Citation: | Li J Z, Liu Y K, Yu K P, Cui N G. Research progress and performance evaluations for self-starting single-solve explicit time integrators. Advances in Mechanics, 2025, 55(2): 1-52 doi: 10.6052/1000-0992-24-030 |
[1] |
陈旻铭, 任旭华, 张继勋. 2024. 显式算法中三维黏弹性人工边界应用及输水隧洞动力响应分析. 水力发电, 50(1): 20-25, 70 (Chen M M, Ren X H, Zhang J X. 2024. Application of 3d viscoelastic artificial boundary and dynamic response analysis of water conveyance tunnel in explicit algorithm. Water Power, 50(1): 20-25, 70). doi: 10.3969/j.issn.0559-9342.2024.01.005
Chen M M, Ren X H, Zhang J X. 2024. Application of 3d viscoelastic artificial boundary and dynamic response analysis of water conveyance tunnel in explicit algorithm. Water Power, 50(1): 20-25, 70 doi: 10.3969/j.issn.0559-9342.2024.01.005
|
[2] |
丁峻宏, 金先龙, 郭毅之, 等. 2005. 沉管隧道地震响应的三维非线性数值模拟方法及应用. 振动与冲击, 24(5): 10-14 (Ding J H, Jin X L, Guo Y Z, et al. 2005. 3D numerical simulation method and its application in calculation of seismic response of immersed tunnel. Journal of Vibration and Shock, 24(5): 10-14). doi: 10.3969/j.issn.1000-3835.2005.05.006
Ding J H, Jin X L, Guo Y Z, et al. 2005. 3D numerical simulation method and its application in calculation of seismic response of immersed tunnel. Journal of Vibration and Shock, 24(5): 10-14. doi: 10.3969/j.issn.1000-3835.2005.05.006
|
[3] |
杜修力, 王进廷. 2000. 阻尼弹性结构动力计算的显式差分法. 工程力学, 17: 37-43 (Du X L, Wang J T. 2000. An explicit difference formulation of dynamic response calculation of elastic structure with damping. Engineering Mechanics, 17: 37-43). doi: 10.3969/j.issn.1000-4750.2000.05.006
Du X L, Wang J T. 2000. An explicit difference formulation of dynamic response calculation of elastic structure with damping. Engineering Mechanics, 17: 37-43. doi: 10.3969/j.issn.1000-4750.2000.05.006
|
[4] |
杜晓琼, 杨迪雄, 赵永亮. 2015. 一种无条件稳定的结构动力学显式算法. 力学学报, 47: 310-319 (Du X Q, Yang D X, Zhao Y L. 2015. An unconditionally stable explicit algorithm for structural dynamics. Chinese Journal of Mechanics, 47: 310-319). doi: 10.6052/0459-1879-14-209
Du X Q, Yang D X, Zhao Y L. 2015. An unconditionally stable explicit algorithm for structural dynamics. Chinese Journal of Mechanics, 47: 310-319. doi: 10.6052/0459-1879-14-209
|
[5] |
胡海岩, 田强, 张伟, 等. 2013. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 43(4): 390-414 (Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large mesh deployable space structures. Advances in Mechanics, 43(4): 390-414). doi: 10.6052/1000-0992-13-045
Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large mesh deployable space structures. Advances in Mechanics, 43(4): 390-414. doi: 10.6052/1000-0992-13-045
|
[6] |
胡晓楠, 张建斌, 赵国伟. 2010. 柔性绳索在空气阻力作用下的动力学仿真研究. 机械科学与技术, 29(8): 1334-1337 (Hu X N, Zhang J B, Zhao G W. 2010. Dynamic simulation study of flexible ropes under air resistance. Mechanical Science and Technology, 29(8): 1334-1337).
Hu X N, Zhang J B, Zhao G W. 2010. Dynamic simulation study of flexible ropes under air resistance. Mechanical Science and Technology, 29(8): 1334-1337.
|
[7] |
姜凯, 陈伟, 韩佳奇, 等. 2023. 鸟撞发动机整机响应显式—隐式仿真. 航空发动机, 49(1): 109-114 (Jiang K, Chen W, Han J Q, et al. 2023. Explicit-implicit simulation of engine response under bird impact. Aeroengine, 49(1): 109-114).
Jiang K, Chen W, Han J Q, et al. 2023. Explicit-implicit simulation of engine response under bird impact. Aeroengine, 49(1): 109-114.
