Volume 52 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
Zhang M H, Li Z H, Li H G, Zhang C. A review on the mechanical stability of flexible perovskite solar cells. Advances in Mechanics, 2022, 52(2): 311-338 doi: 10.6052/1000-0992-21-057
Citation: Zhang M H, Li Z H, Li H G, Zhang C. A review on the mechanical stability of flexible perovskite solar cells. Advances in Mechanics, 2022, 52(2): 311-338 doi: 10.6052/1000-0992-21-057

A review on the mechanical stability of flexible perovskite solar cells

doi: 10.6052/1000-0992-21-057
More Information
  • Corresponding author: chaozhang@nwpu.edu.cn
  • Received Date: 2021-11-19
  • Accepted Date: 2022-01-26
  • Available Online: 2022-02-14
  • Publish Date: 2022-06-25
  • Perovskite solar cells (PSCs) attract great attention from the scientific community due to their low cost, high performance, and rapid increase in photoelectric conversion efficiency (PCE) from 3.8% to 25.5%. Compared with rigid perovskite solar cells, flexible perovskite solar cells (FPSCs) deposited on polymer substrates are considered to be more suitable for commercial application with their intrinsic advantages in lightweight and bendability. However, a gap presents between the photovoltaic performance of FPSCs and rigid PSCs, and the mechanical instability of FPSCs is still a critical concern for commercial application. In this review, the recent research progress on improving the mechanical stability of FPSCs is summarized and discussed through two main aspects: particle regulation and structure innovation, which could provide valuable suggestions for future research efforts in this area and the engineering application of FPSCs. On the other hand, the research advances in FPSCs-based self-powering sensors are introduced and discussed, illustrating the next-stage breakthroughs, possible innovation designs, and future developments of FPSCs.

     

  • loading
  • [1]
    陈永亮, 唐亚文, 陈沛润, 等. 2020. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 69: 138401 (Chen Y, Tang Y, Chen P, et al. 2020. Progress in perovskite solar cells based on different buffer layer materials. Acta Phys Sin, 69: 138401). doi: 10.7498/aps.69.20200543

    Chen Y, Tang Y, Chen P, et al. 2020. Progress in perovskite solar cells based on different buffer layer materials. Acta Phys Sin, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [2]
    NREL. A chart of the highest confirmed conversion efficiencies for research cells for a range of photovoltaic technologies, plotted from 1976 to the present. https://www.nrel.gov/pv/cell-efficiency.html.
    [3]
    Bai L, Lei Y, Huang H, et al. 2021. Flexible light-responsive self-healing polymeric composite film based on two-dimensional MoS2 - organic halide perovskite longitudinal heterostructure. Chemical Engineering Journal, 425: 131450. doi: 10.1016/j.cej.2021.131450
    [4]
    Ball J, Lee M, Hey A, et al. 2013. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ, 6: 1739. doi: 10.1039/c3ee40810h
    [5]
    Bi D, Yi C, Luo J, et al. 2016. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 1: 16142. doi: 10.1038/nenergy.2016.142
    [6]
    Cai Y, Cui J, Chen M, et al. 2021. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv Funct Mater, 31: 2005776. doi: 10.1002/adfm.202005776
    [7]
    Carlson D, Wronski C, Pankove J I. 1977. Properties of amorphous silicon and a-Si solar cells. RCA Review, 38: 211-225.
    [8]
    Chang C, Chu C, Huang Y, et al. 2015a. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces, 7: 4955-4961. doi: 10.1021/acsami.5b00052
    [9]
    Chang P, Liu X, Zeng L, et al. 2015b. Hole mobility in InSb-Based devices: Dependence on surface orientation, body thickness, and strain. Solid-State Electron, 113: 68-72. doi: 10.1016/j.sse.2015.05.017
    [10]
    Chen Y, Lu B, Chen Y, et al. 2016. Biocompatible and ultra-flexible inorganic strain sensors attached to skin for long-term vital signs monitoring. IEEE Electron Device Lett, 37: 496-499. doi: 10.1109/LED.2016.2536036
    [11]
    Chen Y, Li M, Chen P, 2018. Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells. Sci Rep. 8, 7646.
