| Citation: | Hu H W, Song P, Deng G Q, Xiao C. Characteristics of thermobaric explosives and their advances . Advances in Mechanics, 2022, 52(1): 53-78 doi: 10.6052/1000-0992-21-021 | 
	                | [1] | 
					 曹威, 何中其, 陈网桦. 2014. TNT后燃反应的水下爆炸实验研究与数值模拟. 高压物理学报, 28: 443-449 (Cao W, He Z Q, Chen W H. 2014. Experimental research and numerical simulation of afterburning reaction of TNT explosive by underwater explosion. Chinese Journal of High Pressure Physics, 28: 443-449). doi:  10.11858/gywlxb.2014.04.009 
					
					 | 
			
| [2] | 
					 曹威, 何中其, 陈网桦等. 2012. 水下爆炸法测量含铝炸药后燃效应. 含能材料, 20: 229-233 (Cao W, He Z Q, Chen W H, et al. 2012. Measurement of afterburning effect of aluminized explosives by underwater explosion method. Chinese Journal of Energetic Materials, 20: 229-233). doi:  10.3969/j.issn.1006-9941.2012.02.020 
					
					 | 
			
| [3] | 
					 郭美芳. 2003. 战场新宠—温压弹. 现代兵器, 5: 14-16 (Guo M F. 2003. The darling of war. ModernWeapon, 5: 14-16). 
					
					 | 
			
| [4] | 
					 胡宏伟, 冯海云, 肖川等. 2016. 基于顶盖举起试验的炸药内爆炸性能评估. 火炸药学报, 39: 53-57 (Hu H W, Feng H Y, Xiao C, et al. 2016. Evaluation of the internal blast performance of explosives based on roof lift test. Chinese Journal of Explosives & Propellants, 39: 53-57). 
					
					 | 
			
| [5] | 
					 胡宏伟, 宋浦, 赵省向等. 2013. 有限空间内部爆炸研究进展. 含能材料, 21: 539-546 (Hu H W, Song P, Zhao S X, et al. 2013. Progress in explosion in confined space. Chinese Journal of Energetic Materials, 21: 539-546). doi:  10.3969/j.issn.1006-9941.2013.04.026 
					
					 | 
			
| [6] | 
					 胡宏伟, 肖川, 李丽等. 2013. 有限空间炸药装药内爆炸威力的评估方法综述. 火炸药学报, 36: 1-6 (HU H W, XIAO C, LI L, et al. 2013. Review on evaluation methods of blast power in confined space. Chinese Journal of Explosives & Propellants, 36: 1-6). doi:  10.3969/j.issn.1007-7812.2013.01.001 
					
					 | 
			
| [7] | 
					 李林. 2005. 温压弹的原理与实践. 现代军事, 1: 55-57 (Li L. 2005. Principle and practice of thermobaric bomb. Modern Military, 1: 55-57). 
					
					 | 
			
| [8] | 
					 朴忠杰, 张爱娥, 罗宇等. 2019. 铝粉粒度对奥克托今基空爆温压炸药能量释放的影响. 兵工学报, 40: 1190-1197 (Piao Z J, Zhang A E, Luo Y. 2019. Influence of aluminum powder on energy release of HMX-based air-blast thermobaric explosives. Acta Armamentaria, 40: 1190-1197). doi:  10.3969/j.issn.1000-1093.2019.06.009 
					
					 | 
			
| [9] | 
					 裴明敬, 田朝阳, 胡华权等. 2013. 铝粉在温压炸药爆炸过程中的响应分析. 火炸药学报, 36: 7-12 (Pei M J, Tian C Y, Hu H Q, et al. 2013. Response analysis of aluminum in the process of thermobaric explosive detonation. Chinese Journal of Explosives & Propellants, 36: 7-12). doi:  10.3969/j.issn.1007-7812.2013.04.002 
					
					 | 
			
| [10] | 
					 王明烨, 韩志伟, 李席等. 2018. 铝粉粒径对温压炸药爆炸性能及热安定性的影响. 高压物理学报, 32: 035201 (Wang M Y, Han Z W, Li X, et al. 2018. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive. Chinese Journal of High Pressure Physics, 32: 035201). 
					