|
[8] |
兰彬, 叶献辉, 宋顺成, 等. 2015. 304NG不锈钢高应变率材料模型在ABAQUS中的实现技术. 应用数学和力学, 36(2): 167-177 (Lan B, Ye X H, Song S C, et al. 2015. Formulation and programming of a dynamic constitutive model at high strain rates in ABAQUS for the 304NG stainless steel. Applied Mathematics and Mechanics, 36(2): 167-177). doi: 10.3879/j.issn.1000-0887.2015.02.006
Lan B, Ye X H, Song S C, et al. 2015. Formulation and programming of a dynamic constitutive model at high strain rates in ABAQUS for the 304NG stainless steel. Applied Mathematics and Mechanics, 36(2): 167-177. doi: 10.3879/j.issn.1000-0887.2015.02.006
|
[9] |
刘学深, 丁培柱. 2004. 量子系统保结构计算新进展. 物理学进展, 24(1): 47-89 (Liu X S, Ding P Z. 2004. New progress of structure-preserving computation for quantum systems. Progress in Physics, 24(1): 47-89). doi: 10.3321/j.issn:1000-0542.2004.01.003
Liu X S, Ding P Z. 2004. New progress of structure-preserving computation for quantum systems. Progress in Physics, 24(1): 47-89. doi: 10.3321/j.issn:1000-0542.2004.01.003
|
[10] |
刘祥庆, 刘晶波, 丁桦. 2007. 时域逐步积分算法稳定性与精度的对比分析. 岩石力学与工程学报, 26: 3000-3008 (Liu X Q, Liu J B, Ding H. 2007. Comparative analysis of stability and accuracy of step-by-step time-integration methods. Chinese Journal of Rock Mechanics and Engineering, 26: 3000-3008).
Liu X Q, Liu J B, Ding H. 2007. Comparative analysis of stability and accuracy of step-by-step time-integration methods. Chinese Journal of Rock Mechanics and Engineering, 26: 3000-3008.
|
[11] |
赖松柏, 陈同祥, 于登云. 2012. 整体壁板填料辅助滚弯成形的动力显式分析方法. 航天器工程, 21(3): 41-47 (Lai S B, Chen T X, Yu D Y. 2012. Dynamic explicit analysis method for roll bending of integral stiffened panel with rubber filler. Spacecraft Engineering, 21(3): 41-47). doi: 10.3969/j.issn.1673-8748.2012.03.021
Lai S B, Chen T X, Yu D Y. 2012. Dynamic explicit analysis method for roll bending of integral stiffened panel with rubber filler. Spacecraft Engineering, 21(3): 41-47. doi: 10.3969/j.issn.1673-8748.2012.03.021
|
[12] |
李云飞, 曾祥国, 廖异. 2017. 基于修正Johnson-Cook模型的钛合金热黏塑性动态本构关系及有限元模拟. 中国有色金属学报, 27(7): 1419-1425 (Li Y F, Zeng X G, Liao Y. 2017. Thermal-viscoplastic constitutive relation of Ti-6Al-4V alloy and numerical simulation by modified Johnson-Cook modal. The Chinese Journal of Nonferrous Metals, 27(7): 1419-1425). doi: 10.19476/j.ysxb.1004.0609.2017.07.13
Li Y F, Zeng X G, Liao Y. 2017. Thermal-viscoplastic constitutive relation of Ti-6Al-4V alloy and numerical simulation by modified Johnson-Cook modal. The Chinese Journal of Nonferrous Metals, 27(7): 1419-1425 doi: 10.19476/j.ysxb.1004.0609.2017.07.13
|
[13] |
李小军, 刘爱文. 2000. 动力方程求解的显式积分格式及其稳定性与适用性. 世界地震工程, 16: 8-12 (Li X J, Liu A W. 2000. Explicit step-by-step integration formulas for dynamic differential equations and their stability and applicability. World Earthquake Engineering, 16: 8-12).
Li X J, Liu A W. 2000. Explicit step-by-step integration formulas for dynamic differential equations and their stability and applicability. World Earthquake Engineering, 16: 8-12.
|
[14] |
李小军, 廖振鹏. 1993. 非线性结构动力方程求解的显式差分格式的特性分析. 工程力学, 10: 141-148 (Li X J, Liao Z P. 1993. The analysis of the problems of an explicit difference method for solving the nonlinear structural dynamic equations. Engineering Mechanics, 10: 141-148).
Li X J, Liao Z P. 1993. The analysis of the problems of an explicit difference method for solving the nonlinear structural dynamic equations. Engineering Mechanics, 10: 141-148.
|
[15] |
李小军, 廖振鹏, 杜修力. 1992. 有阻尼体系动力问题的一种显式差分解法. 地震工程与工程振动, 12: 74-80 (Li X J, Liao Z P, Du X L. 1992. An explicit difference method for dynamic problems of damped systems. Earthquake Engineering and Engineering Vibration, 12: 74-80).
Li X J, Liao Z P, Du X L. 1992. An explicit difference method for dynamic problems of damped systems. Earthquake Engineering and Engineering Vibration, 12: 74-80.
|
[16] |
李常青, 李正藩, 蒋丽忠. 2024. 单步无条件稳定显式结构动力学算法. 铁道科学与工程学报, 21: 1136-1145 (Li C Q, Li Z F, Jiang L Z. 2024. An explicit finite difference method for viscoelastic dynamic problem. Journal of Railway Science and Engineering, 21: 1136-1145). doi: 10.19713/j.cnki.43-1423/u.T20230761
Li C Q, Li Z F, Jiang L Z. 2024. An explicit finite difference method for viscoelastic dynamic problem. Journal of Railway Science and Engineering, 21: 1136-1145. doi: 10.19713/j.cnki.43-1423/u.T20230761
|
[17] |
李常青, 楼梦麟, 余志武, 等. 2011. 近似平衡多项式加速度动力显式算法. 应用力学学报, 28: 475-479, 553 (Li C Q, Lou M L, Yu Z W, et al. 2011. Pseudo-balance polynomial acceleration explicit method. Chinese Journal of Applied Mechanics, 28: 475-479, 553).
