Volume 51 Issue 1
Mar.  2021
Turn off MathJax
Article Contents
John W. M. Bush. Pilot-wave hydrodynamics*[J]. Advances in Mechanics, 2021, 51(1): 155-177. doi: 10.6052/1000-0992-21-011
Citation: John W. M. Bush. Pilot-wave hydrodynamics*[J]. Advances in Mechanics, 2021, 51(1): 155-177. doi: 10.6052/1000-0992-21-011

Pilot-wave hydrodynamics*

doi: 10.6052/1000-0992-21-011
More Information
  • Corresponding author: John W. M. Bush
  • Received Date: 2021-03-02
  • Publish Date: 2021-03-25
  • Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantumlike behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.

     

  • loading
  • [1]
    Anderson J D. 2005. Ludwig Prandtl's boundary layer. Phys. Today, 58:45-48.
    [2]
    Bacchiagaluppi G, Valentini A. 2009. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge, UK: Cambridge Univ. Press.
    [3]
    Bach R, Pope D, Liou S, Batelaan H. 2013. Controlled double-slit electron diffraction. New J. Phys., 15:033018.
    [4]
    Bechhoeffer J, Ego V, Manneville S, Johnson B. 1995. An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech., 288:325-350.
    [5]
    Bell J S. 1966. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447-452.
    [6]
    Bell J S. 1982. On the impossible pilot wave. Found. Phys., 12:989-999.
    [7]
    Bell J S. 1987. Speakable and Unspeakable in Quantum Mechanics. Cambridge, UK: Cambridge Univ. Press.
    [8]
    Benjamin T B, Ursell F. 1954. The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A, 225:505-515.
    [9]
    Berry M V, Chambers R G, Large M D, Upstill C, Walmsley J C. 1980. Wave front dislocations in the Aharanov-Bohm effect and its water wave analogue. Eur. J. Phys., 1:154-162.
    [10]
    Bohm D. 1952a. A suggested interpretation of the quantum theory in terms of hidden variables, I. Phys. Rev., 85:166-179.
    [11]
    Bohm D. 1952b. A suggested interpretation of the quantum theory in terms of hidden variables. II. Phys. Rev., 85:180-193.
    [12]
    Bohm D, Vigier J P. 1954. Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev., 96:208-216.
    [13]
    Bohm D, Hiley B J. 1982. The de Broglie pilot wave theory and the further development of new insights arising out of it. Found. Phys., 12:1001-1016.
    [14]
    Bohr N. 1935. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 48:696-702.
    [15]
    Boyer T H. 2010. Derivation of the Planck spectrum for relativistic classical scalar radiation from thermal equilibrium in an accelerating frame. Phys. Rev. D, 81:105024.
    [16]
    Boyer T H. 2011. Any classical description of nature requires classical electromagnetic zero-point radiation. Am. J. Phys., 79:1163-1167.
    [17]
    Buhler O. 2010. Wave-vortex interactions in fluids and superfluids. Annu. Rev. Fluid Mech., 42:205-228.
    [18]
    Burinskii A. 2008. The Dirac-Kerr-Newman electron. Gravit. Cosmol., 14:109-122
    [19]
    Bush J W M. 2010. Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA, 107:17455-17456.
    [20]
    Bush J W M, Oza A, Molá?ek J. 2014. The wave-induced addedmass of walking droplets. J. Fluid Mech., 755:R7. doi: 10.1017/jfm.2014.459.
    [21]
    Carmigniani R, Lapointe S, Symon S, McKeon B J. 2014. Influence of a local change of depth on the behavior of walking oil drops. Exp. Thermal Fluid Sci., 54:237-246.
    [22]
    Chebotarev L. 2000. Introduction: The de Broglie-Bohm-Vigier approach in quantum mechanics//Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics. Jeffers S, Lehnert B, Abramson N, Chebotarev L, eds. pp. 118. Montreal: Apeiron.
    [23]
    Cole D C, Zhou Y. 2003. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A, 317:1420.
