Volume 52 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
Han F, Fan D G, Zhang L Y, Wang Q Y. Neurological disease and cognitive dynamics (I): Dynamics and control of epileptic seizures. Advances in Mechanics, 2022, 52(2): 339-396 doi: 10.6052/1000-0992-21-064
Citation: Han F, Fan D G, Zhang L Y, Wang Q Y. Neurological disease and cognitive dynamics (I): Dynamics and control of epileptic seizures. Advances in Mechanics, 2022, 52(2): 339-396 doi: 10.6052/1000-0992-21-064

Neurological disease and cognitive dynamics (I): Dynamics and control of epileptic seizures

doi: 10.6052/1000-0992-21-064
More Information
  • Corresponding author: nmqingyun@163.com
  • Received Date: 2021-12-13
  • Accepted Date: 2022-01-26
  • Available Online: 2022-01-27
  • Publish Date: 2022-06-25
  • Studies have shown that the process of epileptic seizures is closely related to the nonlinear dynamics of the nervous system itself. Therefore, the study of nonlinear network dynamics modeling and regulation of epileptic seizures is helpful in understanding the dynamic mechanism of clinical manifestations of epilepsy, locating the epileptic foci network, and then designing effective network regulation strategies. This article reviews the research progress in network dynamics and control of epileptic neurological diseases and systematically summarizes our research results in recent years in the modeling and analysis of epileptic seizure dynamics and their regulation. Firstly, based on the neuron network model of the hippocampal dentate gyrus-CA3 loop, the molecular and network structural factors that affect temporal lobe seizures were analyzed, and the dynamic mechanism of seizure transition was explained. Secondly, due to the cluster coding characteristics of the brain nervous system, based on the methods of both the neural field model and mean field model, the network dynamics framework of the basal ganglia-thalamocortical (BGCT) circuit was improved. Based on this framework, the dynamic bifurcation mechanism of absence epileptic seizure transition was analyzed, the transition path of different types of seizures was explored, and the multi-stable coexistence phenomenon of absence seizure transition was discovered. The effect of time delay on the synchronization seizures was also revealed. We also designed rich and effective deep brain stimulation (DBS) control strategies for epilepsy and gave a dynamic explanation of electrical stimulation to control absence epileptic seizures. Finally, based on the data-driven statistical modeling and the dynamics analysis of the neuronal population model, new theoretical methods for the foci localization of focal epileptics and finding the key network nodes for effectively controlling seizures were proposed. These results provide important theoretical support for understanding the dynamic nature of refractory seizures and their application in clinical diagnosis and treatment. Lastly, some suggestions are given for further research.

     

  • loading
  • [1]
    Ahn S, Jun S B, Lee H W, et al. 2016. Computational modeling of epileptiform activities in medial temporal lobe epilepsy combined with in vitro experiments. Journal of Computational Neuroscience, 41: 207-223. doi: 10.1007/s10827-016-0614-8
    [2]
    Albert R, Barabási A L. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics, 74: 47-97. doi: 10.1103/RevModPhys.74.47
    [3]
    Amaral D G, Scharfman H E, Lavenex P. 2007. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163: 3-22.
    [4]
    Arrais M, Modolo J, Mogul D, et al. 2021. Design of optimal multi-site brain stimulation protocols via neuro-inspired epilepsy models for abatement of interictal discharges. Journal of Neural Engineering, 18: 016024.
    [5]
    Astolfi L, Cincotti F, Mattia D, et al. 2008. Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Transactions on Biomedical Engineering, 55: 902-913. doi: 10.1109/TBME.2007.905419
    [6]
    Badawy R A B, Lai A, Vogrin S J, et al. 2013. Subcortical epilepsy? Neurology, 80: 1901-1907. doi: 10.1212/WNL.0b013e3182929f4f
    [7]
    Baier G, Goodfellow M, Taylor P N, et al. 2012. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Frontiers in Physiology, 3: 281.
    [8]
    Baier G, Rosch R, Taylor P N, et al. 2018. Design Principle for A Population-based Model of Epileptic Dynamics//In Complexity and Synergetics. Cham: Springer, 333-347
    [9]
    Barabási A L, Albert R. 1999. Emergence of scaling in random networks. Science, 286: 509-512. doi: 10.1126/science.286.5439.509
    [10]
    Bartolomei F, Wendling F, Chauvel P. 2008. The concept of an epileptogenic network in human partial epilepsies. Neuro-chirurgie, 54: 174-184. doi: 10.1016/j.neuchi.2008.02.013
    [11]
    Battaglia D, Witt A, Wolf F, et al. 2012. Dynamic effective connectivity of inter-areal brain circuits. PLoS Computational Biology, 8: e1002438. doi: 10.1371/journal.pcbi.1002438
    [12]
    Berényi A, Belluscio M, Mao D, et al. 2012. Closed-loop control of epilepsy by transcranial electrical stimulation. Science, 337: 735-737. doi: 10.1126/science.1223154
    [13]
    Berman R, Negishi M, Vestal M, et al. 2010. Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia, 51: 2011-2022. doi: 10.1111/j.1528-1167.2010.02652.x
    [14]
    Beverlin B, Kakalios J, Nykamp D, et al. 2012. Dynamical changes in neurons during seizures determine tonic to clonic shift. Journal of Computational Neuroscience, 33: 41-51. doi: 10.1007/s10827-011-0373-5
    [15]
    Beverlin B, Netoff T I. 2013. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation. Frontiers in Neural Circuits, 6: 126.