    [12]
    Chen Z, John W F, Wang C, et al. 2014. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Advanced energy materials, 4: 1400207. doi: 10.1002/aenm.201400207
    [13]
    Du P, Hu X, Yi C, et al. 2015. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv Funct Mater, 25: 2420-2427. doi: 10.1002/adfm.201500335
    [14]
    Feng J, Zhu X, Yang Z, et al. 2018. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 30: 1801418. doi: 10.1002/adma.201801418
    [15]
    Goyal A, Reddy A, Ajayan P. 2011. Flexible carbon nanotube–Cu2O hybrid electrodes for li-ion batteries. Small, 7: 1709-1713. doi: 10.1002/smll.201002051
    [16]
    Gurung A, Chen K, Khan R, et al. 2017. Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Adv Energy Mater, 7: b1602105. doi: 10.1002/aenm.201602105
    [17]
    Gong C, Zhang L, Meng X, et al. 2021. A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Sci China Chem, 64: 834-843. doi: 10.1007/s11426-020-9951-1
    [18]
    Grätzel, M. Photoelectrochemical cells. 2001. Nature, 414: 338–344.
    [19]
    Han Z, Cheng Z, Chen Y, et al. 2019. Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring. Nanoscale, 11: 5942-5950. doi: 10.1039/C8NR08341J
    [20]
    Hashemi S, Ramakrishna S Aberle A. 2020. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ Sci, 13: 685-743. doi: 10.1039/C9EE03046H
    [21]
    Hu L, Wu H, La M, et al. 2010. Thin, flexible secondary Li-ion paper batteries. ACS nano, 4: 5843-5848. doi: 10.1021/nn1018158
    [22]
    Hu X, Huang Z, Li F, et al. 2019. Nacre-inspired crystallization and elastic “brick-and-mortar” strucrure for a wearable perovskite solar module. Energy Environ. Sci, 12: 979-987. doi: 10.1039/C8EE01799A
    [23]
    Hu X, Huang Z, Zhou X, et al. 2017. Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv Mater, 29: 1703236. doi: 10.1002/adma.201703236
    [24]
    Hu X, Meng X, Yang X, et al. 2021. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci Bull, 66: 527-535. doi: 10.1016/j.scib.2020.10.023
    [25]
    Jiao Y, Yi S, Wang H, et al. 2021. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv Funct Mater, 31: 2006243. doi: 10.1002/adfm.202006243
    [26]
    Jung H S, Han G S, Park N G, et al. 2019. Flexible perovskite solar cells. Joule, 3: 1850-1880. doi: 10.1016/j.joule.2019.07.023
    [27]
    Khang D Jiang H, Huang Y, et al. 2006. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 311: 208-212. doi: 10.1126/science.1121401
    [28]
    Kim B, Kim D, Lee Y, et al. 2015. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ, 8: 916-921. doi: 10.1039/C4EE02441A
    [29]
    Kim D, Song J, Choi W, et al. 2008. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences, 105: 18675-18680. doi: 10.1073/pnas.0807476105
    [30]
    Kim D, Kim Y, Wu J, et al. 2009. Ultrathin silicon circuits with strain‐isolation layers and mesh layouts for high‐performance electronics on fabric, vinyl, leather, and paper. Advanced Materials, 21: 3703-3707. doi: 10.1002/adma.200900405
    [31]
    Klug M, Osherov A, Haghighirad A, et al. 2017. Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties. Energy Environ, 10: 236-246. doi: 10.1039/C6EE03201J
    [32]
    Kojima A, Teshima K, Shirai Y, et al. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Am Chem Soc, 131: 6050-6051. doi: 10.1021/ja809598r
    [33]
    Lamoureux A, Lee K, Shlian M, et al. 2015. Dynamic kirigami structures for integrated solar tracking. Nat Commun, 6: 8092. doi: 10.1038/ncomms9092
    [34]
    Lee G, Kim M, Choi Y, et al. 2019. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy Environ, 12: 3182-3191. doi: 10.1039/C9EE01944H
    [35]
    Lee H, Yoo J, Park J, et al. 2012a. A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation. Adv Energy Mater, 2: 976-982. doi: 10.1002/aenm.201100725
    [36]
    Lee J, Wu J, Shi M, et al. 2011. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv, Mater,23: 986-991.