Li C Q, Lou M L, Yu Z W, et al. 2011. Pseudo-balance polynomial acceleration explicit method. Chinese Journal of Applied Mechanics, 28: 475-479, 553.
|
[18] |
李志成, 黄小平, 钱七虎. 1994. 一种提高直接积分精度的方法. 力学与实践, 16: 36-39 (Li Z C, Huang X P, Qian Q H. 1994. A method for improving the accuracy of direct integration. Mechanics and Practice, 16: 36-39). doi: 10.6052/1000-0992-1994-063
Li Z C, Huang X P, Qian Q H. 1994. A method for improving the accuracy of direct integration. Mechanics and Practice, 16: 36-39. doi: 10.6052/1000-0992-1994-063
|
[19] |
李艳敏. 2005. 复杂结构的冲击动力学分析与仿真. [硕士论文]. 西北工业大学 (Li Y M. 2005. Impact dynamic analysis and simulation of complex structures. [Master Thesis]. Northwestern Polytechnical University).
Li Y M. 2005. Impact dynamic analysis and simulation of complex structures. [Master Thesis]. Northwestern Polytechnical University.
|
[20] |
李金泽. 2023. 结构动力学问题自启动逐步时间积分算法的设计与分析. [博士论文]. 哈尔滨工业大学 (Li J Z. 2023. Design and analysis of self-starting step-by-step time integration algorithms for structural dynamics. [PhD Thesis]. Harbin Institute of Technology).
Li J Z. 2023. Design and analysis of self-starting step-by-step time integration algorithms for structural dynamics. [PhD Thesis]. Harbin Institute of Technology.
|
[21] |
缪建成. 2011. 柔性多体动力学计算方法与大型可展天线动力分析研究. [博士论文]. 上海交通大学 (Miao J C. 2011. Study on computational stretgy for flexible multi-body dynamics and analysis of large deployable antenna. [PhD Thesis].Shanghai Jiao Tong University).
Miao J C. 2011. Study on computational stretgy for flexible multi-body dynamics and analysis of large deployable antenna. [PhD Thesis].Shanghai Jiao Tong University.
|
[22] |
荣棉水, 李亚琦, 周伯昌. 2007. 求解动力方程的三种显式积分格式的比较. 华南地震, 27: 77-85 (Rong M S, Li Y Q, Zhou B C. 2007. Comparison of dissipation characteristics of 3 kinds of explicit integration formula for dynamic differential equations. South China Seismology, 27: 77-85). doi: 10.3969/j.issn.1001-8662.2007.01.011
Rong M S, Li Y Q, Zhou B C. 2007. Comparison of dissipation characteristics of 3 kinds of explicit integration formula for dynamic differential equations. South China Seismology, 27: 77-85. doi: 10.3969/j.issn.1001-8662.2007.01.011
|
[23] |
邵慧萍, 蔡承文. 1988. 结构动力学方程数值积分的三参数算法. 应用力学学报, 5: 76-81 (Shao H P, Cai C W. 1988. A three parameter algorithm for integration of structural dynamic equations. Chinese Journal of Applied Mechanics, 5: 76-81).
Shao H P, Cai C W. 1988. A three parameter algorithm for integration of structural dynamic equations. Chinese Journal of Applied Mechanics, 5: 76-81.
|
[24] |
王进廷, 杜修力. 2002. 有阻尼体系动力分析的一种显式差分法. 工程力学, 19: 109-112 (Wang J T, Du X L. 2002. An explicit difference method for dynamic analysis of a structure system with damping. Engineering Mechanics, 19: 109-112). doi: 10.3969/j.issn.1000-4750.2002.03.022
Wang J T, Du X L. 2002. An explicit difference method for dynamic analysis of a structure system with damping. Engineering Mechanics, 19: 109-112. doi: 10.3969/j.issn.1000-4750.2002.03.022
|
[25] |
王进廷, 张楚汉, 金峰. 2006. 有阻尼动力方程显式积分方法的精度研究. 工程力学, 23: 1-5 (Wang J T, Zhang C H, Jin F. 2006. On the accuracy of several explicit integration schemes for dynamic equation with damping. Engineering Mechanics, 23: 1-5). doi: 10.3969/j.issn.1000-4750.2006.03.001
Wang J T, Zhang C H, Jin F. 2006. On the accuracy of several explicit integration schemes for dynamic equation with damping. Engineering Mechanics, 23: 1-5. doi: 10.3969/j.issn.1000-4750.2006.03.001
|
[26] |
谢红飙, 肖宏, 张国民, 等. 2003. 显式动力学有限元法分析板宽对板带轧制压力分布的影响. 塑性工程学报, 10(1): 61-64 (Xie H B, Xiao H, Zhang G M, et al. 2003. Analysis of strip rolling pressure distribution for different width by explicit dynamic FEM. Journal of Plasticity Engineering, 10(1): 61-64). doi: 10.3969/j.issn.1007-2012.2003.01.016
Xie H B, Xiao H, Zhang G M, et al. 2003. Analysis of strip rolling pressure distribution for different width by explicit dynamic FEM. Journal of Plasticity Engineering, 10(1): 61-64 doi: 10.3969/j.issn.1007-2012.2003.01.016
|
[27] |
徐圣. 2015. 几何非线性空间梁动力学仿真. [硕士论文]. 上海交通大学 (Xu S. 2015. Dynamic simulation of geometric nonlinear spatial beam. [Master Thesis]. Shanghai Jiao Tong University).