    [16]
    Bjerknes S, Toft M, Konglund A E, et al. 2018. Multiple microelectrode recordings in STN‐DBS surgery for parkinson's disease: A randomized study. Movement Disorders Clinical Practice, 5: 296-305. doi: 10.1002/mdc3.12621
    [17]
    Blümcke I, Thom M, Aronica E, et al. 2013. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A task force report from the ILAE commission on diagnostic methods. Epilepsia, 54: 1315-1329. doi: 10.1111/epi.12220
    [18]
    Boon P, Vonck K, De Herdt V, et al. 2007. Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia, 48: 1551-1560. doi: 10.1111/j.1528-1167.2007.01005.x
    [19]
    Breakspear M, Roberts J A, Terry J R, et al. 2006. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex, 16: 1296-1313. doi: 10.1093/cercor/bhj072
    [20]
    Brogin J A F, Faber J, Bueno D D. 2020. An efficient approach to define the input stimuli to suppress epileptic seizures described by the epileptor model. International Journal of Neural Systems, 30: 2050062. doi: 10.1142/S0129065720500628
    [21]
    Burdette D E, Haykal M A, Jarosiewicz B, et al. 2020. Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy. Epilepsy & Behavior, 112: 107354.
    [22]
    Buskila Y, Bellot-Saez A, Morley J W. 2019. Generating brain waves, the power of astrocytes. Frontiers in Neuroscience, 13: 1125. doi: 10.3389/fnins.2019.01125
    [23]
    Cappaert N L M, Ramekers D, Martens H C F, et al. 2013. Efficacy of a new charge-balanced biphasic electrical stimulus in the isolated sciatic nerve and the hippocampal slice. International Journal of Neural Systems, 23: 1250031. doi: 10.1142/S0129065712500311
    [24]
    Centeno M, Carmichael D W. 2014. Network connectivity in epilepsy: Resting state fMRI and EEG–fMRI contributions. Frontiers in Neurology, 5: 93.
    [25]
    Chen M, Guo D, Li M, et al. 2015. Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Computational Biology, 11: e1004539. doi: 10.1371/journal.pcbi.1004539
    [26]
    Chen M, Guo D, Wang T, et al. 2014. Bidirectional control of absence seizures by the basal ganglia: A computational evidence. PLoS Computational Biology, 10: e1003495. doi: 10.1371/journal.pcbi.1003495
    [27]
    Cossart R. 2014. Operational hub cells: A morpho-physiologically diverse class of GABAergic neurons united by a common function. Current Opinion in Neurobiology, 26: 51-56. doi: 10.1016/j.conb.2013.12.002
    [28]
    Cossu M, Cardinale F, Colombo N, et al. 2005. Stereoelectroencephalography in the presurgical evaluation of children with drug-resistant focal epilepsy. Journal of Neurosurgery:Pediatrics, 103: 333-343. doi: 10.3171/ped.2005.103.4.0333
    [29]
    Cukiert A, Lehtimaki K. 2017. Deep brain stimulation targeting in refractory epilepsy. Epilepsia, 58: 80-84.
    [30]
    Dobesberger J, Ristic A J, Walser G, et al. 2015. Duration of focal complex, secondarily generalized tonic-clonic, and primarily generalized tonic-clonic seizures—A video-EEG analysis. Epilepsy & Behavior, 49: 111-117.
    [31]
    Drover J D, Schiff N D, Victor J D. 2010. Dynamics of coupled thalamocortical modules. Journal of Computational Neuroscience, 28: 605-616. doi: 10.1007/s10827-010-0244-5
    [32]
    Du M, Li J, Chen L, et al. 2018. Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure. PloS Computational Biology, 14: e1005877. doi: 10.1371/journal.pcbi.1005877
    [33]
    Dumpelmann M. 2019. Early seizure detection for closed loop direct neurostimulation devices in epilepsy. Journal of Neural Engineering, 16: 041001. doi: 10.1088/1741-2552/ab094a
    [34]
    Engel J, Pedley T A, Aicardi J. 2008. Epilepsy: A Comprehensive Textbook (Vol. 3). Lippincott Williams & Wilkins.