    [24]
    Coste C, Lund F, Umeki M. 1999. Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Shallow water. Phys. Rev. E, 60:4908-4916
    [25]
    Couder Y, Fort E. 2006. Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett., 97:154101.
    [26]
    Couder Y, Fort E. 2012. Probabilities and trajectories in a classical wave-particle duality. J. Phys. Conf. Ser., 361:012001.
    [27]
    Couder Y, Fort E, Gautier C H, Boudaoud A. 2005a. From bouncing to floating: Noncoalescence of drops on a fluid bath. Phys. Rev. Lett., 94:177801.
    [28]
    Couder Y, Protière S, Fort E, Boudaoud A. 2005b. Walking and orbiting droplets. Nature, 437:208.
    [29]
    Crommie M F, Lutz C P, Eigler D M. 1993a. Confinement of electrons to quantum corrals on a metal surface. Science, 262:218-220.
    [30]
    Crommie M F, Lutz C P, Eigler D M. 1993b. Imaging standing waves in a two-dimensional electron gas. Nature, 363:524-527.
    [31]
    Davisson C, Germer L H. 1927. The scattering of electrons by a single crystal of nickel. Nature, 119:558-560.
    [32]
    de Broglie L. 1923. Ondes et quanta. C. R. 177:507-510.
    [33]
    de Broglie L. 1926. Ondes et mouvements. Paris: Gautier-Villars.
    [34]
    de Broglie L. 1930. An Introduction to the Study of Wave Mechanics. London: Methuen & Co.
    [35]
    de Broglie L. 1956. Une interprétation causale et nonlinéaire de la Mechanique ondulatoire: la théorie de la double solution. Paris: Gautier-Villars.
    [36]
    de Broglie L. 1964. La thermodynamique cachée des particules. Ann. Inst. Henri Poincaré, 1:1-19.
    [37]
    de Broglie L. 1987. Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis Broglie, 12:1-23.
    [38]
    de Gennes P G, Brochard-Wyart F, Quéré D. 2002. Gouttes, bulles, perles et ondes. Paris: Belin.
    [39]
    de la Pen? L, Cetto A M. 1996. The Quantum Dice: An Introduction to Stochastic Electrodynamics. Dordrecht: Kluwer Acad.
    [40]
    Denardo B C, Puda J J, Larraza A. 2009. A water wave analog of the Casimir effect. Am. J. Phys., 77:1095-1101.
    [41]
    Donnelly RJ. 1993. Quantized vortices and turbulence in helium II. Annu. Rev. Fluid Mech., 25:327-371.
    [42]
    Dorbolo S, Terwagne D, Vandewalle N, Gilet T. 2008. Resonant and rolling droplets. New J. Phys., 10:113021.
    [43]
    Douady S. 1990. Experimental study of the Faraday instability. J. Fluid Mech., 221:383-409.
    [44]
    Durr D, Goldstein S, Zanghi N. 2012. Quantum Physics Without Quantum Philosophy. New York: Springer.
    [45]
    Eddi A, Boudaoud A, Couder Y. 2011a. Oscillating instability in bouncing drop crystals. Europhys. Lett., 94:20004.
    [46]
    Eddi A, Decelle A, Fort E, Couder Y. 2009a. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett., 87:56002.
    [47]
    Eddi A, Fort E, Moisy F, Couder Y. 2009b. Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett., 102:240401.
    [48]
    Eddi A, Moukhtar J, Perrard J, Fort E, Counder Y. 2012. Level splitting at a macroscopic scale. Phys. Rev. Lett., 108:264503.
    [49]
    Eddi A, Sultan E, Moukhtar J, Fort E, Rossi M, Couder Y. 2011b. Information stored in Faraday waves: The origin of path memory. J. Fluid Mech., 674:433-463.
    [50]
    Eddi A, Terwagne D, Fort E, Couder Y. 2008. Wave propelled ratchets and drifting rafts. Europhys. Lett., 82:44001.
    [51]
    Edwards W S, Fauve S. 1994. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech., 278:123-148.
    [52]
    Einstein A, Podolsky B, Rosen N. 1935. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777-780.