Xu S. 2015. Dynamic simulation of geometric nonlinear spatial beam. [Master Thesis]. Shanghai Jiao Tong University.
|
[28] |
姚松, 田红旗, 高广军. 2003. 显式有限元法在车辆耐撞性研究中的应用. 交通运输工程学报, 3(1): 13-16, 20 (Yao S, Tian H Q, Gao G J. 2003. Explicit finite element method for vehicle crashworthiness. Journal of Traffic and Transportation Engineering, 3(1): 13-16, 20). doi: 10.3321/j.issn:1671-1637.2003.01.003
Yao S, Tian H Q, Gao G J. 2003. Explicit finite element method for vehicle crashworthiness. Journal of Traffic and Transportation Engineering, 3(1): 13-16, 20. doi: 10.3321/j.issn:1671-1637.2003.01.003
|
[29] |
于开平, 李进旺, 杨利芳, 等. 2004. 一个新的显式算法及其在转子动力学中的应用. 中国电机工程学报, 24: 114-118 (Yu K P, Li J W, Yang L F, et al. 2004. A new explicit time integration algorithm for the rotor problem. Proceedings of the CSEE, 24: 114-118). doi: 10.3321/j.issn:0258-8013.2004.05.021
Yu K P, Li J W, Yang L F, et al. 2004. A new explicit time integration algorithm for the rotor problem. Proceedings of the CSEE, 24: 114-118. doi: 10.3321/j.issn:0258-8013.2004.05.021
|
[30] |
赵宝友. 2010. 大型岩体洞室地震响应及减震措施研究. [博士论文]. 大连理工大学 (Zhao B Y. 2010. Research on seismic response and seismic resistance measures for large rock cavern under earthquake motion. [PhD Thesis]. Dalian University of Technology).
Zhao B Y. 2010. Research on seismic response and seismic resistance measures for large rock cavern under earthquake motion. [PhD Thesis]. Dalian University of Technology.
|
[31] |
赵欣, 丁继锋, 韩增尧, 等. 2016. 航天器火工冲击模拟试验及响应预示方法研究综述. 爆炸与冲击, 36(2): 259-268 (Zhao X, Ding J F, Han Z Y, et al. 2016. Review of simulation and response prediction methods in spacecraft. Explosion and Shock Waves, 36(2): 259-268). doi: 10.11883/1001-1455(2016)02-0259-10
Zhao X, Ding J F, Han Z Y, et al. 2016. Review of simulation and response prediction methods in spacecraft. Explosion and Shock Waves, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10
|
[32] |
郑天骄. 2014. 拖拽下大变形柔性线缆非线性力学特性研究. [硕士论文]. 哈尔滨工业大学 (Zheng T J. 2014. Study on nonlinear mechanical properties of dragging flexible cables with large deformation. [Master Thesis].Harbin Institute of Technology).
Zheng T J. 2014. Study on nonlinear mechanical properties of dragging flexible cables with large deformation. [Master Thesis].Harbin Institute of Technology.
|
[33] |
翟婉明. 1991. 大型结构动力分析的Newmark显式算法. 重庆交通学院学报, 10: 33-41 (Zhai W M. 1991. The explicit scheme of Newmark’s integration method for large structural dynamic analysis. Journal of Chongqing Jiaotong Institute, 10: 33-41).
Zhai W M. 1991. The explicit scheme of Newmark’s integration method for large structural dynamic analysis. Journal of Chongqing Jiaotong Institute, 10: 33-41.
|
[34] |
翟婉明. 1990. 非线性结构动力分析的Newmark预测—校正积分模式. 计算结构力学与机器应用, 7: 51-58 (Zhai W M. 1990. The predictor-corrector scheme based on the Newmark’s integration algorithm for nonlinear structural dynamic analysis. Computational Structural Mechanics and Applications, 7: 51-58).