    [37]
    Lee M M, TeuscherJ, Miyasaka T, et al. 2012b. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338: 643-647. doi: 10.1126/science.1228604
    [38]
    Li C, Cong S, Tian Z, et al. 2019. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 60: 247-256. doi: 10.1016/j.nanoen.2019.03.061
    [39]
    Li H, Wang W, Yang Y, et al. 2020. Kirigami-based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles. ACS Nano, 14: 1560-1568. doi: 10.1021/acsnano.9b06562
    [40]
    Li N, Chen H, Yang S, et al. 2021. Bidirectional planar flexible snake-origami batteries. Adv, 8: e2101372.
    [41]
    Li R, Chen S, Li X, et al. 2020. Zn doped MAPbBr3 single crystal with advanced structural and optical stability achieved by strain compensation. Nanoscale, 12: 3692-3700. doi: 10.1039/C9NR09657D
    [42]
    Li Y, Qi X, Liu G, et al. 2019. High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Organic Electronics, 65: 19-25. doi: 10.1016/j.orgel.2018.10.028
    [43]
    Liao W, Zhao D, Yu Y, et al. 2016. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv Mater, 28: 9333-9340.
    [44]
    Liao X, Shi C, Wang T, et al. 2018. High-energy-density foldable battery enabled by zigzag-like design. Adv Energy Mater, 9: 1802998.
    [45]
    Lin H, Weng W, Jing, et al. 2014. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Advanced Materials, 26: 1217-22. doi: 10.1002/adma.201304319
    [46]
    Liu Z, Zhong Y, Sun B, et al. 2017. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Appl. Mater. Interfaces, 9: 22361-22368. doi: 10.1021/acsami.7b01471
    [47]
    Lu L, Zheng T, Wu, Q, et al. 2015. Recent advances in bulk heterojunction polymer solar cells. Chem Rev, 115: 12666-12731. doi: 10.1021/acs.chemrev.5b00098
    [48]
    Major J D. 2016. Grain boundaries in CdTe thin film solar cells: A review. Semicond, Sci Technol, 31: 093001. doi: 10.1088/0268-1242/31/9/093001
    [49]
    Masi S, Rizzo A, Aiello F, et al. 2015. Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 7: 18956-18963. doi: 10.1039/C5NR04715C
    [50]
    Meng X, Cai Z, Zhang Y, et al. 2020. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun, 11: 3016. doi: 10.1038/s41467-020-16831-3
    [51]
    Meng X, Xing Z, Hu X, et al. 2020. Stretchable perovskite solar cells with recoverable performance. Angew Chemint Ed, 59: 16602. doi: 10.1002/anie.202003813
    [52]
    Miura K . 2009. The science of miura-ori: A review. CRC Press
    [53]
    Moloney E G, Yeddu Y, Saidaminov M M. 2020. Strain engineering in halide perovskites. ACS Materials Letters, 2: 1495-1508. doi: 10.1021/acsmaterialslett.0c00308
    [54]
    Nainani A, Bennett B R, Brad Boos J, et al. 2012. Enhancing hole mobility in III-V semiconductors. Appl Phys 111, 103706.