    [53]
    Everett H. 1957. Relative state formulation of quantum mechanics. Rev. Mod. Phys., 29:454-462.
    [54]
    Faraday M. 1831. On the forms and states of fluids on vibrating elastic surfaces. Philos. Trans. R. Soc. Lond., 121:319-340.
    [55]
    Feynman R P, Leighton R B, Sands M. 1964. The Feynman Lectures on Physics. New York: Addison-Wesley.
    [56]
    Fiete G A, Heller E J. 2003. Theory of quantum corrals and quantum mirages. Rev. Mod. Phys., 75:933-948.
    [57]
    Fort E, Couder Y. 2013. Trajectory eigenmodes of an orbiting wave source. Europhys. Lett., 102:16005.
    [58]
    Fort E, Eddi A, Boudaoud A, Moukhtar J, Couder Y. 2010. Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA, 107:17515-17520.
    [59]
    Gamow G. 1928. The theory of nuclear disintegration. Nature, 122:805-807.
    [60]
    Gier S, Dorbolo S, Terwagne D, Vandewalle N, Wagner C. 2012. Bouncing of polymeric droplets on liquid interfaces. Phys. Rev. E, 86:066314.
    [61]
    Gilet T, Bush J W M. 2009a. Chaotic bouncing of a drop on a soap film. Phys. Rev. Lett., 102:014501.
    [62]
    Gilet T, Bush J W M. 2009b. The fluid trampoline: Droplets bouncing on a soap film. J. Fluid Mech., 625:167-203.
    [63]
    Gilet T, Bush J W M. 2012. Droplets bouncing on a wet, inclined surface. Phys. Fluids, 24:122103.
    [64]
    Gilet T, Terwagne D, Vandewalle N, Dorbolo S. 2008. Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett., 100:167802.
    [65]
    Gilet T, Vandewalle N, Dorbolo S. 2007. Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E, 76:035302.
    [66]
    Goldman D I. 2002. Pattern formation and fluidization in vibrated granular layers, and grain dynamics and jamming in a water fluidized bed. [PhD Thesis]. Univ. Tex.,Austin.
    [67]
    Goldstein S. 1987. Stochastic mechanics and quantum theory. J. Stat. Phys., 47:645-667.
    [68]
    Grossing G, Fussy S, Mesa Pascasio J, Schwabl H. 2012a. An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations. Ann. Phys., 327:421-427.
    [69]
    Grossing G, Fussy S, Mesa Pascasio J, Schwabl H. 2012b. The quantum as an emergent system. J. Phys. Conf. Ser., 361:021008.
    [70]
    Gutzwiller M C. 1990. Chaos in Classical and Quantum Mechanics. Berlin: Springer-Verlag.
    [71]
    Haisch B, Rueda A. 2000. On the relation between a zero-point-field-induced inertial effect and the Einsteinde Broglie formula. Phys. Rev. A, 268:224-227.
    [72]
    Haisch B, Rueda A, Dobyns Y. 2001. Inertial mass and the quantum vacuum fields. Ann. Phys., 10:393-414.
    [73]
    Harris D M, Bush J W M. 2013. The pilot-wave dynamics of walking droplets. Phys. Fluids, 25:091112.
    [74]
    Harris D M, Bush J W M. 2014a. Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech., 739:444-464.
    [75]
    Harris D M, Bush J W M. 2014b. Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib., in press.
    [76]
    Harris D M, Moukhtar J, Fort E, Couder Y, Bush J W M. 2013. Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E, 88:011001.
    [77]
    Hestenes D. 1990. The zitterbewegung interpretation of quantum mechanics. Found. Phys., 20:1213-1232.
    [78]
    Holland P R. 1993. The Quantum Theory of Motion: An Account of the De BroglieBohm Causal Interpretation of Quantum Mechanics. Cambridge, UK: Cambridge Univ. Press.
    [79]
    Jayaratne O W, Mason B J. 1964. The coalescence and bouncing of water drops at an air-water interface. Proc. R. Soc. Lond. A, 280:545-565.
