Citation: | Xu Y C, Kuang Z T, Huang Q, Yang J, Hu H. Quantum computing: The new focus in computational mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-039 |
[1] |
郭光灿. 2022. 颠覆: 迎接第二次量子革命. 北京: 科学出版社 (Guo G C. 2022. Subversion: Embracing the second quantum revolution. Beijing: Science Press).
Guo G C. 2022. Subversion: Embracing the second quantum revolution. Beijing: Science Press.
|
[2] |
Ali M, Kabel M. 2023. Performance study of variational quantum algorithms for solving the poisson equation on a quantum computer. Physical Review Applied, 20: 014054. doi: 10.1103/PhysRevApplied.20.014054
|
[3] |
Arute F, Arya K, Babbush R, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature, 574: 505-510. doi: 10.1038/s41586-019-1666-5
|
[4] |
Bharadwaj S S, Sreenivasan K R. 2023. Hybrid quantum algorithms for flow problems. Proceedings of the National Academy of Sciences, 120: e2311014120. doi: 10.1073/pnas.2311014120
|
[5] |
Bravo-Prieto C, LaRose R, Cerezo M, et al. 2023. Variational quantum linear solver. Quantum, 7: 1188. doi: 10.22331/q-2023-11-22-1188
|
[6] |
Buhrman H, Cleve R, Watrous J, et al. 2001. Quantum fingerprinting. Physical Review Letters, 87: 167902. doi: 10.1103/PhysRevLett.87.167902
|
[7] |
Chen Z, Ma T, Ye C, et al. 2024. Enabling large-scale and high-precision fluid simulations on near-term quantum computers. Computer Methods in Applied Mechanics and Engineering, 432: 117428. doi: 10.1016/j.cma.2024.117428
|
[8] |
Coppersmith D. 1994. An approximate Fourier transform useful in quantum factoring. IBM Research Report: RC-19642.
|
[9] |
Feynman R P. 1982. Simulating physics with computers. International Journal of Theoretical Physics, 21: 6-7.
|
[10] |
Geers M G, Kouznetsova V G, Brekelmans W. 2010. Multi-scale computational homogenization: Trends and challenges. Journal of Computational and Applied Mathematics, 234: 2175-2182. doi: 10.1016/j.cam.2009.08.077
|
[11] |
Georgescu I M, Ashhab S, Nori F. 2014. Quantum simulation. Reviews of Modern Physics, 86: 153-185. doi: 10.1103/RevModPhys.86.153
|
[12] |
Giovannetti V, Lloyd S, Maccone L. 2008. Quantum random access memory. Physical Review Letters, 100: 160501. doi: 10.1103/PhysRevLett.100.160501
|
[13] |
Givois F, Kabel M, Gauger N. 2022. QFT-based homogenization. arXiv preprint arXiv, 2207: 12949.
|
[14] |
Grover L K. 2001. From Schrödinger’s equation to the quantum search algorithm. American Journal of Physics, 69: 769-777. doi: 10.1119/1.1359518
|
[15] |
Harrow A W, Hassidim A, Lloyd S. 2009. Quantum algorithm for linear systems of equations. Physical Review Letters, 103: 150502. doi: 10.1103/PhysRevLett.103.150502
|
[16] |
Henderson J M, Kath J, Golden J K, et al. 2024. Addressing quantum’s “fine print” with efficient state preparation and information extraction for quantum algorithms and geologic fracture networks. Scientific Reports, 14: 3592. doi: 10.1038/s41598-024-52759-0
|
[17] |
Jin S, Liu N, Yu Y. 2023. Quantum simulation of partial differential equations: Applications and detailed analysis. Physical Review A, 108: 032603. doi: 10.1103/PhysRevA.108.032603
|
[18] |
Kadowaki T, Nishimori, H. 1998. Quantum annealing in the transverse Ising model. Physical Review E, 58: 5355. doi: 10.1103/PhysRevE.58.5355
|
[19] |
Key F, Freinberger L. 2024. A formulation of structural design optimization problems for quantum annealing. Mathematics, 12: 482. doi: 10.3390/math12030482
|
[20] |
Kim Y, Eddins A, Anand S, et al. 2023. Evidence for the utility of quantum computing before fault tolerance. Nature, 618: 500-505. doi: 10.1038/s41586-023-06096-3
|
[21] |
Kirchdoerfer T, Ortiz M. 2016. Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 304: 81-101. doi: 10.1016/j.cma.2016.02.001
|
[22] |
Kuang Z, Xu Y, Huang Q, et al. 2025. Quantum computing with error mitigation for data-driven computational mechanics. Composite Structures, 351: 118625. doi: 10.1016/j.compstruct.2024.118625
|
[23] |
Leyton S K, Osborne T J. 2008. A quantum algorithm to solve nonlinear differential equations. arXiv preprint arXiv, 0812: 4423.