					 | 
			
| [11] | 
					 王晓峰, 冯晓军. 2016. 温压炸药设计原则探讨. 含能材料, 24: 418-420 (Wang X F, Feng X J. 2016. Discussion on design principle of thermobaric explosives. Chinese Journal of Energetic Materials, 24: 418-420). doi:  10.11943/j.issn.1006-9941.2016.05.00X 
					
					 | 
			
| [12] | 
					 杨志剑, 刘晓波, 何冠松等. 2017. 混合炸药设计研究进展. 含能材料, 25: 2-11 (Yang J Z, Liu X B, He G S, et al. 2017. Advance in design and research of composite explosives. Chinese Journal of Energetic Materials, 25: 2-11). doi:  10.11943/j.issn.1006-9941.2017.01.001 
					
					 | 
			
| [13] | 
					 郑朝民, 严蕊, 刘志伟等. 2014. 温压炸药耗氧效应的实验研究. 火炸药学报, 37: 33-36 (Zheng C M, Yan R, Liu Z W, et al. 2014. Experimental study on oxygen consumption effect of thermo-baric explosives. Chinese Journal of Explosives & Propellants, 37: 33-36). doi:  10.3969/j.issn.1007-7812.2014.03.008 
					
					 | 
			
| [14] | 
					 Andrew R D, Scott D H, Gregory D K. 2008. Detonation calorimeter: application and operation for thermobaric explosive characterization and evaluation// Proceeding of the 36th North American Thermal Analysis Society Conference, Atlanta: North American Thermal Analysis Society. 
						
					 | 
			
| [15] | 
					 Arnold W, Rottenkolber E. 2007. Thermobaric charges: modeling and testing//38th International Annual Conference of ICT, Karlsruhe, Germany, V02. 
						
					 | 
			
| [16] | 
					 Arnold, W. , Rottenkolber, E. 2008. Combustion of an aluminized explosive in a detonation chamber//39th International Annual Conference of ICT, Karlsruhe, Germany, V33. 
						
					 | 
			
| [17] | 
					 Baker J J. 2010. Thermobaric explosives, articles of manufacture, and methods comprising the same. US Patent US 7807000 B1 20101005. 
						
					 | 
			
| [18] | 
					 Barbara S. 2003. Tests massive bomb. CNN. 
						
					 | 
			
| [19] | 
					 Carlson R W. 1945. Confinement of an explosion by a steel vessel. Los Alamos:LANL, LA-390. 
						
					 | 
			
| [20] | 
					 Chabin P, Nouguez B. 2009. Insensitive enhanced blast formulations.  Insensitive Munitions & Energetic Materials Technology Symposium, Tucson: NDIA. 
						
					 | 
			
| [21] | 
					 Chan M L, Meyers G W. 2005. Advanced thermobaric explosive compositions. US Patent: US 6955732 B1, 2005-10-18. 
						
					 | 
			
| [22] | 
					 Danica M S, Ivan D D, Radoslav S S. 2018. Thermobaric performance of cast PBX with nano-sized aluminum//49th International Annual Conference of the Fraunhofer ICT, Karlsruhe Germany, June 26-29, p131. 
						
					 | 
			
| [23] | 
					 David L F, Samuel G, Robert R, et al. 2017. Interaction of a blast wave with a metalized explosive fireball//14th International Detonation Symposium. Idaho: Office of Naval Research, 42: 632-644 
						
					 | 
			
| [24] | 
					 David Tassia P E. 1996. Internal Blast Test to Support the Tomahawk and APET Programs//Insensitive Munitions & Energetic Materials Technology Symposium, San Diego: NDIA. 
						
					 | 
			
| [25] | 
					 Donahue L, Whitehousel D R, Josey T, et al. 2004. Non-ideal blast effects for vulnerability/lethality analyses//21st International Symposium on Ballistics. Adelaide: South Australian Postgraduate Education Association. 
						
					 | 
			
| [26] | 
					 Dreizin E L, Schoenitz M, Shoshin Y L, et al. 2005. Highly energetic nanocomposite powders produced by arrested reactive milling//36th Int. Annual Conference of ICT and 32nd International Pyrotechnics Seminar, Karlsruhe, Germany. 
						
					 | 
			
| [27] | 
					 Gerber P, Kessler A, Eisele S, et al. 2010. Formulation and characterization of enhanced blast explosives//International Annual Conference of ICT (2010), 41th Energetic Materials: For High Performance, Insensitive Munitions and Zero Pollution, Karlsruhe Germany, gerbe1/1-gerbe1/8. 
						
					 | 
			
| [28] | 
					 Gogulya M F, Brazhnikov M A. 2010. Pressure and temperature of the detonation products of explosive materials containing aluminum of various dispersities. Russian Journal of Physical Chemistry B; 4: 773–87. 
						
