Citation: | Geng L L, Yuan J B, Cheng W, Hu G K, Zhou X M. Fundamental principles and research progress of non-Hermitian mechanical systems. Advances in Mechanics, 2024, 54(1): 1-60 doi: 10.6052/1000-0992-23-034 |
[1] |
Ahmed W W, Farhat M, Staliunas K, et al. 2023. Machine learning for knowledge acquisition and accelerated inverse-design for non-Hermitian systems. Communications Physics, 6: 2. doi: 10.1038/s42005-022-01121-9
|
[2] |
Ashida Y, Gong Z, Ueda M. 2020. Non-Hermitian physics. Advances in Physics, 69 : 249-435.
|
[3] |
Bender C M. 2007. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics, 70 : 947-1018.
|
[4] |
Bender C M, Boettcher S. 1998. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 80 : 5243-5246.
|
[5] |
Bender C M, Boettcher S, Meisinger P N. 1999. PT-symmetric quantum mechanics. Journal of Mathematical Physics, 40 : 2201-2229.
|
[6] |
Berry M V. 1984. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392 : 45-57.
|
[7] |
Berry M V. 2004. Physics of nonhermitian degeneracies. Czechoslovak Journal of Physics, 54 : 1039-1047.
|
[8] |
Cai R, Jin Y, Li Y, et al. 2022. Exceptional points and skin Modes in non-Hermitian metabeams. Physical Review Applied, 18: 014067. doi: 10.1103/PhysRevApplied.18.014067
|
[9] |
Cai R, Jin Y, Li Y, et al. 2023. Absorption-lasing effects and exceptional points in parity-time symmetric non-Hermitian metaplates. Journal of Sound and Vibration, 555: 117710. doi: 10.1016/j.jsv.2023.117710
|
[10] |
Callaway J. 2013. Quantum Theory of the Solid State. Academic Press; London.
|
[11] |
Chen W, Kaya Özdemir Ş, Zhao G, et al. 2017. Exceptional points enhance sensing in an optical microcavity. Nature, 548: 192-196. doi: 10.1038/nature23281
|
[12] |
Chen Y, Li X, Scheibner C, et al. 2021. Realization of active metamaterials with odd micropolar elasticity. Nature communications, 12: 5935. doi: 10.1038/s41467-021-26034-z
|
[13] |
Cheng W, Hu G. 2021. Odd elasticity realized by piezoelectric material with linear feedback. Science China Physics, Mechanics & Astronomy, 64 : 2.
|
[14] |
Cheng W, Hu G. 2022. Acoustic skin effect with non-reciprocal Willis materials. Applied Physics Letters, 121 : 041701.
|
[15] |
Cheng Z, Yu Z. 2021. Supervised machine mearning topological states of one-dimensional non-Hermitian systems. Chinese Physics Letters, 38 : 070302.
|
[16] |
Choi Y, Hahn C, Yoon J W, et al. 2018. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nature Communications, 9: 2182. doi: 10.1038/s41467-018-04690-y
|
[17] |
Choi Y, Hahn C, Yoon J W, et al. 2017. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nature Communications, 8: 14154. doi: 10.1038/ncomms14154
|
[18] |
Christensen J, Willatzen M, Velasco V R, et al. 2016. Parity-time synthetic phononic media. Physical Review Letters, 116: 207601. doi: 10.1103/PhysRevLett.116.207601
|
[19] |
De Carlo M, De Leonardis F, Soref R A, et al. 2022. Non-Hermitian sensing in photonics and electronics: A review. Sensors, 22: 3977. doi: 10.3390/s22113977
|
[20] |
Dembowski C, Dietz B, Gräf H D, et al. 2004. Encircling an exceptional point. Physical Review E, 69: 056216. doi: 10.1103/PhysRevE.69.056216
|
[21] |
Ding K, Fang C, Ma G. 2022. Non-Hermitian topology and exceptional-point geometries. Nature Reviews Physics, 4 : 745-760.
|
[22] |
Ding K, Ma G, Xiao M, et al. 2016. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Physical Review X, 6: 021007.