|
[24] |
Li Y, Benjamin S C. 2017. Efficient variational quantum simulator incorporating active error minimization. Physical Review X, 7: 021050.
|
[25] |
Liu B, Ortiz M, Cirak F. 2024. Towards quantum computational mechanics. Computer Methods in Applied Mechanics and Engineering, 432: 117403. doi: 10.1016/j.cma.2024.117403
|
[26] |
Liu B F, Zhu L X, He G W. 2023. Quantum implementation of numerical methods for convection-diffusion equations: Toward computational fluid dynamics. Communications in Computational Physics, 33: 425-451. doi: 10.4208/cicp.OA-2022-0081
|
[27] |
Liu J P, Kolden H Ø, Krovi H K, et al. 2021. Efficient quantum algorithm for dissipative nonlinear differential equations. Proceedings of the National Academy of Sciences, 118: 2026805118. doi: 10.1073/pnas.2026805118
|
[28] |
Liu Y, Liu J, Raney J R, et al. 2024. Quantum computing for solid mechanics and structural engineering—A demonstration with variational quantum eigensolver. Extreme Mechanics Letters, 67: 102117. doi: 10.1016/j.eml.2023.102117
|
[29] |
Lloyd S, Mohseni M, Rebentrost P. 2013. Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv, 1307: 0411.
|
[30] |
Lloyd S, De Palma G, Gokler C, et al. 2020. Quantum algorithm for nonlinear differential equations. arXiv preprint, arXiv : 2011.06571.
|
[31] |
Lu Z, Yang Y. 2024. Quantum computing of reacting flows via Hamiltonian simulation. Proceedings of the Combustion Institute, 40: 105440. doi: 10.1016/j.proci.2024.105440
|
[32] |
Lubasch M, Joo J, Moinier P, et al. 2020. Variational quantum algorithms for nonlinear problems. Physical Review A, 101: 010301. doi: 10.1103/PhysRevA.101.010301
|
[33] |
Lundstrom M. 2003. Moore’s law forever. Science, 299: 210-211. doi: 10.1126/science.1079567
|
[34] |
Lye K O, Mishra S, Ray D. 2020. Deep learning observables in computational fluid dynamics. Journal of Computational Physics, 410: 109339. doi: 10.1016/j.jcp.2020.109339
|
[35] |
Morales M E, Pira L, Schleich P, et al. 2024. Quantum linear system solvers: A survey of algorithms and applications. arXiv preprint, arXiv : 2411.02522.
|
[36] |
Meng Z, Yang Y. 2023. Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation. Physical Review Research, 5: 033182. doi: 10.1103/PhysRevResearch.5.033182
|
[37] |
Meng Z, Zhong J, Xu S, et al. 2024. Simulating unsteady fluid flows on a superconducting quantum processor. Communications Physics, 7: 349.
|
[38] |
Montanaro A, Pallister S. 2016. Quantum algorithms and the finite element method. Physical Review A, 93: 032324. doi: 10.1103/PhysRevA.93.032324
|
[39] |
Moulinec H, Suquet P. 1998. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157: 69-94. doi: 10.1016/S0045-7825(97)00218-1
|
[40] |
Mukherjee S, Lu D, Raghavan B, et al. 2021. Accelerating large-scale topology optimization: State-of-the-art and challenges. Archives of Computational Methods in Engineering, 1-23.