    [35]
    Ermentrout G B, Kopell N. 1998. Fine structure of neural spiking and synchronization in the presence of conduction delay. Proceedings of the National Academy of Sciences of the United States of America, 95: 1259-1264. doi: 10.1073/pnas.95.3.1259
    [36]
    Fan D, Duan L, Wang Q, et al. 2017a. Combined effects of feedforward inhibition and excitation in thalamocortical circuit on the transitions of epileptic seizures. Frontiers in Computational Neuroscience, 11: 59. doi: 10.3389/fncom.2017.00059
    [37]
    Fan D, Liao F, Wang Q. 2017b. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles. Chaos:An Interdisciplinary Journal of Nonlinear Science, 27: 073103. doi: 10.1063/1.4991869
    [38]
    Fan D, Liu S, Wang Q. 2016a. Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition. Scientific Reports, 6: 37703. doi: 10.1038/srep37703
    [39]
    Fan D, Wang Q, Su J, et al. 2017c. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. Journal of Computational Neuroscience, 43: 203-225. doi: 10.1007/s10827-017-0658-4
    [40]
    Fan D, Wang Q. 2018. Improved control effect of absence seizures by autaptic connections to the subthalamic nucleus. Physical Review E, 98: 052414. doi: 10.1103/PhysRevE.98.052414
    [41]
    Fan D, Wang Q. 2020. Closed-loop control of absence seizures inspired by feedback modulation of basal ganglia to the corticothalamic circuit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28: 581-590. doi: 10.1109/TNSRE.2020.2969426
    [42]
    Fan D, Wang Z, Wang Q. 2016b. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network. Communications in Nonlinear Science and Numerical Simulation, 36: 219-237. doi: 10.1016/j.cnsns.2015.12.005
    [43]
    Fan D, Yang Z, Yang C, et al. 2021. Clinically localized seizure focus maybe not exactly the position of abating seizures: A computational evidence. Nonlinear Dynamics, 105: 1773-1789. doi: 10.1007/s11071-021-06676-w
    [44]
    Fan D, Zhang L, Wang Q. 2018. Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control. Nonlinear Dynamics, 94: 2807-2825. doi: 10.1007/s11071-018-4526-1
    [45]
    Fan D, Zheng Y, Yang Z, et al. 2020. Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Applied Mathematics and Mechanics, 41: 1287-1302. doi: 10.1007/s10483-020-2644-8
    [46]
    Fan Z, Chen G. 2005. Pinning control of scale-free complex networks//IEEE International Symposium on Circuits and Systems, 2005: 284-287.
    [47]
    Frank T D, Richardson M J. 2010. On a test statistic for the Kuramoto order parameter of synchronization: An illustration for group synchronization during rocking chairs. Physica D:Nonlinear Phenomena, 239: 2084-2092. doi: 10.1016/j.physd.2010.07.015
    [48]
    Freyer F, Roberts J A, Becker R, et al. 2011. Biophysical mechanisms of multistability in resting-state cortical rhythms. The Journal of Neuroscience, 31: 6353-6361. doi: 10.1523/JNEUROSCI.6693-10.2011
    [49]
    Fröhlich F. 2016. Network Neuroscience. London: Academic Press.
    [50]
    Gao J, Feng S T, Wu B, et al. 2015. Microstructural brain abnormalities of children of idiopathic generalized epilepsy with generalized tonic-clonic seizure: A voxel-based diffusional kurtosis imaging study. Journal of Magnetic Resonance Imaging, 41(4): 1088-1095.
    [51]
    Gong J, Jiang S, Li Z, et al. 2021. Distinct effects of the basal ganglia and cerebellum on the thalamocortical pathway in idiopathic generalized epilepsy. Human Brain Mapping, 42: 3440-3449. doi: 10.1002/hbm.25444
    [52]
    Goodfellow M, Schindler K, Baier G. 2011. Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. NeuroImage, 55: 920-932. doi: 10.1016/j.neuroimage.2010.12.074
    [53]
    Guekht A, Brodie M, Secco M. 2021. The road to a world health organization global action plan on epilepsy and other neurological disorder. Epilepsia, 62: 1057-1063. doi: 10.1111/epi.16856
    [54]
    Guo Y, Rubin J E. 2011. Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Network, 24: 602-616. doi: 10.1016/j.neunet.2011.03.010
    [55]
    Guye M, Régis J, Tamura M, et al. 2006. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain, 129: 1917-1928. doi: 10.1093/brain/awl151
    [56]
    Hardesty D E, Sackeim H A. 2007. Deep brain stimulation in movement and psychiatric disorders. Biological Psychiatry, 61: 831-835. doi: 10.1016/j.biopsych.2006.08.028
    [57]
    Harvey A S, Cross J H, Shinnar S, et al. 2008. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia, 49: 146-155. doi: 10.1111/j.1528-1167.2007.01421.x
    [58]
    Hauptmann C, Popovych O, Tass P A. 2005. Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: A computational study. Biological Cybernetics, 93: 463-470. doi: 10.1007/s00422-005-0020-1
    [59]
    He B J, Zempel J M, Snyder A Z, et al. 2010. The temporal structures and functional significance of scale-free brain activity. Neuron, 66: 353-369. doi: 10.1016/j.neuron.2010.04.020
    [60]
    He X, Chaitanya G, Asma B, et al. 2020. Disrupted basal ganglia–thalamocortical loops in focal to bilateral tonic-clonic seizures. Brain, 143: 175-190. doi: 10.1093/brain/awz361
    [61]
    Hodgkin A L, Huxley A F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. Journal of Physiology, 116: 449. doi: 10.1113/jphysiol.1952.sp004717
    [62]
    Hu B, Chen S, Chi H, et al. 2017. Controlling absence seizures by tuning activation level of the thalamus and striatum. Chaos, Solitons & Fractals, 95: 65-76.