|
[23] |
Ding K, Ma G, Zhang Z Q, et al. 2018. Experimental demonstration of an anisotropic exceptional point. Physical Review Letters, 121: 085702. doi: 10.1103/PhysRevLett.121.085702
|
[24] |
Dong Z, Li Z, Yang F, et al. 2019. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2: 335-342. doi: 10.1038/s41928-019-0284-4
|
[25] |
Doppler J, Mailybaev A A, Böhm J, et al. 2016. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537: 76-79. doi: 10.1038/nature18605
|
[26] |
Duan Y, Geng L, Guo Q, et al. 2023. Acoustic chiral mode switching by dynamic encircling of exceptional points. Applied Physics Letters, 123:101701
|
[27] |
El-Ganainy R, Makris K G, Khajavikhan M, et al. 2018. Non-Hermitian physics and PT symmetry. Nature Physics, 14: 11-19. doi: 10.1038/nphys4323
|
[28] |
Elbaz G, Pick A, Moiseyev N, et al. 2022. Encircling exceptional points of Bloch waves: mode conversion and anomalous scattering. Journal of Physics D:Applied Physics, 55: 235301. doi: 10.1088/1361-6463/ac5859
|
[29] |
Fan H, Chen J, Zhao Z, et al. 2020. Antiparity-time symmetry in passive nanophotonics. ACS Photonics, 7: 3035-3041. doi: 10.1021/acsphotonics.0c01053
|
[30] |
Fleury R, Sounas D, Alù A. 2015. An invisible acoustic sensor based on parity-time symmetry. Nature Communications, 6 : 5905.
|
[31] |
Fruchart M, Hanai R, Littlewood P B, et al. 2019. Non-reciprocal robotic metamaterials. Nature communications, 10: 4608. doi: 10.1038/s41467-019-12599-3
|
[32] |
Geib N, Sasmal A, Wang Z, et al. 2021. Tunable nonlocal purely active nonreciprocal acoustic media. Physical Review B, 103: 165427. doi: 10.1103/PhysRevB.103.165427
|
[33] |
Geng L, Zhang W, Zhang X, et al. 2021a. Chiral mode transfer of symmetry-broken states in anti-parity-time-symmetric mechanical system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 : 20210641.
|
[34] |
Geng L, Zhang W, Zhang X, et al. 2021b. Topological mode switching in modulated structures with dynamic encircling of an exceptional point. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 : 20200766.
|
[35] |
Ghosh S N, Chong Y D. 2016. Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides. Scientific Reports, 6 : 19837.
|
[36] |
Gilary I, Mailybaev A A, Moiseyev N. 2013. Time-asymmetric quantum-state-exchange mechanism. Physical Review A, 88 : 010102.
|
[37] |
Gong Z, Ashida Y, Kawabata K, et al. 2018. Topological phases of non-hermitian systems. Physical Review X, 8: 031079.
|
[38] |
Graefe E M, Mailybaev A A, Moiseyev N. 2013. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Physical Review A, 88 : 033842.
|
[39] |
Gu Z, Gao H, Cao P C, et al. 2021. Controlling sound in non-hermitian acoustic systems. Physical Review Applied, 16: 057001. doi: 10.1103/PhysRevApplied.16.057001
|
[40] |
Guo A, Salamo G J, Duchesne D, et al. 2009. Observation of PT-symmetry breaking in complex optical potentials. Physical Review Letters, 103: 093902. doi: 10.1103/PhysRevLett.103.093902
|
[41] |
Haken H. 1983. Synergetics—an Introduction. Springer-Verlag Berlin Heidelberg; Berlin.
|
[42] |
Hassan A U, Zhen B, Soljačić M, et al. 2017. Dynamically encircling exceptional points: Exact evolution and polarization state conversion. Physical Review Letters, 118: 093002. doi: 10.1103/PhysRevLett.118.093002
|
[43] |
Haus H A, Huang W. 1991. Coupled-mode theory. Proceedings of the IEEE, 79 : 1505-1518.