|
[41] |
Nielsen M A, Chuang I L. 2010. Quantum computation and quantum information. Cambridge: Cambridge University Press.
|
[42] |
Peruzzo A, McClean J, Shadbolt P, et al. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213. doi: 10.1038/ncomms5213
|
[43] |
Preskill J. 2018. Quantum computing in the NISQ era and beyond. Quantum, 2: 79. doi: 10.22331/q-2018-08-06-79
|
[44] |
Raisuddin O M, De S. 2022. FEqa: Finite element computations on quantum annealers. Computer Methods in Applied Mechanics and Engineering, 395: 115014. doi: 10.1016/j.cma.2022.115014
|
[45] |
Rebentrost P, Mohseni M, Lloyd S. 2014. Quantum support vector machine for big data classification. Physical Review Letters, 113: 130503. doi: 10.1103/PhysRevLett.113.130503
|
[46] |
Sato Y, Kondo R, Hamamura I, et al. 2024. Hamiltonian simulation for hyperbolic partial differential equations by scalable quantum circuits. Physical Review Research, 6: 033246. doi: 10.1103/PhysRevResearch.6.033246
|
[47] |
Schaller R R. 1997. Moore’s law: Past, present and future. IEEE spectrum 34 : 52-59.
|
[48] |
Shao H J, Wang Y X, Zhu D Z, et al. 2024. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature 632 : 1-6.
|
[49] |
Song C, Xu K, Li H, et al. 2019. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 365: 574-577. doi: 10.1126/science.aay0600
|
[50] |
Temme K, Bravyi S, Gambetta J M. 2017. Error mitigation for short-depth quantum circuits. Physical Review Letters, 119: 180509. doi: 10.1103/PhysRevLett.119.180509
|
[51] |
Trahan C J, Loveland M, Davis N, et al. 2023. A variational quantum linear solver application to discrete finite-element methods. Entropy, 25: 580. doi: 10.3390/e25040580
|
[52] |
Wiebe N, Kapoor A, Svore K M. 2015. Quantum nearest-neighbor algorithms for machine learning. Quantum Information and Computation, 15: 318-358.
|
[53] |
Wils K, Chen B Y. 2023. A symbolic approach to discrete structural optimization using quantum annealing. Mathematics, 11: 3451. doi: 10.3390/math11163451
|
[54] |
Xiao J, Endo K, Muramatsu M, et al. 2024. Application of factorization machine with quantum annealing to hyperparameter optimization and metamodel-based optimization in granular flow simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 48: 3432-3451. doi: 10.1002/nag.3800
|
[55] |
Xu Y, Kuang Z, Huang Q, et al. 2024a, A robust quantum nonlinear solver based on the asymptotic numerical method. arXiv preprint, arXiv : 2412.03939.
|
[56] |
Xu Y, Yang J, Kuang Z, et al. 2024b. Quantum computing enhanced distance-minimizing data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 419: 116675. doi: 10.1016/j.cma.2023.116675
|
[57] |
Xue C, Wu Y, Guo G. 2021. Quantum newton’s method for solving the system of nonlinear equations. World Scientific Publishing Company, 11: 2140004. doi: 10.1142/S201032472140004X
|
[58] |
Xue C, Xu X, Wu Y, et al. 2022. Quantum algorithm for solving a quadratic nonlinear system of equations. Physical Review A, 106: 032427. doi: 10.1103/PhysRevA.106.032427
|
[59] |
Yarkoni S, Raponi E, Bäck T, et al. 2022. Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics, 85: 104001. doi: 10.1088/1361-6633/ac8c54
|
[60] |
Ye Z, Qian X, Pan W. 2023. Quantum topology optimization via quantum annealing. IEEE Transactions on Quantum Engineering, 4: 1-15. doi: 10.1109/TQE.2023.3266410
|
[61] |
Zhong H S, Wang H, Deng Y H, et al. 2020. Quantum computational advantage using photons. Science, 370: 1460-1463. doi: 10.1126/science.abe8770
|