Zhai W M. 1990. The predictor-corrector scheme based on the Newmark’s integration algorithm for nonlinear structural dynamic analysis. Computational Structural Mechanics and Applications, 7: 51-58.
|
[35] |
张雄, 刘岩, 张帆, 等. 2017. 极端变形问题的物质点法研究进展. 计算力学学报, 34(1): 1-16 (Zhang X, Liu Y, Zhang F, et al. 2017. Recent progress of material point method for extreme deformation problems. Chinese Journal of Computational Mechanics, 34(1): 1-16). doi: 10.7511/jslx201701001
Zhang X, Liu Y, Zhang F, et al. 2017. Recent progress of material point method for extreme deformation problems. Chinese Journal of Computational Mechanics, 34(1): 1-16 doi: 10.7511/jslx201701001
|
[36] |
张晓志, 程岩, 谢礼立. 2002. 结构动力反应分析的三阶显式方法. 地震工程与工程振动, 22: 1-8 (Zhang X Z, Cheng Y, Xie L L. 2002. A new explicit solution of dynamic response analysis. Earthquake Engineering and Engineering Vibration, 22: 1-8). doi: 10.3969/j.issn.1000-1301.2002.03.001
Zhang X Z, Cheng Y, Xie L L. 2002. A new explicit solution of dynamic response analysis. Earthquake Engineering and Engineering Vibration, 22: 1-8. doi: 10.3969/j.issn.1000-1301.2002.03.001
|
[37] |
周平. 2023. 多体系统动力学中微分代数方程组的数值方法研究. [博士论文]. 哈尔滨工业大学 (Zhou P. 2023. Study on numerical methods fordifferential algebraicequations in multibody systemsdynamics. [PhD Thesis]. Harbin Institute of Technology).
Zhou P. 2023. Study on numerical methods fordifferential algebraicequations in multibody systemsdynamics. [PhD Thesis]. Harbin Institute of Technology.
|
[38] |
周正华, 李山有, 侯兴民. 1999. 阻尼振动方程的一种显式直接积分方法. 世界地震工程, 15: 41-44 (Zhou Z H, Li S Y, Hou X M. 1999. An explicit method for direct integration of the damped vibration equations. World Earthquake Engineering, 15: 41-44). doi: CNKI:SUN:SJDC.0.1999-01-005
Zhou Z H, Li S Y, Hou X M. 1999. An explicit method for direct integration of the damped vibration equations. World Earthquake Engineering, 15: 41-44. doi: CNKI:SUN:SJDC.0.1999-01-005
|
[39] |
Amirouche F M L, Xie M. 1993. An explicit matrix formulation of the dynamical equations for flexible multibody systems: A recursive approach. Computers and Structures, 46: 311-321. doi: 10.1016/0045-7949(93)90195-J
|
[40] |
Bettinotti O, Allix O, Perego U, et al. 2017. Simulation of delamination under impact using a global–local method in explicit dynamics. Finite Elements in Analysis and Design, 125: 1-13. doi: 10.1016/j.finel.2016.11.002
|
[41] |
Butcher J C. 2016. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons.
|
[42] |
Chang S. 2009. An explicit method with improved stability property. International Journal for Numerical Methods in Engineering, 77: 1100-1120. doi: 10.1002/nme.2452
|
[43] |
Chang S-Y. 2002. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics, 128: 935-947. doi: 10.1061/(ASCE)0733-9399(2002)128:9(935)
|
[44] |
Chen C, Ricles J M. 2008. Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics, 134: 676-683. doi: 10.1061/(ASCE)0733-9399(2008)134:8(676)
|
[45] |
Chung J. 1992. Numerically dissipative time integration algorithms for structural dynamics. English, University of Michigan.
|
[46] |
Chung J, Hulbert G M. 1993. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60: 371-375. doi: 10.1115/1.2900803
|
[47] |
Chung J, Lee J M. 1994. A new family of explicit time integration methods for linear and non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 37: 3961-3976. doi: 10.1002/nme.1620372303
|
[48] |
Cook R D. 2007. Concepts and applications of finite element analysis. John Wiley & Sons.
|
[49] |
Dwivedy S K, Eberhard P. 2006. Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, 41: 749-777. doi: 10.1016/j.mechmachtheory.2006.01.014
|
[50] |
Ettefagh M H, Naraghi M, Towhidkhah F. 2019. Position control of a flexible joint via explicit model predictive control: An experimental implementation. Emerging Science Journal, 3: 146-156. doi: 10.28991/esj-2019-01177
|
[51] |
Fox L, Goodwin E T. 1949. Some new methods for the numerical integration of ordinary differential equations. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press: 373-388.
|
[52] |
Geradin M, Rixen D J. 2015. Mechanical vibrations: Theory and application to structural dynamics. John Wiley & Sons.