    [80]
    Keller J. 1953. Bohm's interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev., 89:1040-1041.
    [81]
    Kracklauer A F. 1992. An intuitive paradigm for quantum mechanics. Phys. Essays, 5:226-234.
    [82]
    Kracklauer A F. 1999. Pilot wave steerage: A mechanism and test. Found. Phys. Lett., 12:441-453.
    [83]
    Kumar K. 1996. Parametric instability of the interface between two fluids. Proc. R. Soc. Lond. A, 452:1113-1126.
    [84]
    Kumar K, Tuckerman L S. 1994. Parametric instability of the interface between two fluids. J. Fluid Mech., 279:49-68.
    [85]
    Labousse M, Perrard S. 2014. Non-Hamiltonian features of a classical pilot-wave dynamics. Phys. Rev. E, 90:022913.
    [86]
    Lieber S I, Hendershott M C, Pattanaporkratana A, Maclennan J E. 2007. Self-organization of bouncing oil drops: Two-dimensional lattices and spinning clusters. Phys. Rev. E, 75:056308.
    [87]
    Lighthill J. 1956. Physics of gas flow at very high speeds. Nature, 178:343-345.
    [88]
    Madelung E. 1926. Quantentheorie in Hydrodynamischen form. Z. Phys., 40:322-326.
    [89]
    Miles J, Henderson D. 1990. Parametrically forced surface waves. Annu. Rev. Fluid Mech., 22:143-165.
    [90]
    Moisy F, Rabaud M, Salsac K. 2009. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids, 46:1021-1036.
    [91]
    Molá?ek J, Bush J W M. 2012. A quasi-static model of drop impact. Phys. Fluids, 24:127103.
    [92]
    Molá?ek J, Bush J W M. 2013a. Droplets bouncing on a vibrating fluid bath. J. Fluid Mech., 727:582-611.
    [93]
    Molá?ek J, Bush J W M. 2013b. Droplets walking on a vibrating fluid bath: Towards a hydrodynamic pilot-wave theory. J. Fluid Mech., 727:612-647.
    [94]
    Neitzel G P, Dell'Aversana P. 2002. Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech., 34:267-289.
    [95]
    Nelson E. 1966. Derivation of the Schr?dinger equation from Newtonian mechanics. Phys. Rev., 150:1079-1085.
    [96]
    Nelson E. 2012. Review of stochastic mechanics. J. Phys. Conf. Ser., 361:012011
    [97]
    Newton I. 1979. Opticks: Or a Treatise of the Reflections, Refractions, Inflections and Colours of Light. Mineola, NY: Dover.
    [98]
    Okumura K, Chevy F, Richard D, Quéré D, Clanet C. 2003. Water spring: A model for bouncing drops. Europhys. Lett., 62:237-243.
    [99]
    Oza A, Harris D M, Rosales R R, Bush J W M. 2014a. Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech., 744:404-429.
    [100]
    Oza A, Rosales R R, Bush J W M. 2013. A trajectory equation for walking droplets: A hydrodynamic pilot-wave theory. J. Fluid Mech., 737:552-570.
    [101]
    Oza A, Wind-Willassen ?, Harris D M, Rosales R R, Bush J W M. 2014b. Pilot-wave hydrodynamics in a rotating frame: Exotic orbits. Phys. Fluids, 26:082101
    [102]
    Perrard S, Labousse M, Fort E, Couder Y. 2014a. Chaos driven by interfering memory. Phys. Rev. Lett., 113:104101.
    [103]
    Perrard S, Labousse M, Miskin M, Fort E, Couder Y. 2014b. Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun., 5:3219.
    [104]
    Philippidis C, Dewdney C, Hiley B J. 1979. Quantum interference and the quantum potential. Nuovo Cimento, 52B:15-28.
    [105]
    Pitaevskii L, Stringari S. 2003. Bose-Einstein Condensation. New York: Oxford Univ. Press.
    [106]
    Prosperetti A, Oguz H N. 1993. The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech., 25:577-602.
    [107]
    Protière S, Bohn S, Couder Y. 2008. Exotic orbits of two interacting wave sources. Phys. Rev. E, 78:036204.
