using photons. Science, 370: 1460-1463. doi: 10.1126/science.abe8770
  • 加载中
图(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  18
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 录用日期:  2024-12-30
  • 网络出版日期:  2025-01-03

目录

    /

    返回文章
    返回