|
[44] |
Heiss W D. 1999. Phases of wave functions and level repulsion. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 7 : 1-4.
|
[45] |
Hodaei H, Hassan A U, Wittek S, et al. 2017. Enhanced sensitivity at higher-order exceptional points. Nature, 548: 187-191. doi: 10.1038/nature23280
|
[46] |
Hou Z, Assouar B. 2018. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials. Journal of Applied Physics, 123 : 085101.
|
[47] |
Huang H, Chen J, Huo S. 2021. Recent advances in topological elastic metamaterials. Journal of Physics: Condensed Matter, 33 : 503002.
|
[48] |
Huang J, Zhou X. 2019. A time-varying mass metamaterial for non-reciprocal wave propagation. International Journal of Solids and Structures, 164 : 25-36.
|
[49] |
Huang J, Zhou X. 2020. Non-reciprocal metamaterials with simultaneously time-varying stiffness and mass. Journal of Applied Mechanics, 87 : 071003.
|
[50] |
Kato T. 1966. Perturbation Theory for Linear Operators. Springer; Verlag Berlin Heidelberg.
|
[51] |
Kazemi H, Hajiaghajani A, Nada M Y, et al. 2021. Ultra-sensitive radio frequency biosensor at an exceptional point of degeneracy induced by time modulation. IEEE Sensors Journal, 21: 7250-7259.
|
[52] |
Kazemi H, Nada M Y, Nikzamir A, et al. 2022. Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity. Journal of Applied Physics, 131: 144502. doi: 10.1063/5.0084849
|
[53] |
Kittel C A M, Paul and McEuen, Paul 1996. Introduction to Solid State Physics. Wiley; New York.
|
[54] |
Klitzing K V, Dorda G, Pepper M. 1980. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45 : 494-497.
|
[55] |
Kononchuk R, Cai J, Ellis F, et al. 2022. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature, 607: 697-702. doi: 10.1038/s41586-022-04904-w
|
[56] |
Lai Y H, Lu Y K, Suh M G, et al. 2019. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576: 65-69. doi: 10.1038/s41586-019-1777-z
|
[57] |
Li A, Chen W, Wei H, et al. 2022. Riemann-encircling exceptional points for efficient asymmetric polarization-locked devices. Physical Review Letters, 129: 127401. doi: 10.1103/PhysRevLett.129.127401
|
[58] |
Li D, Huang S, Cheng Y, et al. 2021. Compact asymmetric sound absorber at the exceptional point. Science China Physics, Mechanics & Astronomy, 64 : 244303.
|
[59] |
Li H X, Rosendo-López M, Zhu Y F, et al. 2019. Ultrathin acoustic parity-time symmetric metasurface cloak. Research, 2019: 1-7.
|
[60] |
Li H, Mekawy A, Krasnok A, et al. 2020. Virtual parity-time symmetry. Physical Review Letters, 124: 193901. doi: 10.1103/PhysRevLett.124.193901
|
[61] |
Li P H, Wang Y Z. 2023. Negative refraction and exceptional point with Parity-Time symmetry in a piezoelectric mechanical metamaterial. Mechanics of Materials, 181 : 104647.
|
[62] |
Liu X, Huang G, Hu G. 2012. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. Journal of the Mechanics and Physics of Solids, 60 : 1907-1921.
|
[63] |
Liu Z P, Zhang J, Özdemir Ş K, et al. 2016. Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition. Physical Review Letters, 117: 110802. doi: 10.1103/PhysRevLett.117.110802
|
[64] |
Lu J, Deng W, Huang X, et al. 2023. Non-hermitian topological phononic metamaterials. Advanced Materials: 2307998.
|
[65] |
Luigi Lugiato F P, Massimo Brambilla. 2015. Nonlinear Optical Systems. Cambridge University Press; Cambridge.
|
[66] |
Ma F, Imam A, Morzfeld M. 2009. The decoupling of damped linear systems in oscillatory free vibration. Journal of Sound and Vibration, 324 : 408-428.