    [108]
    Protière S, Boudaoud A, Couder Y. 2006. Particle wave association on a fluid interface. J. Fluid Mech., 554:85-108.
    [109]
    Protière S, Couder Y, Fort E, Boudaoud A. 2005. The self-organization of capillary wave sources. J. Phys. Condens. Matter, 17:S3529-S3535.
    [110]
    Pucci G, Ben Amar M, Couder Y. 2013. Faraday instability in floating liquid lenses: The spontaneous mutual adaptation due to radiation pressure. J. Fluid Mech., 725:402-427.
    [111]
    Pucci G, Fort E, Ben Amar M, Couder Y. 2011. Mutual adaptation of a Faraday instability pattern with its flexible boundaries in floating fluid drops. Phys. Rev. Lett., 106:024503.
    [112]
    Reynolds O. 1886. On the theory of lubrication. Philos. Trans. R. Soc. Lond. A, 177:157-234.
    [113]
    Rueda A, Haisch B. 2005. Gravity and the quantum vacuum inertia hypothesis. Ann. Phys., 14:479-498.
    [114]
    Schr?dinger E. 1930. Uber die kraftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys. Math. Kl., 24:418-428.
    [115]
    Shirikoff D. 2013. Bouncing droplets on a billiard table. Chaos, 23:013115.
    [116]
    Spiegel E. 1980. Fluid dynamical form of the linear and nonlinear Schr?dinger equations. Physica D, 1:236-240.
    [117]
    Surdin M. 1974. L'éctrodynamique stochastique et l'interprétation de la Mécanique Quantique. C. R. Acad. Sci. Paris B, 278:881-883.
    [118]
    Taylor G I. 1909. Interference fringes with feeble light. Proc. Camb. Philos. Soc., 15:114-115.
    [119]
    Terwagne D. 2012. Bouncing droplets, the role of deformations. [PhD Thesis]. Univ. Liége.
    [120]
    Terwagne D, Gilet T, Vandewalle N, Dorbolo S. 2009. Metastable bouncing droplets. Phys. Fluids, 21:054103.
    [121]
    Terwagne D, Gilet T, Vandewalle N, Dorbolo S. 2010. From a bouncing compound drop to a double emulsion. Langmuir, 26:11680-11685.
    [122]
    Terwagne D, Ludewig F, Vandewalle N, Dorbolo S. 2013. The role of droplet deformations in the bouncing droplet dynamics. Phys. Fluids, 25:122101.
    [123]
    Terwagne D, Vandewalle N, Dorbolo S. 2007. Lifetime of a bouncing droplet. Phys. Rev. E, 76:056311.
    [124]
    Towler M. 2009. De Broglie-Bohm pilot-wave theory and the foundations of quantum mechanics: A graduate lecture course. Univ. Camb. http://www.tcm.phy.cam.ac.uk/$sim $mdt26/pilotwaves.html.
    [125]
    von Neumann J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.
    [126]
    Walker J. 1978. Drops of liquid can be made to float on the liquid. What enables them to do so? Sci. Am., 238:151-158.
    [127]
    Weinberg S. 1995. The Quantum Theory of Fields, Vol. I: Foundations. Cambridge, UK: Cambridge Univ. Press.
    [128]
    Weinstein A, Pounder J R. 1945. An electromagnetic analogy in mechanics. Am. Math. Mon., 52:434-438.
    [129]
    Wind-Willassen ?, Molá?ek J, Harris D M, Bush J W M. 2013. Exotic states of bouncing and walking droplets. Phys. Fluids, 25:082002.
    [130]
    Yang A L, Chien W, King M, Grosshandler W L. 1997. A simple piezoelectric droplet generator. Exp. Fluids, 23:445-447.
    [131]
    Yarin A L. 2006. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech., 38:159-192
    [132]
    Young T. 1804. The Bakerian Lecture: Experiments and calculations relative to physical optics. Philos. Trans. R. Soc. Lond., 94:1-16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1957) PDF downloads(308) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return