    [63]
    Hu B, Guo Y, Zou X, et al. 2018. Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cognitive Neurodynamics, 12: 103-119. doi: 10.1007/s11571-017-9457-x
    [64]
    Iasemidis L D, Sabesan S, Good L, et al. 2009. A new look into epilepsy as a dynamical disorder: Seizure prediction, resetting and control. Encyclopedia of Basic Epilepsy Research, 3: 1295-1302.
    [65]
    Inoue J, Doi S, Tsuneki R. 2003. Synchronization. Cambridge University Press.
    [66]
    Izhikevich E M. 2007. Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: The MIT Press.
    [67]
    Jayakar P. 1993. Physiological principles of electrical stimulation. Advances in Neurology, 63: 17-27.
    [68]
    Jedynak M, Pons A J, Ojalvo J G, et al. 2017. Temporally correlated fluctuations drive epileptiform dynamics. Neuroimage, 146: 188-196. doi: 10.1016/j.neuroimage.2016.11.034
    [69]
    Jin X Z, Wang S F, Yang G H, et al. 2017a. Robust adaptive hierarchical insensitive tracking control of a class of leader-follower agents. Information Sciences, 406: 234-247.
    [70]
    Jin X, Wang S, Qin J, et al. 2017b. Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation. IEEE Transactions on Circuits and Systems I:Regular Papers, 65: 2243-2255.
    [71]
    Jirsa V K, Haken H. 1996. Field theory of electromagnetic brain activity. Physical Review Letters, 77: 960-963. doi: 10.1103/PhysRevLett.77.960
    [72]
    Jirsa V K, Stacey W C, Quilichini P P, et al. 2014. On the nature of seizure dynamics. Brain, 137: 2210-2230. doi: 10.1093/brain/awu133
    [73]
    Jirsch J D, Urrestarazu E, Levan P, et al. 2006. High-frequency oscillations during human focal seizures. Brain, 129: 1593-1608. doi: 10.1093/brain/awl085
    [74]
    Kalman R E. 1963. Mathematical description of linear dynamical systems. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1(2): 152-192.
    [75]
    Kaminski M, Ding M, Truccolo W A, et al. 2001. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85: 145-157. doi: 10.1007/s004220000235
    [76]
    Kim Y. 2017. Autaptic effects on synchrony of neurons coupled by electrical synapses. Journal of the Korean Physical Society, 71: 63-69. doi: 10.3938/jkps.71.63
    [77]
    Kobayashi K, Akiyama T, Ohmori I, et al. 2015. Action potentials contribute to epileptic high-frequency oscillations recorded with electrodes remote from neurons. Clinical Neurophysiology, 126: 873-881. doi: 10.1016/j.clinph.2014.08.010
    [78]
    Kostopoulos G K. 2000. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: The continuing development of a hypothesis. Clinical Neurophysiology, 111: S27-S38. doi: 10.1016/S1388-2457(00)00399-0
    [79]
    Kostopoulos G, Gloor P, Pellegrini A, et al. 1981. A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiological features. Experimental Neurology, 73: 55-77. doi: 10.1016/0014-4886(81)90045-5
    [80]
    Kramer M A, Cash S S. 2012. Epilepsy as a disorder of cortical network organization. The Neuroscientist, 18: 360-372. doi: 10.1177/1073858411422754
    [81]
    Lalo U, Palygin O, Rasooli-Nejad S, et al. 2014. Exocytosis of atp from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biology, 12: e1001747. doi: 10.1371/journal.pbio.1001747
    [82]
    Lee J, Song K, Lee K, et al. 2013. Sleep spindles are generated in the absence of T-type calcium channel-mediated low-threshold burst firing of thalamocortical neurons. Proceedings of the National Academy of Sciences, 110: 20266-20271. doi: 10.1073/pnas.1320572110
    [83]
    Leyden K M, Kucukboyaci N E, Puckett O K, et al. 2015. What does diffusion tensor imaging (DTI) tell us about cognitive networks in temporal lobe epilepsy? Quantitative Imaging in Medicine and Surgery, 5: 247.
    [84]
    Li J, Wang R, Du M, et al. 2016. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block. Chaos, Solitons & Fractals, 91: 702-708.
    [85]
    Li J, Tang J, Ma J, et al. 2016. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Scientific Reports, 6: 32343. doi: 10.1038/srep32343
    [86]
    Liao W, Zhang Z, Pan Z, et al. 2011. Default mode network abnormalities in mesial temporal lobe epilepsy: A study combining fMRI and DTI. Human Brain Mapping, 32: 883-895. doi: 10.1002/hbm.21076
    [87]
    Liley D T, Matthew W. 2013. The mesoscopic modeling of burst suppression during anesthesia. Frontiers in Computational Neuroscience, 7: 46.