    [55]
    Nishimura K, Hirotani D, Kamarudin M, et al. 2019. Relationship between lattice strain and efficiency for sn-perovskite solar cells. ACS Appl Mater Interfaces, 11: 31105-31110. doi: 10.1021/acsami.9b09564
    [56]
    Park M, Kim H, Jeong I, et al. 2015. Mechanically recoverable and highly efficientperovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite. Adv Energy Mater, 5: 1501406. doi: 10.1002/aenm.201501406
    [57]
    Park M, Kim, J, Son H, et. al. 2016. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 26: 208. doi: 10.1016/j.nanoen.2016.04.060
    [58]
    Pei L, Yu H, Zhang Q, et al. 2020. Concave and convex bending influenced mechanical stability in flexible perovskite solar cells. Phys Chem C, 124: 2340-2345. doi: 10.1021/acs.jpcc.9b10407
    [59]
    Polman A, Knight M, Garnett E C, et al. 2016. Photovoltaic materials: Present efficiencies and future challenges. Science, 352: 4424-4424. doi: 10.1126/science.aad4424
    [60]
    Qi D, Liu Z, Liu Y, et al. 2015. Suspended wavy graphene microribbons for highly stretchable micro supercapacitors. Adv Mater, 27: 5559-5566. doi: 10.1002/adma.201502549
    [61]
    Qian G, Zhu B, Liao X, et al. 2018. Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv Mater, 30: 1704947. doi: 10.1002/adma.201704947
    [62]
    Ramanujam J, Singh U. 2017. Copper indium gallium selenide based solar cells: A review. Energy Environ Sci, 10: 1306-1319. doi: 10.1039/C7EE00826K
    [63]
    Rong Y, Liu L, Mei A, et al. 2015. Beyond efficiency: The challenge of stability in mesoscopic perovskite solar cells. Adv. Energy Mater, 5: 1501066. doi: 10.1002/aenm.201501066
    [64]
    Salau A M. 1980. Fundamental absorption edge in PbI2: KI alloys. Solar Energy Materials, 2: 327-332. doi: 10.1016/0165-1633(80)90008-8
    [65]
    Schlenker D, Miyamoto T, Chen Z, et al. 2000. Inclusion of strain effect in miscibility gap calculations for III–V semiconductors. Jpn Appl Phys, 39: 5751. doi: 10.1143/JJAP.39.5751
    [66]
    Shah A, Schade H, Vanecek M, et al. 2004. Thin-film silicon solar cell technology. Prog Photovolt: Res Appl, 12: 113-142. doi: 10.1002/pip.533
    [67]
    Shai X, Zuo L, Sun P, et al. 2017. Efficient planar perovskite solar cells using halide Sr-substituted Pbperovskite. Nano Energy, 36: 213-222. doi: 10.1016/j.nanoen.2017.04.047
    [68]
    Shai X, Wang J, Sun P, et al. 2018. Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 48: 117-127. doi: 10.1016/j.nanoen.2018.03.047
    [69]
    Song J, Jiang H, Choi W, et al. 2008. An analytical study of two-dimensional buckling of thin films on compliant substrates. Journal of Applied Physics, 103: 014303. doi: 10.1063/1.2828050
    [70]
    Song J, Jiang H, Huang Y, et al. 2009. Mechanics of stretchable inorganic electronic materials. Journal of Vacuum Science & Technology A, 27: 1107-1125.