|
[67] |
Milburn T J, Doppler J, Holmes C A, et al. 2015. General description of quasiadiabatic dynamical phenomena near exceptional points. Physical Review A, 92: 052124. doi: 10.1103/PhysRevA.92.052124
|
[68] |
Miri M A, Alù A. 2019. Exceptional points in optics and photonics. Science, 363 : eaar7709.
|
[69] |
Mousavi S H, Khanikaev A B, Wang Z. 2015. Topologically protected elastic waves in phononic metamaterials. Nature Communications, 6 : 8682.
|
[70] |
Muhlestein M B, Sieck C F, Alù A, et al. 2016. Reciprocity, passivity and causality in Willis materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472 : 20160604.
|
[71] |
Özdemir Ş K, Rotter S, Nori F, et al. 2019. Parity–time symmetry and exceptional points in photonics. Nature Materials, 18: 783-798. doi: 10.1038/s41563-019-0304-9
|
[72] |
Peng B, Özdemir Ş K, Lei F, et al. 2014. Parity–time-symmetric whispering-gallery microcavities. Nature Physics, 10: 394-398. doi: 10.1038/nphys2927
|
[73] |
Peng Y G, Mazor Y, Alù A. 2022. Fundamentals of acoustic Willis media. Wave Motion, 112: 102930.
|
[74] |
Qi Y, Qiu C, Xiao M, et al. 2020. Acoustic realization of quadrupole topological insulators. Physical Review Letters, 124: 206601. doi: 10.1103/PhysRevLett.124.206601
|
[75] |
Quan L, Yves S, Peng Y, et al. 2021. Odd Willis coupling induced by broken time-reversal symmetry. Nature Communications, 12: 2615. doi: 10.1038/s41467-021-22745-5
|
[76] |
Rosa M I N, Mazzotti M, Ruzzene M. 2021. Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media. Journal of the Mechanics and Physics of Solids, 149 : 104325.
|
[77] |
Rüter C E, Makris K G, El-Ganainy R, et al. 2010. Observation of parity–time symmetry in optics. Nature Physics, 6: 192. doi: 10.1038/nphys1515
|
[78] |
Scheibner C, Souslov A, Banerjee D, et al. 2020. Odd elasticity. Nature Physics, 16: 475-480. doi: 10.1038/s41567-020-0795-y
|
[79] |
Shang C, Liu S, Shao R, et al. 2022. Experimental identification of the second‐order non‐Hermitian skin effect with physics‐graph‐informed machine learning. Advanced Science, 9: 2202922. doi: 10.1002/advs.202202922
|
[80] |
Shankar S, Souslov A, Bowick M, et al. 2022. Topological active matter. Nature Reviews Physics, 4: 380-398. doi: 10.1038/s42254-022-00445-3
|
[81] |
Shen H, Zhen B, Fu L. 2018. Topological Band Theory for non-Hermitian Hamiltonians. Physical Review Letters, 120 : 146402.
|
[82] |
Sieck C F, Alù A, Haberman M R. 2017. Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization. Physical Review B, 96 : 104303.
|
[83] |
Stenholm S. 1984. Foundations of Laser Spectroscopy. Wiley-Interscience; New York.
|
[84] |
Tang W, Ding K, Ma G. 2021. Direct measurement of topological properties of an exceptional parabola. Physical Review Letters, 127 : 034301.
|
[85] |
Tang W, Jiang X, Ding K, et al. 2020. Exceptional nexus with a hybrid topological invariant. Science, 370: 1077-1080. doi: 10.1126/science.abd8872
|
[86] |
Thouless D J, Kohmoto M, Nightingale M P, et al. 1982. Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49: 405-408. doi: 10.1103/PhysRevLett.49.405
|
[87] |
Tian Y, Ge H, Lu M H, et al. 2019. Research advances in acoustic metamaterials. Acta Physica Sinica, 68 : 194301-194301-194301-194312.
|
[88] |
Tokura Y, Yasuda K, Tsukazaki A. 2019. Magnetic topological insulators. Nature Reviews Physics, 1 : 126-143.
