Volume 54 Issue 1
Mar.  2024
Turn off MathJax
Article Contents
Deng W W, Zhai T Q, Gao L H, Xu C H, Zhao X Y, Liu Y C. Recent progress of experimental fluid mechanics for EUV sources. Advances in Mechanics, 2024, 54(1): 138-172 doi: 10.6052/1000-0992-23-044
Citation: Deng W W, Zhai T Q, Gao L H, Xu C H, Zhao X Y, Liu Y C. Recent progress of experimental fluid mechanics for EUV sources. Advances in Mechanics, 2024, 54(1): 138-172 doi: 10.6052/1000-0992-23-044

Recent progress of experimental fluid mechanics for EUV sources

doi: 10.6052/1000-0992-23-044
More Information
  • Corresponding author: liuyc@sustech.edu.cn
  • Received Date: 2023-10-30
  • Accepted Date: 2024-01-17
  • Available Online: 2024-01-30
  • Publish Date: 2024-03-24
  • The extreme ultraviolet (EUV) source is the enabling component of the EUV lithography. The commercialized EUV source is based on laser produced plasma from tin droplet target. EUV source is essentially a fluid-state light source, which involves rich and complex fundamental fluid mechanics problems with four characteristic time scales ranging from picoseconds to milliseconds. This review surveys the research progress of experimental fluid dynamics for EUV sources. First, the fundamental and technical aspects of the generation and control of jet, droplet and liquid film targets are introduced. Second, the dynamic response of the three types of targets to pulsed lasers were summarized, with an emphasis on droplet targets. Finally, in order to improve the stability, brightness and life the EUV sources, three key research topics in experimental fluid mechanics worthy of attention are proposed: (i) the precise generation and manipulation of fine tin droplet targes with long spacing at high frequencies; (ii) the quantitative physical picture of the expansion and radiation of the laser produced plasma, and (iii) the deformation and fragmentation mechanism of droplet targets and suppression, collection and cleaning technologies for debris.


  • loading
  • [1]
    Abhari R S, Rollinger B, Giovannini A Z, et al. 2012. Laser-produced plasma light source for extreme-ultraviolet lithography applications. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11 : 021114.
    Andrew Musgrave C S, Lu N, Sato R, et al. 2019. Gallium-tin alloys as a low melting point liquid metal for repetition-pulse-laser-induced high energy density state toward compact pulse EUV sources. RSC Adv, 9: 13927-13932. doi: 10.1039/C9RA01905G
    Ashegriz N, Mashayek F. 1995. Temporal analysis of capillary jet breakup. J. Fluid Mech., 291 : 163-190.
    Attwood D, Sakdinawat A. X-Rays and Extreme Ultraviolet Radiation: Principles and Applications//Cambridge: Cambridge University Press, 2017DOI: 10.1017/CBO9781107477629.
    Basko M M, Krivokorytov M S, Yu Vinokhodov A, et al. 2017. Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses. Laser Physics Letters, 14 : 036001.
    Betti R, Hurricane O A. 2016. Inertial-confinement fusion with lasers. Nature Physics, 12: 435-448. doi: 10.1038/nphys3736
    Blaj G, Liang M N, Aquila A L, et al. 2019. Generation of high-intensity ultrasound through shock propagation in liquid jets. Physical Review Fluids, 4: 043401. doi: 10.1103/PhysRevFluids.4.043401
    Bush J W M, Hasha A E. 2004. On the collision of laminar jets: fluid chains and fishbones. Journal of Fluid Mechanics, 511: 285-310. doi: 10.1017/S002211200400967X
    Chen X, Yang V. 2019. Recent advances in physical understanding and quantitative prediction of impinging-jet dynamics and atomization. Chinese Journal of Aeronautics, 32: 45-57. doi: 10.1016/j.cja.2018.10.010
    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B. 2015. Experimental study on laser produced tin droplet plasma extreme ultraviolet light source. Acta Phys. Sin, 64 : 075202.
    Choo Y J, Kang B S. 2007. The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets. Physics of Fluids, 19 : 112101.