    [71]
    Song Z, Wang X, Lv C et al. 2015. Kirigami-based stretchable lithium-ion batteries. Sci Rep, 5: 10988. doi: 10.1038/srep10988
    [72]
    Sun Y, Sills R B, Hu X, et al. 2015. A Bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett, 15: 3899-3906. doi: 10.1021/acs.nanolett.5b00738
    [73]
    Sutherland B, Sargent E. 2016. Perovskite photonic sources. Nature Photon, 10: 295-302. doi: 10.1038/nphoton.2016.62
    [74]
    Tian B, Zheng X, Kempa T, et al. 2007. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 449: 885-889. doi: 10.1038/nature06181
    [75]
    Tournié E, Trampert A, Ploog K. 1994. Interplay betweenSurface Stabilization, growth mode and strain relaxation during molecular-beam epitaxy of highly mismatched III-V SemiconductorLayers. Europhys Lett, 25: 663-668. doi: 10.1209/0295-5075/25/9/005
    [76]
    Tsao J, Dodson B. 1988. Excess stress and the stability of strained heterostructures. Appl Phys Lett, 53: 848-850. doi: 10.1063/1.100091
    [77]
    Wang F, Jin P, Feng Y, et al. 2021. Flexible doppler ultrasound device for the monitoring of blood flow velocity. Science Advances, 7: 9283. doi: 10.1126/sciadv.abi9283
    [78]
    Wang H, Zhu C, Liu L et al. 2019. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 31: 1904408. doi: 10.1002/adma.201904408
    [79]
    Wang M, Sun H, Cao F, et al. 2021. Moisture-Triggered self-healing flexible perovskitephotodetectors with excellent mechanical stability. Adv Mater, 33: 2100625. doi: 10.1002/adma.202100625
    [80]
    Wang X, Gu Y, Xiong Z, et al. 2014. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 26: 1336-1342. doi: 10.1002/adma.201304248
    [81]
    Wang Z, Zhang L, Duan S et al. 2017. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Mater Chem C, 5: 8714-8722. doi: 10.1039/C7TC01727H
    [82]
    Wu H, Huang Y A, Xu F, et al. 2016. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv Mater, 28: 9881-9919. doi: 10.1002/adma.201602251
    [83]
    Xiao D, Li X, Wang D, et al. 2017. CdTe thin film solar cell with NiO as a back contact buffer layer. Sol Energ Mat Sol C, 169: 61-67. doi: 10.1016/j.solmat.2017.05.006
    [84]
    Xu C, Zhang Z, Zhang S, et al. 2021. Manipulation of perovskite crystallization kinetics via lewis base additives. Adv Funct Mater, 31: 2009425. doi: 10.1002/adfm.202009425
    [85]
    Xu J, Chen Y, Dai L. 2015. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat Commun, 6: 8103. doi: 10.1038/ncomms9103
    [86]
    Xu S, Zhang Y, Cho J, et al. 2013. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 4: 1543. doi: 10.1038/ncomms2553
    [87]
    Xu X, Li S, Zhang H, et al. 2015. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano, 9: 1782-1787. doi: 10.1021/nn506651m
    [88]
    Yang D, Yang R, Zhang J et al. 2015. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ, 8: 3208-3214. doi: 10.1039/C5EE02155C
    [89]
    Yang D, Yang R, Priya S, et al. 2019. Recent advances in flexible perovskite solar cells: Fabrication and applications. Angew Chem Int Ed, 58: 4466-4483. doi: 10.1002/anie.201809781
    [90]
    Yoon J, Kim U, Yoo Y, et al. 2021. Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv Sci, 8: 2004092. doi: 10.1002/advs.202004092
    [91]
    Yu J S, Jung G H, Jo J, et al. 2013. Transparent conductive film with printable embedded patterns for organic solar cells. Solar Energy Materials and Solar Cells, 109: 142-147. doi: 10.1016/j.solmat.2012.10.013
    [92]
    Zhang H, Lu Y, Han W et al. 2020. Solar energy conversion and utilization: towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chemical Engineering Journal, 393: 124766. doi: 10.1016/j.cej.2020.124766
    [93]
    Zhang J, Zhang W, Cheng H, et al. 2020. Critical review of recent progress of flexible perovskite solar cells. Materials Today, 39: 66-88. doi: 10.1016/j.mattod.2020.05.002
    [94]
    Zhang Y, Bai W, Cheng X, et al. 2014. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed, 53: 14564-14568. doi: 10.1002/anie.201409366
    [95]
    Zhao J J, Deng Y, Wei H et al. 2017. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv, 3: 5616. doi: 10.1126/sciadv.aao5616
    [96]
    Zhao J J, Su X, Mi Z, et al. 2022. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Met, 41: 96-105. doi: 10.1007/s12598-021-01800-6
    [97]
    Zhu C, Niu X, Fu Y et al. 2019. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun, 10: 815. doi: 10.1038/s41467-019-08507-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (3139) PDF downloads(506) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return