    [88]
    Liu Y Y, Slotine J J, Barabasi A L. 2011. Controllability of complex networks. Nature, 473: 167-173. doi: 10.1038/nature10011
    [89]
    Lopes da Silva F H, Pijn J P, Wadman W J. 1994. Dynamics of local neuronal networks: Control parameters and state bifurcations in epileptogenesis. Progress in Brain Research, 102: 359-370. doi: 10.1016/s0079-6123(08)60552-x
    [90]
    Lopes da Silva F L, Blanes W, Kalitzin S N, et al. 2003a. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia, 44: 72-83. doi: 10.1111/j.0013-9580.2003.12005.x
    [91]
    Lopes da Silva F, Blanes W, Kalitzin S, et al. 2003b. Dynamical diseases of brain systems: Different routes to epileptic seizures. IEEE Transactions on Biomedical Engineering, 50: 540-548. doi: 10.1109/TBME.2003.810703
    [92]
    Luenberger D G. 1979. Introduction to dynamic systems: Theory, models, and applications (No. 04; QA402, L8. ).
    [93]
    Mackey M C and Milton J G. 1987. Dynamical disease. Annals of the New York Academy of Sciences, 504: 16-32.
    [94]
    Markoula S, Chaudhary U J, Perani S, et al. 2018. The impact of mapping interictal discharges using EEG-fMRI on the epilepsy presurgical clinical decision making process: A prospective study. Seizure, 61: 30-37. doi: 10.1016/j.seizure.2018.07.016
    [95]
    Marten F, Rodrigues S, Benjamin O, et al. 2009. Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 367: 1145-1161. doi: 10.1098/rsta.2008.0255
    [96]
    Matsumoto H, Marsan C A. 1964. Cortical cellular phenomena in experimental epilepsy: Ictal manifestations. Experimental Neurology, 9: 305-326. doi: 10.1016/0014-4886(64)90026-3
    [97]
    Mayville C, Fakhoury T, Abou-Khalil B. 2000. Absence seizures with evolution into generalized tonic-clonic activity: Clinical and EEG features. Epilepsia, 41: 391-394. doi: 10.1111/j.1528-1157.2000.tb00178.x
    [98]
    Meeren H K M, Pijn J P M, Van Luijtelaar E L J M, et al. 2002. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. Journal of Neuroscience, 22: 1480-1495. doi: 10.1523/JNEUROSCI.22-04-01480.2002
    [99]
    Meeren H, van Luijtelaar G, da Silva F L, et al. 2005. Evolving concepts on the pathophysiology of absence seizures: The cortical focus theory. Archives of Neurology, 62: 371-376. doi: 10.1001/archneur.62.3.371
    [100]
    Merrill D R, Bikson M, Jefferys J G R. 2005. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. Journal of Neuroscience Methods, 141: 171-198. doi: 10.1016/j.jneumeth.2004.10.020
    [101]
    Milo R, Shen-Orr S, Itzkovitz S, et al. 2002. Network motifs: Simple building blocks of complex networks. Science, 298: 824-827. doi: 10.1126/science.298.5594.824
    [102]
    Milton J G, Black D. 1995. Dynamic diseases in psychiatry and neurology. Chaos, 5: 8-13. doi: 10.1063/1.166103
    [103]
    Miocinovic S, Lempka S F, Russo G S, et al. 2009. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Experimental Neurology, 216: 166-176. doi: 10.1016/j.expneurol.2008.11.024
    [104]
    Morgan R J, Soltesz I. 2008. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences, 105: 6179-6184. doi: 10.1073/pnas.0801372105
    [105]
    Neishabouri A, Faisal A A. 2014. Axonal noise as a source of synaptic variability. PLoS Computational Biology, 10: e1003615. doi: 10.1371/journal.pcbi.1003615
    [106]
    Nelson T S, Suhr C L, Freestone D R, et al. 2011. Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy. International Journal of Neural Systems, 21: 163-173. doi: 10.1142/S0129065711002717
    [107]
    Neubrandt M, Oláh V J, Brunner J, et al. 2017. Feedforward inhibition is randomly wired from individual granule cells onto CA3 pyramidal cells. Hippocampus, 27: 1034-1039. doi: 10.1002/hipo.22763
    [108]
    Olufsen M, Whittington M, Camperi M, et al. 2003. New functions for the gamma rhythm: population tuning and preprocessing for the beta rhythm. Journal of Computational Neuroscience, 14: 33-54. doi: 10.1023/A:1021124317706
    [109]
    Palmigiano A, Geisel T, Wolf F, et al. 2017. Flexible information routing by transient synchrony. Nature Neuroscience, 20: 1014-1022. doi: 10.1038/nn.4569
    [110]
    Panzica F, Varotto G, Rotondi F, et al. 2013. Identification of the epileptogenic zone from stereo-EEG signals: A connectivity-graph theory approach. Frontiers in Neurology, 4: 175.