					 | 
			
| [29] | 
					 Hahma A, Palovuori K, Romu H. 2002. Experimental studies on metal fueled thermobaric explosives// Proceedings of the Seminar, Levi, Finland, September 9–11, p 211-218. 
						
					 | 
			
| [30] | 
					 Hall S, Knowlton G D. 2004. Development, characterization and testing of high blast thermobaric compositions//Proc. 31st Int. Pyrotech. Seminar. Fort Collins, 663-678. 
						
					 | 
			
| [31] | 
					 Hilbert R, Tap F, Rabii HE Thvenin D. 2004. Impact of detailed chemistry and transport models on turbulent combustion simulations. Progress in Energy Combustion Science, 30: 61-117. doi:  10.1016/j.pecs.2003.10.001 
						
					 | 
			
| [32] | 
					 Jane’s Air-Launched Weapons, 26-May-2020. Weapons: Air Launched-BLU-121/B thermobaric warhead. www. janes. com. 
						
					 | 
			
| [33] | 
					 Jane’s Air-Launched Weapons, 29-Apr-2015. BLU-118B thermobaric warhead. www. janes. com (accessed 7 Jan 2003). 
						
					 | 
			
| [34] | 
					 Johnson N, Carpenter P, Newman K, et al. 2004. Evaluation of explosive candidates for a thermobaric M72 law shoulder launched weapon//NDIA 39th Annual Gun and Ammunition/Missiles and Rockets Conference, Baltimore, MD, USA. 
						
					 | 
			
| [35] | 
					 Kellett R M. . 2009. Exothermic alloying Al-Ni bimetallic nanoparticles dispersed within explosives. PCT Int. Appl. (2009), WO 2009046287 A1 20090409. 
						
					 | 
			
| [36] | 
					 Kim C K, Moon J G, Hwang J S, et al. 2008. Afterburning of TNT explosive products in air with aluminum particles//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno , NV, USA, AIAA. 
						
					 | 
			
| [37] | 
					 Kim S H, Park J S, Kim J K. 2004. Internal blast test on explosives developed in Korea//Proceedings of the 35th International Conference of ICT, Karlsruhe, Germany. 
						
					 | 
			
| [38] | 
					 Lee K B, Lee K D, Kim J K. 2005. Relationship between combustion heat and blast performance of aluminized explosives//36th Int. Annual Conference of ICT, Karlsruhe, Germany. 
						
					 | 
			
| [39] | 
					 Lin B Q, Li W X, Zhu C J, Lu H L, Lu Z G Li Q Z. 2010. Experimental investigation on explosion characteristics of nano-aluminum powder–air mixtures. Combustion Explosion Shock Waves, 46: 78-82. 
						
					 | 
			
| [40] | 
					 Lips H, Helou S, Rittel R. 2010. Selection of an applicable SIBEX explosive for SLW//International Annual Conference of ICT (2010), 41st Energetic Materials: For High Performance, Insensitive Munitions and Zero Pollution, Karlsruhe, Germany, June 29-July 02, lips1/1-lips1/10. 
						
					 | 
			
| [41] | 
					 Makhov M. 2004. Explosion heat of Boron-containing explosive compositions//35th International Conference of IC, Karlsruhe Germany: ICT. 
						
					 | 
			
| [42] | 
					 McFadden D. 2003. Development and characterization of high heat Thermobaric composition. Doc No TR16006, Ialley Defense Systems. 
						
					 | 
			
| [43] | 
					 Michael D, Andrews W S, Jaansalu K M. 2005. The Fragmentation of Metal Cylinders by Thermobaric Explosives. Kingston, CANADA: Royal Military College of Canada. 
						
					 | 
			
| [44] | 
					 Mohamed A K, Mostafa H E, Elbasuney S. 2016. Nanoscopic fuel-rich thermobaric formulations: Chemical composition optimization and sustained secondary combustion shock wave modulation. Jourmal of Hazardous Materials, 301: 492-503. doi:  10.1016/j.jhazmat.2015.09.019 
						
					 | 
			
| [45] | 
					 Moir D C. 1979. Safety analysis of the M-2 comfinement systems. Los Alamos: LANL, LA-TM-264. 
						
					 | 
			
| [46] | 
					 Muravyev N, Frolov Y, Pivkina A, et a1. 2010. Influence of particle size and mixing technology on combustion of HMX/A1 composition. Propellants Explosives Pyrotechnics, 35: 226232. 
						