|
[89] |
Uzdin R, Mailybaev A, Moiseyev N. 2011. On the observability and asymmetry of adiabatic state flips generated by exceptional points. Journal of Physics A-Mathematical and Theoretical, 44 : 435302.
|
[90] |
Uzdin R, Moiseyev N. 2012. Scattering from a waveguide by cycling a non-Hermitian degeneracy. Physical Review A, 85 : 031804.
|
[91] |
Veletsos A S, Ventura C E. 1986. Modal analysis of non-classically damped linear systems. Earthquake Engineering & Structural Dynamics, 14 : 217-243.
|
[92] |
Wang A, Meng Z, Chen C Q. 2023. Non-Hermitian topology in static mechanical metamaterials. Science advances, 9 : eadf7299.
|
[93] |
Wang C, Sweeney William R, Stone A D, et al. 2021a. Coherent perfect absorption at an exceptional point. Science, 373: 1261-1265. doi: 10.1126/science.abj1028
|
[94] |
Wang H, Zhang X, Hua J, et al. 2021b. Topological physics of non-Hermitian optics and photonics: a review. Journal of Optics, 23: 123001. doi: 10.1088/2040-8986/ac2e15
|
[95] |
Wang X, Fang X, Mao D, et al. 2019. Extremely asymmetrical acoustic metasurface mirror at the exceptional point. Physical Review Letters, 123: 214302. doi: 10.1103/PhysRevLett.123.214302
|
[96] |
Welters A. 2011. On explicit recursive formulas in the spectral perturbation analysis of a Jordan block. SIAM Journal on Matrix Analysis and Applications, 32 : 1-22.
|
[97] |
Wiersig J. 2014. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Physical Review Letters, 112 : 203901.
|
[98] |
Willis J R. 1981. Variational principles for dynamic problems for inhomogeneous elastic media. Wave Motion, 3 : 1-11.
|
[99] |
Wu Q, Chen Y, Huang G. 2019. Asymmetric scattering of flexural waves in a parity-time symmetric metamaterial beam. The Journal of the Acoustical Society of America, 146 : 850-862.
|
[100] |
Wu Q, Xu X, Qian H, et al. 2023. Active metamaterials for realizing odd mass density. Proceedings of the National Academy of Sciences, 120: e2209829120. doi: 10.1073/pnas.2209829120
|
[101] |
Wu Y, Zhou P, Li T, et al. 2021. High-order exceptional point based optical sensor. Optics Express, 29: 6080-6091. doi: 10.1364/OE.418644
|
[102] |
Xiao Z, Li H, Kottos T, et al. 2019. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Physical Review Letters, 123: 213901. doi: 10.1103/PhysRevLett.123.213901
|
[103] |
Xin L, Siyuan Y, Harry L, et al. 2020. Topological mechanical metamaterials: A brief review. Current Opinion in Solid State and Materials Science, 24: 100853. doi: 10.1016/j.cossms.2020.100853
|
[104] |
Xing T, Pan Z, Tao Y, et al. 2020. Ultrahigh sensitivity stress sensing method near the exceptional point of parity-time symmetric systems. Journal of Physics D:Applied Physics, 53: 205102. doi: 10.1088/1361-6463/ab761d
|
[105] |
Xu H, Mason D, Jiang L, et al. 2016. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537: 80-83. doi: 10.1038/nature18604
|
[106] |
Yang F, Liu Y C, You L. 2017. Anti-PT symmetry in dissipatively coupled optical systems. Physical Review A, 96 : 053845.