    [111]
    Paz J T, Davidson T J, Frechette E S, et al. 2013. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Neuroscience, 16: 64. doi: 10.1038/nn.3269
    [112]
    Paz J T, Huguenard J R. 2015. Microcircuits and their interactions in epilepsy: Is the focus out of focus? Nature Neuroscience, 18: 351-359. doi: 10.1038/nn.3950
    [113]
    Picardo M A, Guigue P, Bonifazi P, et al. 2011. Pioneer GABA cells comprise a subpopulation of hub neurons in the developing hippocampus. Neuron, 71: 695-709. doi: 10.1016/j.neuron.2011.06.018
    [114]
    Pinsky P F, Rinzel J. 1994. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1: 39-60. doi: 10.1007/BF00962717
    [115]
    Pizzo F, Roehri N, Giusiano B, et al. 2021. The ictal signature of thalamus and basal ganglia in focal epilepsy: A seeg study. Neurology, 96: e280-e293. doi: 10.1212/WNL.0000000000011003
    [116]
    Popovych O V, Tass P A. 2018. Multisite delayed feedback for electrical brain stimulation. Frontiers in Physiology, 9: 46. doi: 10.3389/fphys.2018.00046
    [117]
    Quiroga R Q, Kreuz T, Grassberger P. 2002. Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Physical Review E, 66: 041904. doi: 10.1103/PhysRevE.66.041904
    [118]
    Ratnadurai-Giridharan S, Stefanescu R A, Khargonekar P P, et al. 2014. Genesis of interictal spikes in the CA1: A computational investigation. Front Neural Circuits, 8: 2. doi: 10.3389/fncir.2014.00002
    [119]
    Ratnadurai-Giridharan S, Stefanescu R A, Khargonekar P P, et al. 2012. Genesis of interictal spikes in the CA1: A computational investigation. BMC Neuroscience, 13: P30. doi: 10.1186/1471-2202-13-S1-P30
    [120]
    Rektor I, Kuba R, Brázdil M, et al. 2012. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy & Behavior, 25: 56-59.
    [121]
    Robinson P A, Rennie C J, Wright J J, et al. 1998. Steady states and global dynamics of electrical activity in the cerebral cortex. Physical Review E, 58: 3557. doi: 10.1103/PhysRevE.58.3557
    [122]
    Rodrigues S, Barton D, Szalai R, et al. 2009. Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. Journal of Computational Neuroscience, 27: 507-526. doi: 10.1007/s10827-009-0166-2
    [123]
    Rodrigues S, Gonçalves J, Terry J R. 2007. Existence and stability of limit cycles in a macroscopic neuronal population model. Physica D:Nonlinear Phenomena, 233: 39-65. doi: 10.1016/j.physd.2007.06.010
    [124]
    Rosch R, Baldeweg T, Moeller F, et al. 2017. Network dynamics in the healthy and epileptic developing brain. Network Neuroscience, 2: 41-59.
    [125]
    Salem K M I, Goodger L, Bowyer K, et al. 2016. Does transcranial stimulation for motor evoked potentials (TcMEP) worsen seizures in epileptic patients following spinal deformity surgery? European Spine Journal, 25: 3044-3048. doi: 10.1007/s00586-015-3993-z
    [126]
    Scharfman H E, Goodman J H, Sollas A L. 1999. Actions of Brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. The Journal of Neuroscience, 19: 5619-5631. doi: 10.1523/JNEUROSCI.19-13-05619.1999
    [127]
    Scharfman H E. 2007. The CA3 “backprojection” to the dentate gyrus. Progress in Brain Research, 163: 627-637.
    [128]
    Scharfman H E. 2016. The enigmatic mossy cell of the dentate gyrus. Nature Reviews Neuroscience, 17: 562-575. doi: 10.1038/nrn.2016.87
    [129]
    Schiff S J, Colella D, Jacyna G M, et al. 2000. Brain chirps: Spectrographic signatures of epileptic seizures. Clinical Neurophysiology, 111: 953-958. doi: 10.1016/S1388-2457(00)00259-5
    [130]
    Schiller Y, Bankirer Y. 2007. Cellular mechanisms underlying antiepileptic effects of low-and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. Journal of Neurophysiology, 97: 1887-1902. doi: 10.1152/jn.00514.2006
    [131]
    Shaari H M, Haerian B S, Baum L, et. Al. 2016. Association of BDNF polymorphisms with the risk of epilepsy: A multicenter study. Molecular Neurobiology, 53: 2869-2877. doi: 10.1007/s12035-015-9150-1
    [132]
    Sharma N K, Pedreira C, Chaudhary U J, et al. 2019. BOLD mapping of human epileptic spikes recorded during simultaneous intracranial EEG-fMRI: The impact of automated spike classification. Neuroimage, 184: 981-992. doi: 10.1016/j.neuroimage.2018.09.065
    [133]
    Shih T T, Hirsch L J. 2003. Tonic-Absence seizures: An underrecognized seizure type. Epilepsia, 44: 461-465. doi: 10.1046/j.1528-1157.2003.39602.x
    [134]
    Shouse M N, Farber P R, Staba R J. 2000. Physiological basis: How NREM sleep components can promote and REM sleep components can suppress seizure discharge propagation. Clinical Neurophysiology, 111: S9-S18. doi: 10.1016/S1388-2457(00)00397-7
    [135]
    Siapas A G, Wilson M A. 1998. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron, 21: 1123-1128. doi: 10.1016/S0896-6273(00)80629-7
    [136]
    Sitnikova E, Hramov A E, Grubov V, et al. 2014. Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Research, 1543: 290-299. doi: 10.1016/j.brainres.2013.11.001
    [137]
    Sitnikova E, Hramov A E, Grubov V, et al. 2016. Rhythmic activity in EEG and sleep in rats with absence epilepsy. Brain Research Bulletin, 120: 106-116. doi: 10.1016/j.brainresbull.2015.11.012
    [138]
    Sitnikova E. 2010. Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review). Epilepsy Research, 89(1): 17-26.