|
[53] |
Gladwell I, Thomas R M. 1983. Damping and phase analysis for some methods for solving second-order ordinary differential equations. International Journal for Numerical Methods in Engineering, 19: 495-503. doi: 10.1002/nme.1620190404
|
[54] |
Großeholz G, Soares D, Von Estorff O. 2015. A stabilized central difference scheme for dynamic analysis. International Journal for Numerical Methods in Engineering, 102: 1750-1760. doi: 10.1002/nme.4869
|
[55] |
Gufler V, Wehrle E, Zwölfer A. 2021. A review of flexible multibody dynamics for gradient-based design optimization. Multibody System Dynamics, 53: 379-409. doi: 10.1007/s11044-021-09802-z
|
[56] |
He H, Tang H, Yu K, et al. 2020. Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment. Chinese Journal of Aeronautics, 33: 2357-2371. doi: 10.1016/j.cja.2020.05.005
|
[57] |
Heinstein M W, Mello F J, Attaway S W, et al. 2000. Contact-impact modeling in explicit transient dynamics. Computer Methods in Applied Mechanics and Engineering, 187: 621-640. doi: 10.1016/S0045-7825(99)00342-4
|
[58] |
Hilber H M, Hughes T J R. 1978. Collocation, dissipation and “overshoot” for time integration schemes in structural dynamics. Earthquake Engineering & Structural Dynamics, 6: 99-117. doi: 10.1002/eqe.4290060111
|
[59] |
Hilber H M, Hughes T J R, Taylor R L. 1977. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 5: 283-292. doi: 10.1002/eqe.4290050306
|
[60] |
Hoff C, Taylor R L. 1990a. Higher derivative explicit one step methods for non-linear dynamic problems. Part I: Design and theory. International Journal for Numerical Methods in Engineering, 29: 275-290. doi: 10.1002/nme.1620290205
|
[61] |
Hoff C, Taylor R L. 1990b. Higher derivative explicit one step methods for non-linear dynamic problems. Part II: Practical calculations and comparisons with other higher order methods. International Journal for Numerical Methods in Engineering, 29: 291-301. doi: 10.1002/nme.1620290206
|
[62] |
Hughes T J. 1983. Analysis of transient algorithms with particular reference to stability behavior. Computational Methods for Transient Analysis. Computational Methods in Mechanics. North Holland, pp. 67–155.
|
[63] |
Hughes T J. 2012. The finite element method: linear static and dynamic finite element analysis. Courier Corporation.
|
[64] |
Hughes T J R, Belytschko T. 1983. A precis of developments in computational methods for transient analysis. Journal of Applied Mechanics, 50: 1033-1041. doi: 10.1115/1.3167186
|
[65] |
Hughes T J R, Liu W K. 1978a. Implicit-explicit finite elements in transient analysis: Implementation and numerical examples. Journal of Applied Mechanics, 45: 375-378. doi: 10.1115/1.3424305
|
[66] |
Hughes T J R, Liu W K. 1978b. Implicit-explicit finite elements in transient analysis: Stability theory. Journal of Applied Mechanics, 45: 371-374. doi: 10.1115/1.3424304
|
[67] |
Hulbert G M, Chung J. 1996. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering, 137: 175-188. doi: 10.1016/S0045-7825(96)01036-5
|
[68] |
Hulbert G M, Hughes T J R. 1987. An error analysis of truncated starting conditions in step-by-step time integration: Consequences for structural dynamics. Earthquake Engineering and Structural Dynamics, 15: 901-910. doi: 10.1002/eqe.4290150710
|
[69] |
Johnson G R, Beissel S R. 2001. Damping algorithms and effects for explicit dynamics computations. International Journal of Impact Engineering, 25: 911-925. doi: 10.1016/S0734-743X(01)00019-7
|
[70] |
Kawamoto A, Krenk S, Suzuki A, et al. 2010. Flexible body dynamics in a local frame with explicitly predicted motion. International Journal for Numerical Methods in Engineering, 81: 246-268. doi: 10.1002/nme.2699
|
[71] |
Kim W. 2019. A simple explicit single step time integration algorithm for structural dynamics. International Journal for Numerical Methods in Engineering, 119: 383-403. doi: 10.1002/nme.6054
|
[72] |
Kolay C, Ricles J M. 2014. Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics, 43: 1361-1380. doi: 10.1002/eqe.2401
|
[73] |
Krieg R D. 1973. Unconditional stability in numerical time integration methods. Journal of Applied Mechanics, 40: 417-421. doi: 10.1115/1.3422999
|
[74] |
Lambert J D. 1973. Computational methods in ordinary differential equations. Wiley.
|
[75] |
Leech J W, Hsu P-T, Mack E W. 1965. Stability of a finite-difference method for solving matrix equations. AIAA Journal, 3: 2172-2173. doi: 10.2514/3.3342
|
[76] |
Li J, Cui N, Li H, et al. 2024. Directly self-starting second-order explicit integration methods with dissipation control and adjustable bifurcation points for second-order initial value problems. International Journal of Structural Stability and Dynamics, 2450274.