    Craxton R S, Anderson K S, Boehly T R, et al. 2015. Direct-drive inertial confinement fusion: A review. Physics of Plasmas, 22: 110501. doi: 10.1063/1.4934714
    Crissman C J, Mo M, Chen Z, et al. 2022. Sub-micron thick liquid sheets produced by isotropically etched glass nozzles. Lab Chip, 22: 1365-1373. doi: 10.1039/D1LC00757B
    David B I F, Alex E, William P, David M, et al. 2009. LPP source system development for HVM. Proceedings of SPIE.
    de Faria Pinto T, Mathijssen J, Meijer R, et al. 2021. Cylindrically and non-cylindrically symmetric expansion dynamics of tin microdroplets after ultrashort laser pulse impact. Applied Physics A, 127 : 93.
    Driessen T, Sleutel P, Dijksman F, et al. 2014. Control of jet breakup by a superposition of two Rayleigh-Plateau unstable modes. J. Fluid Mech, 749: 22.
    Eggers J, Villermaux E. 2008. Physics of Liquid Jets. Reports on Progress in Physics, 71: 036601. doi: 10.1088/0034-4885/71/3/036601
    Fomenkov I, Brandt D, Ershov A, et al. 2017a. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling. Advanced Optical Technologies, 6: 173-186. doi: 10.1515/aot-2017-0029
    Fomenkov I. 2017b. EUV source for high volume manufacturing: Performance at 250 W and key technologies for power scaling. 2017 Source Workshop; Dublin, Ireland.
    Fujimoto J, Hori T, Yanagida T, et al. 2012. Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography. Physics Research International, 2012: 1-11.
    Fujioka S, Shimomura M, Shimada Y, et al. 2008. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production. Applied Physics Letters, 92: 241502. doi: 10.1063/1.2948874
    Galinis G, Strucka J, Barnard J C T, et al. 2017. Micrometer-thickness liquid sheet jets flowing in vacuum. Rev Sci Instrum, 88: 083117. doi: 10.1063/1.4990130
    Gao L, Liu Y, Tang H, et al. 2022. Response of ∼100 micron water jets to intense nanosecond laser blasts. Physical Review Fluids, 7 : 034001.
    Gelderblom H, Lhuissier H, Klein A, et al. 2016. Drop deformation by laser-pulse impact. Journal of Fluid Mechanics, 794: 676-699. doi: 10.1017/jfm.2016.182
    George K M, Morrison J T, Feister S, et al. 2019. High-repetition-rate (kHz) targets and optics from liquid microjets for high-intensity laser–plasma interactions. High Power Laser Science and Engineering, 7: 21. doi: 10.1017/hpl.2018.74
    George S A, Hou K C, Takenoshita K, et al. 2007. 13.5 nm EUV generation from tin-doped droplets using a fiber laser. Optics Express, 15: 16348-16356. doi: 10.1364/OE.15.016348
    George S A, Koay C S, Takenoshita K, et al. EUV spectroscopy of mass-limited Sn-doped laser micro-plasmas//SPIE Advanced Lithography. 2005.
    Gonzalez-Avila S R, Ohl C D. 2016. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. Journal of Fluid Mechanics, 805: 551-576. doi: 10.1017/jfm.2016.583
    Grigoryev S Y, Lakatosh B V, Krivokorytov M S, et al. 2018. Expansion and Fragmentation of a Liquid-Metal Droplet by a Short Laser Pulse. Physical Review Applied, 10 : 064009.
    Ha B, DePonte D P, Santiago J G. 2018. Device design and flow scaling for liquid sheet jets. Physical Review Fluids, 3 : 114202.
    Hansson B A M, Berglund M, Hemberg O, et al. 2004a. Stabilization of liquified-inert-gas jets for laser–plasma generation. Journal of Applied Physics, 95: 4432-4437. doi: 10.1063/1.1687037
    Hansson B A M, Hertz H M. 2004b. Liquid-jet laser–plasma extreme ultraviolet sources: from droplets to filaments. Journal of Physics D:Applied Physics, 37: 3233-3243. doi: 10.1088/0022-3727/37/23/004
    Harilal S S, O'Shay B, Tillack M S, et al. 2006. Spectral control of emissions from tin doped targets for extreme ultraviolet lithography. Journal of Physics D:Applied Physics, 39: 484. doi: 10.1088/0022-3727/39/3/010
    Hasson D, Peck R E. 1964. Thickness distribution in a sheet formed by impinging jets. AIChE Journal, 10: 5. doi: 10.1002/aic.690100111
    Hermens J, Gelderblom H, Liu B, et al. 2021. Laser-impact-induced splashing: an analysis of the splash crown evolution after Nd: YAG ns-pulse laser impact on a liquid tin pool. Applied Physics B, 127 : 44.