|
[107] |
Yang X, Li J, Ding Y, et al. 2022. Observation of transient parity-time symmetry in electronic systems. Physical Review Letters, 128: 065701. doi: 10.1103/PhysRevLett.128.065701
|
[108] |
Yang Z, Zhang K, Fang C, et al. 2020. Non-Hermitian Bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Physical Review Letters, 125: 226402. doi: 10.1103/PhysRevLett.125.226402
|
[109] |
Yoon J W, Choi Y, Hahn C, et al. 2018. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature, 562: 86-90. doi: 10.1038/s41586-018-0523-2
|
[110] |
Yuan J, Geng L, Huang J, et al. 2022. Exceptional points induced by time-varying mass to enhance the sensitivity of defect detection. Physical Review Applied, 18: 064055. doi: 10.1103/PhysRevApplied.18.064055
|
[111] |
Zhang H, Huang R, Zhang S D, et al. 2020. Breaking anti-PT symmetry by spinning a resonator. Nano Letters, 20: 7594-7599. doi: 10.1021/acs.nanolett.0c03119
|
[112] |
Zhang L, Yang Y, Ge Y, et al. 2021a. Acoustic non-Hermitian skin effect from twisted winding topology. Nature Communications, 12: 6297. doi: 10.1038/s41467-021-26619-8
|
[113] |
Zhang L F, Tang L Z, Huang Z H, et al. 2021b. Machine learning topological invariants of non-Hermitian systems. Physical Review A, 103: 012419. doi: 10.1103/PhysRevA.103.012419
|
[114] |
Zhang X L, Chan C T. 2019. Dynamically encircling exceptional points in a three-mode waveguide system. Communications Physics, 2 : 63.
|
[115] |
Zhang X L, Jiang T, Chan C T. 2019. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light-Science & Applications, 8 : 88.
|
[116] |
Zhang X L, Wang S, Hou B, et al. 2018. Dynamically encircling exceptional points: In situ control of encircling loops and the role of the starting point. Physical Review X, 8: 021066.
|
[117] |
Zhong J, Wang K, Park Y, et al. 2021. Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. Physical Review B, 104: 125416. doi: 10.1103/PhysRevB.104.125416
|
[118] |
Zhou Z, Jia B, Wang N, et al. 2023. Observation of perfectly-chiral exceptional point via bound state in the continuum. Physical Review Letters, 130: 116101. doi: 10.1103/PhysRevLett.130.116101
|
[119] |
Zhu X, Ramezani H, Shi C, et al. 2014. PT-symmetric acoustics. Physical Review X, 4: 031042.
|
[120] |
Zhu Y, Long H, Liu C, et al. 2022. An ultra-thin ventilated metasurface with extreme asymmetric absorption. Applied Physics Letters, 120: 141701. doi: 10.1063/5.0086859
|
[121] |
陈阿丽, 汪越胜, 王艳锋, 等. 2022. 声学/弹性相位梯度超表面设计: 原理、功能基元、可调和编码. 力学进展, 52 : 948-1011. (Chen A L, Wang Y S, Wang Y F, et al. 2022. Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding. Advances in Mechanics, 52 : 948-1011).
Chen A L, Wang Y S, Wang Y F, et al. 2022. Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding. Advances in Mechanics, 52: 948-1011
|
[122] |
陈毅, 刘晓宁, 向平, 等. 2016. 五模材料及其水声调控研究. 力学进展, 46: 201609. (Chen Y, Liu X N, Xiang P, et al. 2016. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 46: 201609). doi: 10.6052/1000-0992-16-010
|
[123] |
陈毅, 张泉, 张亚飞, 等. 2021. 弹性拓扑材料研究进展. 力学进展, 51: 189-256. (Chen Y, Zhang Q, Zhang Y F, et al. 2021. Research progress of elastic topological materials. Advances in Mechanics, 51: 189-256). doi: 10.6052/1000-0992-21-015
|
[124] |
尹剑飞, 蔡力, 方鑫, 等. 2022. 力学超材料研究进展与减振降噪应用. 力学进展, 52: 508-586. (Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52: 508-586). doi: 10.6052/1000-0992-22-005
|
[125] |
祝雪丰, 彭玉桂, 沈亚西. 2017. 宇称时间对称性声学. 物理, 46: 740-748. (Zhu X F, Peng Y G, Shen Y X. 2017. Parity-time symmetric acoustics. Physics, 46: 740-748).
Zhu X F, Peng Y G, Shen Y X. 2017. Parity-time symmetric acoustics. Physics,
|