|
[77] |
Li J, Li H, Lian Y, et al. 2023a. On designing and developing single-step second-order implicit methods with dissipation control and zero-order overshoots via subsidiary variables. International Journal for Numerical Methods in Engineering, 124: 4880-4940. doi: 10.1002/nme.7328
|
[78] |
Li J, Li H, Lian Y, et al. 2023b. A suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability bounds. Applied Mathematical Modelling, 114: 601-626. doi: 10.1016/j.apm.2022.10.012
|
[79] |
Li J, Li H, Zhao R, et al. 2023c. On second-order s-sub-step explicit algorithms with controllable dissipation and adjustable bifurcation point for second-order hyperbolic problems. European Journal of Mechanics-A/Solids, 97: 104829. doi: 10.1016/j.euromechsol.2022.104829
|
[80] |
Li J, Yu K. 2020. A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics. Archive of Applied Mechanics, 90: 737-772. doi: 10.1007/s00419-019-01637-7
|
[81] |
Li J, Yu K. 2021. Development of composite sub-step explicit dissipative algorithms with truly self-starting property. Nonlinear Dynamics, 103: 1911-1936.
|
[82] |
Li J, Yu K. 2019. Noniterative integration algorithms with controllable numerical dissipations for structural dynamics. International Journal of Computational Methods, 16: 1850111. doi: 10.1142/S0219876218501116
|
[83] |
Li J, Yu K, Li X. 2018. A generalized structure-dependent semi-explicit method for structural dynamics. Journal of Computational and Nonlinear Dynamics, 13: 111008. doi: 10.1115/1.4041239
|
[84] |
Li J, Yu K, Li X. 2019. A two-step unconditionally stable explicit method with controllable numerical dissipations. Earthquake Engineering and Engineering Vibration, 18: 285-299. doi: 10.1007/s11803-019-0504-y
|
[85] |
Li J, Yu K, Li X. 2021a. An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics. International Journal for Numerical Methods in Engineering, 122: 1089-1132. doi: 10.1002/nme.6574
|
[86] |
Li J, Yu K, Tang H. 2021b. Further assessment of three bathe algorithms and implementations for wave propagation problems. International Journal of Structural Stability and Dynamics, 21: 2150073. doi: 10.1142/S0219455421500735
|
[87] |
Li J, Yu K, Zhao R. 2022a. Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 395: 114945. doi: 10.1016/j.cma.2022.114945
|
[88] |
Li J, Zhao R, Yu K, et al. 2022b. Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 389: 114274. doi: 10.1016/j.cma.2021.114274
|
[89] |
Lim H, Taylor R L. 2001. An explicit-implicit method for flexible–rigid multibody systems. Finite Elements in Analysis and Design, 37: 881-900. doi: 10.1016/S0168-874X(01)00073-7
|
[90] |
Liu W, Ye T, Yuan P, et al. 2023. An explicit integration method with third-order accuracy for linear and nonlinear dynamic systems. Engineering Structures, 274: 115013. doi: 10.1016/j.engstruct.2022.115013
|
[91] |
Mahéo L, Grolleau V, Rio G. 2009. Damping efficiency of the Tchamwa−Wielgosz explicit dissipative scheme under instantaneous loading conditions. Comptes Rendus Mécanique, 337: 722-732. doi: 10.1016/j.crme.2009.10.005
|
[92] |
Mahéo L, Grolleau V, Rio G. 2013. Numerical damping of spurious oscillations: A comparison between the bulk viscosity method and the explicit dissipative Tchamwa−Wielgosz scheme. Computational Mechanics, 51: 109-128. doi: 10.1007/s00466-012-0708-8
|
[93] |
Miranda I, Ferencz R M, Hughes T J R. 1989. An improved implicit-explicit time integration method for structural dynamics. Earthquake Engineering & Structural Dynamics, 18: 643-653. doi: 10.1002/eqe.4290180505
|
[94] |
Namburu R, Tamma K. 1992. A generalized $ {\mathrm{\gamma }}_{\mathrm{s}} $-family of self-starting algorithms for computational structural dynamics. 33rd Structures, Structural Dynamics and Materials Conference. American Institute of Aeronautics and Astronautics, Dallas, TX, U.S.A.
|
[95] |
Newmark N M. 1959. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85: 67-94. doi: 10.1061/JMCEA3.0000098
|
[96] |
Nguyen M Q, Elder D J, Bayandor J, et al. 2005. A review of explicit finite element software for composite impact analysis. Journal of Composite Materials, 39: 375-386. doi: 10.1177/0021998305046739
|
[97] |
Noh G, Bathe K-J. 2013. An explicit time integration scheme for the analysis of wave propagations. Computers and Structures, 129: 178-193. doi: 10.1016/j.compstruc.2013.06.007
|
[98] |
Nsiampa N, Ponthot J-P, Noels L. 2008. Comparative study of numerical explicit schemes for impact problems. International Journal of Impact Engineering, 35: 1688-1694. doi: 10.1016/j.ijimpeng.2008.07.003
|
[99] |
Otto P, De Lorenzis L, Unger J F. 2020. Explicit dynamics in impact simulation using a NURBS contact interface. International Journal for Numerical Methods in Engineering, 121: 1248-1267. doi: 10.1002/nme.6264
|
[100] |
Park S W, Xia Q, Zhou M. 2001. Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation. International Journal of Impact Engineering, 25: 887-910. doi: 10.1016/S0734-743X(01)00021-5
|
[101] |
Shimada M. 2013. Integration framework and algorithms by design: Implicit and explicit families of generalized single step single solve algorithms by design in two-and single-field forms.