    Hernandez-Rueda J, Liu B, Hemminga D J, et al. 2022. Early-time hydrodynamic response of a tin droplet driven by laser-produced plasma. Physical Review Research, 4: 013142. doi: 10.1103/PhysRevResearch.4.013142
    Hudgins D, Abhari R S. 2019. Rupture time of droplets impacted by a burst of picosecond laser pulses. Phys Rev E, 99: 031102. doi: 10.1103/PhysRevE.99.031102
    Hudgins D, Gambino N, Rollinger B, et al. 2016. Neutral cluster debris dynamics in droplet-based laser-produced plasma sources. Journal of Physics D: Applied Physics, 49 : 185205.
    Iartsev B, Vichev I, Tsygvintsev I, et al. 2020. On experimental and numerical study of the dynamics of a liquid metal jet hit by a laser pulse. Experiments in Fluids, 61 : 119.
    Jansson P A C, Hansson B A M, Hemberg O, et al. 2004. Liquid-tin-jet laser-plasma extreme ultraviolet generation. Applied Physics Letters, 84: 2256-2258. doi: 10.1063/1.1690874
    Jun L, Shengnan L, Lehua Q, et al. 2023. Generation of the small tin-droplet streams with a manipulable droplet spacing via the forced velocity perturbation. Physics of Fluids, 35 : 013612.
    Chaudhary K C, Maxworthy T. 1980. The nonlinear capillary instability of a liquid jet part 2 experiments on jet behaviour before droplet formation. J. Fluid Mech, 96 : 275-286.
    Kaku M, Touge S, Katto M, et al. 2009. Debris characteristics and mitigation of a laser plasma tin-contained liquid jet/droplet targets, Proc. SPIE 7271, Alternative Lithographic Technologies: 727132.
    Kamis Y E, Eral H B, Breugem W P. 2021. Active control of jet breakup and droplet formation using temperature modulation. Physical Review Fluids, 6 : 103903.
    Kashanj S, Kebriaee A. 2019. The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets. Chemical Engineering Science, 206: 235-248. doi: 10.1016/j.ces.2019.05.015
    Kawasuji Y, Nowak K, Hori T, et al. 2017. Key components technology update of the 250W high-power LPP-EUV light source. SPIE Advanced Lithography, 10143 : 101432G.
    Kemp K, Wurm S. 2006. EUV lithography. Comptes Rendus Physique, 7: 875-886. doi: 10.1016/j.crhy.2006.10.002
    Kim J, Kim K H, Lee J H, et al. 2010. Ultrafast X-ray diffraction in liquid, solution and gas: present status and future prospects. Acta Crystallogr A, 66: 270-280. doi: 10.1107/S0108767309052052
    Kim Y H, Kim H, Park S C, et al. 2023. High-harmonic generation from a flat liquid-sheet plasma mirror. Nature Communications, 14: 2328. doi: 10.1038/s41467-023-38087-3
    Klein A, Bouwhuis W, Visser C W, et al. 2015. Drop Shaping by Laser-Pulse Impact. Physical Review Applied, 3: 044018. doi: 10.1103/PhysRevApplied.3.044018
    Klein A L, Kurilovich D, Lhuissier H, et al. 2020. Drop fragmentation by laser-pulse impact. Journal of Fluid Mechanics, 893: A7. doi: 10.1017/jfm.2020.197
    Koralek J D, Kim J B, Bruza P, et al. 2018. Generation and characterization of ultrathin free-flowing liquid sheets. Nature Communications, 9: 1353. doi: 10.1038/s41467-018-03696-w
    Krivokorytov M S, Vinokhodov A Y, Sidelnikov Y V, et al. 2017. Cavitation and spallation in liquid metal droplets produced by subpicosecond pulsed laser radiation. Phys Rev E, 95: 031101. doi: 10.1103/PhysRevE.95.031101
    Krivokorytov M S, Zeng Q, Lakatosh B V, et al. 2018. Shaping and Controlled Fragmentation of Liquid Metal Droplets through Cavitation. Sci Rep, 8: 597. doi: 10.1038/s41598-017-19140-w
    Kurilovich D, Basko M M, Kim D A, et al. 2018a. Power-law scaling of plasma pressure on laser-ablated tin microdroplets. Physics of Plasmas, 25 : 012709.
