Latest Accepted Articles

Display Method:
A review of construction and test operation for full scale low speed wind tunnels overseas
LIU Xiaobo, GUO Chuwei, LI Wenjia, CHEN Lujun, ZHANG Junlong, DUAN Yuting
, Available online  , doi: 10.6052/1000-0992-25-025
Abstract(120) HTML (9) PDF(34)
Abstract:
The construction background of three full scale low speed wind tunnels in the United States and Russia is briefly introduced. Then, emphasis on tests performed in these wind tunnels are presented, including test operation mode, test model types, test technologies, etc, especially for special test techniques of the full scale wind tunnel. The future development trend of the test techniques is concluded. Research results show that the construction need of full scale wind tunnel is mainly originated from large model aerodynamic test and some related technology development. During model test process, more special attentions are paid to the installation of very large model and the treatment of test failure. The models tested in full scale wind tunnel mainly include airplanes, aerospace vehicles, and energy infrastructures. Additionally, fundamental aerodynamic problem such as rotor flow, acoustic noise can also be resolved in such kind of wind tunnel. As far as the test technique is concerned, conventional measurement method such as force balance, pressure transducer and hot wire anemometer can be used. More importantly, special test techniques developed for full scale model tilting test apparatus, test benches with very large angle of attack, model free flight mechanism, non-intrusive optical measurement and bad weather simulation facility are also been described. The general development trend of test technique is obtained, including going along a direction of providing data with high precision, combining and utilizing various test methods, enabling development with big data in depth, integrating multidiscipline research, developing virtual and augmented reality, etc. Finally, some enlightenments and suggestions are put forward, such as developing test techniques step by step, building professional experimental stand, and highlighting the advantages of large scale and detailed measurements.
Resolving Physical Complexities with Machine Intelligence
XU Zhiping
, Available online  , doi: 10.6052/1000-0992-25-018
Abstract(150) HTML (29) PDF(86)
Abstract:
Understanding the relationships between material microstructures and their mechanical performance and using them to make predictions are pivotal topics in solid mechanics. From Galileo’s beam bending analysis, Cauchy’s stress definition to Arrhenius-based creep laws, theoretical and simulation frameworks find great success in addressing engineering problems. Yet, the spatiotemporal complexity challenges the conventional ‘observation-hypothesis-model’ approach for structural integrity in key industrial sectors such as aerospace, nuclear energy, and semiconductors. Recent progress and fusion of high-performance computing, high-throughput experiments, data science, and artificial intelligence provide a complementary solution to scientific discovery and engineering deployment on these issues. However, unlike their applications in vision and language domains, engineering science demands stronger data-model inference capabilities. High-quality, physically consistent databases and digital libraries are needed to enhance model performance, generalization, and interpretability. Concepts such as “physics transfer” and “reality reconstruction” offer guiding principles for modeling and predicting complex behaviors. With further support from cognitive science, intelligent agents and physical intelligence are increasingly capable of assisting, or even replacing, researchers in conducting exploration and reasoning in complex, dynamic scenarios. This paper reviews key insights of the complexities in solid mechanics and discusses active research areas through the lenses of learning theory and open science, with particular emphasis on multiscale mechanics and the long-term service behavior of materials and structures.
Investigation of Noise Generated by the Interactions of Coaxial Vortex Rings
ZANG Zhenyu, ZHOU Zhiteng, WANG Shizhao
, Available online  , doi: 10.6052/1000-0992-25-020
Abstract(34) HTML (6) PDF(6)
Abstract:
The interactions of coaxial vortex rings are the typical flow in subsonic jets and the significant sources of jet noise. Controlling the acceleration and deceleration of vortex rings during the interactions is critical to noise reduction. Previous studies have shown that the radial acceleration of the weaker ring is the dominant contributor to high-amplitude, low-frequency noise. In this work, the conditions under which this phenomenon occurs and the physical laws that govern it are investigated based on Dyson thin-core vortex ring model. By decomposing the acoustic source into the product of the vortex rings’ axial and radial kinematic parameters, the interactions of vortex rings are analyzed under various initial circulation and radius ratios. A critical initial radius ratio is identified, below which the source term related to the radial acceleration of the weaker ring contributes more to the total noise source than that of the stronger ring. Through quantitative analysis of the vortex ring interaction dynamics, the correlation between the peak value of the noise pulse and the peak values of axial velocity and radial acceleration of the rings is established. Moreover, the reverse motion of the stronger ring can induce an out-of-phase pulse in its corresponding acoustic source term.