|
[102] |
Shimada M, Masuri S, Tamma K K. 2015. A novel design of an isochronous integration framework for first/second order multidisciplinary transient systems. International Journal for Numerical Methods in Engineering, 102: 867-891. doi: 10.1002/nme.4715
|
[103] |
Soares D, Großeholz G. 2018. Nonlinear structural dynamic analysis by a stabilized central difference method. Engineering Structures, 173: 383-392. doi: 10.1016/j.engstruct.2018.06.115
|
[104] |
Tamma K K, D’Costa J F. 1992. A new explicit variable time-integration self-starting methodology for computational structural dynamics. International Journal for Numerical Methods in Engineering, 33: 1165-1180. doi: 10.1002/nme.1620330605
|
[105] |
Tamma K K, Namburu R R. 1988a. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering, 71: 137-150. doi: 10.1016/0045-7825(88)90082-5
|
[106] |
Tamma K K, Namburu R R. 1988b. An explicit velocity based Lax-Wendroff/Taylor-Galerkin methodology of computation for the dynamics of structures. Computers & structures, 30: 1017-1024. doi: 10.1016/0045-7949(88)90146-0
|
[107] |
Tamma K K, Wang Y, Maxam D. 2024. A critical review/look at “optimal implicit single-step time integration methods with equivalence to the second-order-type linear multistep methods for structural dynamics: Accuracy analysis based on an analytical framework”. Computer Methods in Applied Mechanics and Engineering, 431: 117272. doi: 10.1016/j.cma.2024.117272
|
[108] |
Tarnow N, Simo J C. 1994. How to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation properties. Computer Methods in Applied Mechanics and Engineering, 115: 233-252. doi: 10.1016/0045-7825(94)90061-2
|
[109] |
Tchamwa B. 1997. Contribution a l’etude des methodes d’integration directe explicites en dynamique non lineaire des structures. Doctoral dissertation, Nantes.
|
[110] |
Trujillo D M. 1975. The direct numerical integration of linear matrix differential equations using Padé approximations. International Journal for Numerical Methods in Engineering, 9: 259-270. doi: 10.1002/nme.1620090202
|
[111] |
Wood W L. 1984. A unified set of single step algorithms. Part 2: Theory. International Journal for Numerical Methods in Engineering, 20: 2303-2309. doi: 10.1002/nme.1620201210
|
[112] |
Wood W L. 1986. A unified set of single step algorithms. Part 4: Backward error analysis applied to the solution of the dynamic vibration equation. International Journal for Numerical Methods in Engineering, 23: 929-944. doi: 10.1002/nme.1620230513
|
[113] |
Wood W L. 1981. Numerical integration of structural dynamics equations including natural damping and periodic forcing terms. International Journal for Numerical Methods in Engineering, 17: 281-289. doi: 10.1002/nme.1620170211
|
[114] |
Wood W L, Bossak M, Zienkiewicz O C. 1980. An alpha modification of Newmark’s method. International Journal for Numerical Methods in Engineering, 15: 1562-1566. doi: 10.1002/nme.1620151011
|
[115] |
Yang C, Wang X, Li Q, et al. 2020. An improved explicit integration algorithm with controllable numerical dissipation for structural dynamics. Archive of Applied Mechanics, 90: 2413-2431. doi: 10.1007/s00419-020-01729-9
|
[116] |
Yang C, Xiao S, Lu L, et al. 2014. Two dynamic explicit methods based on double time steps. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 228: 330-337. doi: 10.1177/1464419314530111
|
[117] |
Yankovskii A P. 2017. Applying the explicit time central difference method for numerical simulation of the dynamic behavior of elastoplastic flexible reinforced plates. Journal of Applied Mechanics and Technical Physics, 58: 1223-1241. doi: 10.1134/S0021894417070112
|
[118] |
Yu K. 2008. A new family of generalized-α time integration algorithms without overshoot for structural dynamics. Earthquake Engineering and Structural Dynamics, 37: 1389-1409. doi: 10.1002/eqe.818
|
[119] |
Yue B, Guddati M N. 2005. Dispersion-reducing finite elements for transient acoustics. Journal of the Acoustical Society of America, 118: 2132-2141. doi: 10.1121/1.2011149
|
[120] |
Zhai W. 1996. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering, 39: 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
|
[121] |
Zhang H M, Xing Y F. 2019. Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics. Computers & Structures, 221: 127-141. doi: 10.1016/j.compstruc.2019.05.018
|
[122] |
Zhang J, Ankit A, Gravenkamp H, et al. 2021. A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes. Computer Methods in Applied Mechanics and Engineering, 380: 113811. doi: 10.1016/j.cma.2021.113811
|
[123] |
Zhao R, Li J, Yu K. 2023. A self-starting dissipative alternative to the central difference methods. Archive of Applied Mechanics, 93: 571-603. doi: 10.1007/s00419-022-02286-z
|
[124] |
Zhou X, Tamma K K. 2004. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering, 59: 597-668. doi: 10.1002/nme.873
|