    [139]
    Slaght S J, Paz T, Mahon S, et al. 2002. Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: Implications for the role of the basal ganglia in epilepsy. Epileptic Disorders, 4: 9-22.
    [140]
    Slotine J J E, Li W. 1991. Applied Nonlinear Control (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall.
    [141]
    Sporns O, Kotter R, Friston K J. 2004. Motifs in brain networks. PLoS Biology, 2: e369. doi: 10.1371/journal.pbio.0020369
    [142]
    Steriade M, Deschenes M, Domich L, et al. 1985. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology, 54: 1473-1497. doi: 10.1152/jn.1985.54.6.1473
    [143]
    Steriade M, Domich L, Oakson G, et al. 1987. The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology, 57: 260-273. doi: 10.1152/jn.1987.57.1.260
    [144]
    Su Y, Radman T, Vaynshteyn J, et al. 2008. Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia, 49: 1586-1593. doi: 10.1111/j.1528-1167.2008.01592.x
    [145]
    Suffczynski P, Kalitzin S, Da Silva F L. 2004. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126: 467-484. doi: 10.1016/j.neuroscience.2004.03.014
    [146]
    Suffczynski P, Kalitzin S, Lopes Da Silva F, et al. 2008. Active paradigms of seizure anticipation: Computer model evidence for necessity of stimulation. Physical Review E, 78: 051917. doi: 10.1103/PhysRevE.78.051917
    [147]
    Sun X, Lei J, Perc M, et al. 2011. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks. The European Physical Journal B, 79: 61-66. doi: 10.1140/epjb/e2010-10031-3
    [148]
    Sun X, Perc M, Lu Q, et al. 2010. Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network. Chaos, 20: 033116. doi: 10.1063/1.3483876
    [149]
    Tang E, Ju H, Baum G L, et al. 2020. Control of brain network dynamics across diverse scales of space and time. Physical Review E, 101: 062301.
    [150]
    Tass P A, Qin L, Hauptmann C, et al. 2013. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Annals of Neurology, 72: 816-820.
    [151]
    Tass P A, Silchenko A N, Hauptmann C, et al. 2009. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Physical Review E, 80: 011902. doi: 10.1103/PhysRevE.80.011902
    [152]
    Taxidis J, Coombes S, Mason R, et al. 2012. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus, 22: 995-1017. doi: 10.1002/hipo.20930
    [153]
    Taylor P N, Baier G. 2011. A spatially extended model for macroscopic spike-wave discharges. Journal of Computational Neuroscience, 31: 679-684. doi: 10.1007/s10827-011-0332-1
    [154]
    Taylor P N, Thomas J, Sinha N, et al. 2015. Optimal control based seizure abatement using patient derived connectivity. Frontiers in Neuroscience, 9: 202.
    [155]
    Taylor P N, Wang Y, Goodfellow M, et al. 2014. A computational study of stimulus driven epileptic seizure abatement. PLoS One, 9: 114316. doi: 10.1371/journal.pone.0114316
    [156]
    Temprana S G, Mongiat L A, Yang S M, et al. 2014. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron, 85: 116-130.
    [157]
    Toprani S, Durand D M. 2013. Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation. The Journal of Physiology, 591: 5765-5790. doi: 10.1113/jphysiol.2013.253757
    [158]
    Tort A B, Kramer M A, Thorn C, et al. 2008. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America, 105: 20517-20522. doi: 10.1073/pnas.0810524105
    [159]
    Touboul J, Hermann G, Faugeras O. 2011. Noise-induced behaviors in neural mean field dynamics. SIAM Journal on Applied Dynamical Systems, 11: 49-81.
    [160]
    Traub R D, Bibbig A. 2000. A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. Journal of Neuroscience, 20: 2086-2093. doi: 10.1523/JNEUROSCI.20-06-02086.2000
    [161]
    Van D W, Lee H C, Hereld M, et al. 2005. Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13: 236-241. doi: 10.1109/TNSRE.2005.847387
    [162]
    Van Mierlo P, Carrette E, Hallez H, et al. 2011. Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage, 56: 1122-1133. doi: 10.1016/j.neuroimage.2011.02.009
    [163]
    Vercueil L, Benazzouz A, Deransart C, et al. 1998. High-frequency stimulation of the sub-thalamic nucleus suppresses absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Research, 31: 39-46. doi: 10.1016/S0920-1211(98)00011-4
    [164]
    Verghese J, Rapin I. 2014. Subcortical epilepsy? Neurology, 82: 373-373. doi: 10.1212/01.wnl.0000443818.22087.0d
    [165]
    Von Krosigk M, Bal T, McCormick D A. 1993. Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261: 361-364. doi: 10.1126/science.8392750
    [166]
    Wang W X, Ni X, Lai Y C, et al. 2012. Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E, 85: 026115. doi: 10.1103/PhysRevE.85.026115
    [167]
    Wang X J, Buzs´aki G. 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16: 6042-6413.