    Kurilovich D, Klein A L, Torretti F, et al. 2016. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact. Physical Review Applied, 6: 014018. doi: 10.1103/PhysRevApplied.6.014018
    Kurilovich D, Pinto T D F, Torretti F, et al. 2018b. Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets. Physical Review Applied, 10: 054005. doi: 10.1103/PhysRevApplied.10.054005
    Larsson D H, Takman P A C, Lundström U, et al. 2011. A 24 keV liquid-metal-jet x-ray source for biomedical applications. Review of Scientific Instruments, 82: 123701. doi: 10.1063/1.3664870
    Lautrup B. 2011. Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. 2nd ed. CRC Press
    Li R, Ashgriz N. 2006. Characteristics of liquid sheets formed by two impinging jets. Physics of Fluids, 18 : 087104.
    Liu B, Hernandez-Rueda J, Gelderblom H, et al. 2022. Speed of fragments ejected by an expanding liquid tin sheet. Physical Review Fluids, 7: 083601. doi: 10.1103/PhysRevFluids.7.083601
    Liu B, Kurilovich D, Gelderblom H, et al. 2020. Mass Loss from a Stretching Semitransparent Sheet of Liquid Tin. Physical Review Applied, 13: 024035. doi: 10.1103/PhysRevApplied.13.024035
    Liu B, Meijer R A, Hernandez-Rueda J, et al. 2021a. Laser-induced vaporization of a stretching sheet of liquid tin. Journal of Applied Physics, 129: 053302. doi: 10.1063/5.0036352
    Liu B, Meijer R A, Li W, et al. 2023. Mass Partitioning in Fragmenting Tin Sheets. Physical Review Applied, 20 : 014048.
    Liu H, Wang Z, Gao L, et al. 2021b. Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser. Phys Rev Lett, 127: 244502. doi: 10.1103/PhysRevLett.127.244502
    Liu Y, Gao L, Zhai T, et al. 2021c. Experimental study of a millimeter-sized Ga-In drop ablated by a nanosecond laser pulse. Physics of Fluids, 33: 122102. doi: 10.1063/5.0072348
    Lord Rayleigh F R S. 1878. On The Instability Of Jets. Proceedings of the London Mathematical Society,.
    Lu J, Corvalan C M. 2014. Influence of viscosity on the impingement of laminar liquid jets. Chemical Engineering Science, 119: 182-186. doi: 10.1016/j.ces.2014.08.024
    Luo J, Lyu S, Qi L, et al. 2023. Generation of the small tin-droplet streams with a manipulable droplet spacing via the forced velocity perturbation. Physics of Fluids, 35: 013612. doi: 10.1063/5.0134623
    Meijer R A, Kurilovich D, Eikema K S E, et al. 2022a. The transition from short- to long-timescale pre-pulses: Laser-pulse impact on tin microdroplets. Journal of Applied Physics, 131 .
    Meijer R A, Kurilovich D, Liu B, et al. 2022b. Nanosecond laser ablation threshold of liquid tin microdroplets. Applied Physics A, 128: 570. doi: 10.1007/s00339-022-05685-9
    Mizoguchi H, La Fontaine B M, Abe T, et al. 2010. First generation laser-produced plasma source system for HVM EUV lithography, Extreme Ultraviolet (EUV) Lithography.
    Orme M. 1991. On the genesis of droplet stream microspeed dispersions. Physics of Fluids A:Fluid Dynamics, 3: 2936-2947. doi: 10.1063/1.857836
    Panão M R O, Delgado J M D. 2013. Effect of pre-impingement length and misalignment in the hydrodynamics of multijet impingement atomization. Physics of Fluids, 25 : 012105.