					 | 
			
| [47] | 
					 Nicolich S M, Capellos C, Balas W A, Akester J D, Hatch RL. 2012. High-blast explosive compositions containing particulate metal. US Patent: US 8168016 B1, 2012-05-01. 
						
					 | 
			
| [48] | 
					 Peuker J M, Krier H, Glumac N. 2013. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives. Proceedings of the Combustion Institute, 34: 2205-2212. doi:  10.1016/j.proci.2012.05.069 
						
					 | 
			
| [49] | 
					 Richard G A, Jason T D, Joseph S, et al. 2006. Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions//13th International Detonation Symposium, Norfolk Virginia. : Office of Naval Research. 
						
					 | 
			
| [50] | 
					 Richard J L, Kirk E N, Douglas G B , et al. 2010. Combined initial air blast and quasi-static overpressure assessment for pressed aluminized explosives// Proceedings 14th International Detonation Symposium, Idaho: Office of Naval Research. 
						
					 | 
			
| [51] | 
					 Schaefer R A, Nicolich S M. 2005. Development and evaluation of new high blast explosives//36th International Conference of ICT, Karlsruhe, Germany, June 28–July 1, V9. 
						
					 | 
			
| [52] | 
					 Scott D H, Gregory D K. 2005. Development, characterization and testing of high Blast thermataric compositions// The 31th International Pyrotechnics Seminer, Fort Collins: AIDICO. 
						
					 | 
			
| [53] | 
					 Sheridan E W, Hugus G D, Brooks G W. 2011. Enhanced blast explosive, US Patent: US 7998290 B2, 2011-07-05. 
						
					 | 
			
| [54] | 
					 Simic D, Petkovic J, Milojkovic A, et al. 2013. Influence of composition on the processability of thermobaric explosives. Sci Tech Rev, 63: 3-8. 
						
					 | 
			
| [55] | 
					 Trzciński W A, Barcz K. 2012. Investigation of blast wave characteristics for layered thermobaric charges. Shock Waves, 22: 119-127. doi:  10.1007/s00193-012-0357-z 
						
					 | 
			
| [56] | 
					 Trzciński W A, Barcz K, et al. 2014. Investigation of blast performance and solid residues for layered thermobaric charges. Propellants Explosives Pyrotechnice, 39: 40-50. doi:  10.1002/prep.201300011 
						
					 | 
			
| [57] | 
					 Trzcinski W A, Cudzilo S, Paszula J, Callaway J. 2008. Study of the effect of additive particles size on non-ideal explosive performance. Propellants Explosives Pyrotechnics, 335: 227-35. 
						
					 | 
			
| [58] | 
					 Trzciński W A, Maiz L. 2015. Thermobaric and enhanced blast explosives-properties and testing methods(review). Propellants, Explosives, Pyrotechnics, 40: 632-644. doi:  10.1002/prep.201400281 
						
					 | 
			
| [59] | 
					 Türker L. 2016. Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12: 423-445. 
						
					 | 
			
| [60] | 
					 van der Heijden A E D M, Creyghton Y L M, van de Peppel R J E, et al. 2010. Modification and characterization of (energetic) nanomaterials. Journal of Physics and Chemistry Solids, 71: 59-63. doi:  10.1016/j.jpcs.2009.09.007 
						
					 | 
			
| [61] | 
					 Vadhe P P, Pawar R B, Sinha R K, et al. 2008. Cast aluminized explosives (review). Combustion Explosion & Shock Waves, 44: 461-77. doi:  10.1007/s10573-008-0073-2 
						
					 | 
			
| [62] | 
					 Weiser V, Roth E, Raab A, et al. 2011. Combustion of fuel particles (Al, B, Mg, Si, Ti, Zr) in combination with RDX and the influence of additional air//37th International Pyrotechnics Seminar EUROPYRO 2011, Reims France, 36–53. 
						
					 | 
			
| [63] | 
					 Wildegger-Gaissmaier A E. 2003. Aspects of thermobaric weaponry. ADF Health, 4: 3-6. 
						
					 | 
			
| [64] | 
					 Wolan´ski P, Gut Z, Trzcin´ski WA, Szyman´czyk L, Paszula J. 2000. Visualization of turbulent combustion of TNT detonation products in steel vessel. Shock Waves, 10: 127-36. doi:  10.1007/s001930050186 
						
					 |