    [168]
    Wang Z, Wang Q. 2017. Eliminating absence seizures through the deep brain stimulation to thalamus reticular nucleus. Frontiers in Computational Neuroscience, 11: 22.
    [169]
    Wang Z, Wang Q. 2019. Stimulation strategies for absence seizures: Targeted therapy of the focus in coupled thalamocortical model. Nonlinear Dynamics, 96: 1649-1663. doi: 10.1007/s11071-019-04876-z
    [170]
    Wendling F, Bartolomei F, Bellanger J J, et al. 2002. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 15: 1499-1508. doi: 10.1046/j.1460-9568.2002.01985.x
    [171]
    Wendling F, Bellanger J J, Bartolomei F, et al. 2000. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83: 367-378. doi: 10.1007/s004220000160
    [172]
    Wendling F, Benquet P, Bartolomei F, et al. 2016. Computational models of epileptiform activity. Journal of Neuroscience Methods, 260: 233-251. doi: 10.1016/j.jneumeth.2015.03.027
    [173]
    Wiles L, Gu S, Pasqualetti F, et al. 2017. Autaptic connections shift network excitability and bursting. Scientific Reports, 7: 44006. doi: 10.1038/srep44006
    [174]
    Wilke C, Van Drongelen W, Kohrman M, et al. 2009. Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clinical Neurophysiology, 120: 1449-1456. doi: 10.1016/j.clinph.2009.04.024
    [175]
    Wilke C, Worrell G, He B. 2011. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia, 52: 84-93. doi: 10.1111/j.1528-1167.2010.02785.x
    [176]
    Womelsdorf T, Valiante T A, Sahin N T, et al. 2014. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nature Neuroscience, 17: 1031-1039. doi: 10.1038/nn.3764
    [177]
    Worrell G A, Jerbi K, Kobayashi K, et al. 2012. Recording and analysis techniques for high-frequency oscillations. Progress in Neurobiology, 98: 265-278. doi: 10.1016/j.pneurobio.2012.02.006
    [178]
    Xu Y, Ying H, Jia Y, et al. 2017. Autaptic regulation of electrical activities in neuron under electromagnetic induction. Scientific Reports, 7: 43452. doi: 10.1038/srep43452
    [179]
    Yang C, Luan G, Wang Q, et al. 2018. Localization of epileptogenic zone with the correction of pathological networks. Frontiers in Neurology, 9: 143. doi: 10.3389/fneur.2018.00143
    [180]
    Yuen G L, Durand D. 1991. Reconstruction of hippocampal granule cell electrophysiology by computer simulation. Neuroscience, 41: 411-423. doi: 10.1016/0306-4522(91)90337-N
    [181]
    Zhang L Y, Fan D G, Wang Q Y, Baier, G. 2018a. Effects of brain-derived neurotrophic factor and noise on transitions of temporal lobe epilepsy in a hippocampal network. Chaos, 28: 106322. doi: 10.1063/1.5036690
    [182]
    Zhang L Y, Fan D G, Wang Q Y. 2017. Transitions dynamics of a dentate gyrus-CA3 neuronal network during temporal lobe epilepsy. Frontiers in Computational Neuroscience, 11: 61. doi: 10.3389/fncom.2017.00061
    [183]
    Zhang L Y, Fan D G, Wang Q Y. 2018b. Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems. Chaos, 28: 063101. doi: 10.1063/1.5017012
    [184]
    Zhang L Y, Wang Q Y, Baier G. 2020a. Dynamical features of a focal epileptogenic network model for stimulation-based control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28: 1856-1865. doi: 10.1109/TNSRE.2020.3002350
    [185]
    Zhang L Y, Wang Q Y, Baier G. 2020b. Spontaneous transitions to focal-onset epileptic seizures: A dynamical study. Chaos, 30: 103114. doi: 10.1063/5.0021693
    [186]
    Zhang T, Zhang Y, Ren J, et al. 2021. Aberrant basal ganglia-thalamo-cortical network topology in juvenile absence epilepsy: A resting-state EEG-fMRI study. Seizure, 84: 78-83. doi: 10.1016/j.seizure.2020.11.015
    [187]
    Zou Y, Chen G. 2009. Choosing effective controlled nodes for scale-free network synchronization. Physica A, 388: 2931-2940. doi: 10.1016/j.physa.2009.03.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(40)  / Tables(1)

    Article Metrics

    Article views (2745) PDF downloads(378) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return