    Panning E M, Goldberg K A, Hori T, et al. 2016. 100W EUV light-source key component technology update for HVM, Extreme Ultraviolet (EUV) Lithography VII.
    Pimbley W T, Lee H C. 1977. Satellite Droplet Formation in a Liquid Jet. IBM Journal of Research and Development,.
    Rayleigh L. 1878. On The Instability Of Jets. Proceedings of the London Mathematical Society, s1-10: 4-13. doi: 10.1112/plms/s1-10.1.4
    Reijers S A, Kurilovich D, Torretti F, et al. 2018. Laser-to-droplet alignment sensitivity relevant for laser-produced plasma sources of extreme ultraviolet light. Journal of Applied Physics, 124 .
    Richardson M, Koay C S, Takenoshita K, et al. 2004. High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 22 .
    Rollinger B, Morris O, Abhari R. 2011. Stable tin droplets for LPP EUV sources. Proc SPIE, 7969: 79692W. doi: 10.1117/12.879538
    Rutland D F, Jameson G J. 1970. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chemical Engineering Science, 25 .
    Stamm U, Ahmad I, Balogh I, et al. 2003. High power EUV lithography sources based on gas discharges and laser produced plasmas. Emerging Lithographic Technologies Vii, Pts 1 and 2, 5037: 119-129. doi: 10.1117/12.482676
    Stan C A, Milathianaki D, Laksmono H, et al. 2016a. Liquid explosions induced by X-ray laser pulses. Nature Physics, 12: 966-971. doi: 10.1038/nphys3779
    Stan C A, Willmott P R, Stone H A, et al. 2016b. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves. J Phys Chem Lett, 7: 2055-2062. doi: 10.1021/acs.jpclett.6b00687
    Tamotsu Abe T S, Yousuke Imai, Hiroshi Someya, Hideo Hoshino, , Masaki Nakano G S, Hiroshi Komori, Yuichi Takabayashi, , Hakaru Mizoguchi A E, Koichi Toyoda, Yasuhiro Horiike 2016. Performance of a 10-kHz laser-produced-plasma light source for EUV lithography. Proc. of SPIE, 5374 : 160-167.
    Taylor G. 1950a. The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201: 159-174.
    Taylor G. 1950b. The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201: 175-186.
    Taylor G. 1997. The dynamics of thin sheets of fluid II. Waves on fluid sheets. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253: 296-312.
    Ursescu D, Aleksandrov V, Matei D, et al. 2020. Generation of shock trains in free liquid jets with a nanosecond green laser. Physical Review Fluids, 5: 123402. doi: 10.1103/PhysRevFluids.5.123402
    Versolato O O. 2019. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography. Plasma Sources Science and Technology, 28 : 083001.
    Versolato O O, Sheil J, Witte S, et al. 2022. Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review). Journal of Optics, 24 : 054014.
    Villermaux E, Bossa B. 2011. Drop fragmentation on impact. Journal of Fluid Mechanics, 668: 412-435. doi: 10.1017/S002211201000474X
    Vinokhodov A, Krivokorytov M, Sidelnikov Y, et al. 2016a. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source. Rev Sci Instrum, 87: 103304. doi: 10.1063/1.4964891
    Vinokhodov A Y, Koshelev K N, Krivtsun V M, et al. 2016b. Formation of a fine-dispersed liquid-metal target under the action of femto- and picosecond laser pulses for a laser-plasma radiation source in the extreme ultraviolet range. Quantum Electronics, 46: 23-28. doi: 10.1070/QE2016v046n01ABEH015867
    Vinokhodov A Y, Krivokorytov M S, Sidelnikov Y V, et al. 2016c. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology. Journal of Applied Physics, 120: 163304. doi: 10.1063/1.4966930
    Vinokhodov A Y, Krivokorytov M S, Sidelnikov Y V, et al. 2016d. High brightness EUV sources based on laser plasma at using droplet liquid metal target. Laser-Plasma Source of EUV Radiation, 46 : 473.
    Weber C. 1931. Zum Zerfall eines Flüssigkeitsstrahles. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 11: 136-154.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article Metrics

    Article views (575) PDF downloads(212) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint