Citation: | Huang R, Hu H Y. Nonlinear aeroservoelasticity of aircraft. Advances in Mechanics, 2021, 51(3): 428-466 doi: 10.6052/1000-0992-21-010 |
[1] |
陈桂彬, 邹丛青, 杨超. 2004. 气动弹性设计基础. 北京: 北京航空航天大学出版社
Chen G B, Zou C Q, Yang C. 2004. Aeroelastic Design Foundation. Beijing: Beihang University Press
|
[2] |
韩京清. 1998. 自抗扰控制器及其应用. 控制与决策, 13: 19-23 (Han J Q. 1998. Auto-disturbance rejection controller and it’s applications. Control and Decision, 13: 19-23). doi: 10.3321/j.issn:1001-0920.1998.01.005
|
[3] |
韩京清. 1995a. 非线性状态误差反馈控制律–NLSEF. 控制与决策, 10: 221-226 (Han J Q. 1995a. Nonlinear state error feedback control law - NLSEF. Control and Decision, 10: 221-226). doi: 10.3321/j.issn:1001-0920.1995.03.007
|
[4] |
韩京清. 1995b. 一类不确定对象的扩张状态观测器. 控制与决策, 10: 85-88 (Han J Q. 1995b. The “extended state observer” of a class of uncertain systems. Control and Decision, 10: 85-88). doi: 10.3321/j.issn:1001-0920.1995.01.020
|
[5] |
韩京清, 王伟. 1994. 非线性跟踪–微分器. 系统科学与数学, 14: 177-183 (Han J Q, Wang W. 1994. Nonlinear tracking-differentiator. Journal of Systems Science and Mathematical Science, 14: 177-183).
|
[6] |
韩京清, 袁露林. 1999. 跟踪–微分器的离散形式. 系统科学与数学, 19: 268-273 (Han J Q, Yuan L L. 1999. The discrete form of tracking-differentiator. Journal of Systems Science and Mathematical Science, 19: 268-273). doi: 10.3969/j.issn.1000-0577.1999.03.003
|
[7] |
胡海岩, 赵永辉, 黄锐. 2016. 飞机结构气动弹性分析与控制研究. 力学学报, 48: 1-27 (Hu H Y, Zhao Y H, Huang R. 2016. Studies on aeroelastic analysis and control of aircraft structures. Chinese Journal of Theoretical and Applied Mechanics, 48: 1-27). doi: 10.6052/0459-1879-15-423
|
[8] |
黄锐. 2014. 亚/跨音速飞机结构气动弹性控制及其实验研究. [博士论文]. 南京: 南京航空航天大学
Huang R. 2014. Aeroelastic control of aircraft structure in subsonic/transonic flows and its testification. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics
|
[9] |
雷鹏轩, 余立, 陈德华, 吕彬彬. 2021. 飞行控制律对体自由度颤振特性影响试验研究. 航空学报, 42: 1-11 (Lei P X, Yu L, Chen D H, Lü B B. 2021. Experimental study on the influence of flight control law on the body freedom flutter characteristics. Acta Aeronautica et Astronautica Sinica, 42: 1-11).
|
[10] |
李杰, 齐晓慧, 万慧, 夏元清. 2017. 自抗扰控制: 研究成果总结与展望. 控制理论与应用, 34: 281-295 (Li J, Qi X H, Wan H, Xia Y Q. 2017. Active disturbance rejection control: theoretical results summary and future researches. Control Theory & Applications, 34: 281-295). doi: 10.7641/CTA.2017.60363
|
[11] |
沐旭升, 邹奇彤, 黄锐, 胡海岩. 2020. 体自由度颤振主动抑制的多输入/多输出自抗扰控制律设计. 振动工程学报, 33: 910-920 (Mu X S, Zou Q T, Huang R, Hu H Y. 2020. Design of multiple-input/multiple-output active disturbance rejection controller for body-freedom flutter suppression. Journal of Vibration Engineering, 33: 910-920).
|
[12] |
桑为民, 陈年旭. 2009. 变体飞机的研究进展及其关键技术. 飞行力学, 27: 5-9 (Sang W M, Chen N X. 2009. Development and key technologies of the morphing aircraft. Flight Dynamics, 27: 5-9).
|
[13] |
杨超, 黄超, 吴志刚, 唐长红. 2015. 气动伺服弹性研究的进展与挑战. 航空学报, 36: 1011-1033 (Yang C, Huang C, Wu Z G, Tang C H. 2015. Progress and challenges for aeroservoelasticity research. Acta Aeronautica et Astronautica Sinica, 36: 1011-1033).
|
[14] |
杨超, 宋晨, 吴志刚, 张瞿辉. 2010. 多控制面飞机的全机颤振主动抑制设计. 航空学报, 31: 1501-1508 (Yang C, Song C, Wu Z G, Zhang Z H. 2010. Active flutter suppression of airplane configuration with multiple control surfaces. Acta Aeronautica et Astronautica Sinica, 31: 1501-1508).
|
[15] |
于明礼, 文浩, 胡海岩. 2006. 二维翼段颤振的H∞控制. 振动工程学报, 19: 326-330 (Yu M L, Wen H, Hu H Y. 2006. Active flutter suppression of a two dimensional airfoil using H∞ synthesis. Journal of Vibration Engineering, 19: 326-330). doi: 10.3969/j.issn.1004-4523.2006.03.007
|
[16] |
于明礼, 文浩, 胡海岩, 赵永辉. 2007. 二维翼段颤振的μ控制. 航空学报, 28: 340-343 (Yu M L, Wen H, Hu H Y, Zhao Y H. 2007. Active flutter suppression of a two dimensional airfoil section using μ synthesis. Acta Aeronautica et Astronautica Sinica, 28: 340-343). doi: 10.3321/j.issn:1000-6893.2007.02.017
|
[17] |
赵永辉, 黄锐. 2015. 高等气动弹性力学与控制. 北京: 科学出版社
Zhao Y H, Huang R. 2015. Advanced Aeroelasticity and Control. Beijing: Science Press
|
[18] |
Albano E, Rodden W P. 1969. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J., 7: 279-285. doi: 10.2514/3.5086
|
[19] |
Bagheri S. 2013. Koopman-mode decomposition of the cylinder wake. J. Fluid Mech., 726: 596-623. doi: 10.1017/jfm.2013.249
|
[20] |
Barbarino S, Bilgen O, Ajaj R M, Friswell M I, Inman D J. 2011. A review of morphing aircraft. J. Intell. Mater. Syst. Struct., 22: 823-877. doi: 10.1177/1045389X11414084
|
[21] |
Berkooz G, Holmes P, Lumley J. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech., 25: 539-575. doi: 10.1146/annurev.fl.25.010193.002543
|
[22] |
Brock B J, Griffin J A. 1975. The supersonic doublet-lattice method – A comparison of two approaches// 16th Structural Dynamics, and Materials Conference, Denver, CO, USA.
|
[23] |
Brunton S L, Proctor J L, Kutz J N. 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A., 113: 3932-3937. doi: 10.1073/pnas.1517384113
|
[24] |
Chanzy Q, Keane A J. 2018. Analysis and experimental validation of morphing UAV wings. Aeronaut J., 122: 390-407. doi: 10.1017/aer.2017.130
|
[25] |
Danowsky B P, Kotikalpudi A, Schmidt D K, Regan C, Seiler P. 2018. Flight testing flutter suppression on a small flexible flying-wing aircraft// 2018 Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics Inc, AIAA.
|
[26] |
Dowell E H. 2015. A Modern Course in Aeroelasticity, The Fifth Revised and Enlarged Edition. Springer, 1-649.
|
[27] |
Felt L R, Huttsell L J, Noll T E, Cooley D E. 1979. Aeroservoelastic Encounters. J Aircr, 16: 477-483. doi: 10.2514/3.58551
|
[28] |
Friswell M I, Inman D J. 2006. Morphing concepts for UAVs// 21st Bristol UAV Concepts Conference.
|
[29] |
Gao Z Q. 2003. Scaling and bandwidth-parameterization based controller tuning // The American control conference, IEEE, USA.
|
[30] |
Glaz B, Friedmann P P, Liu L, Cajigas J G, Bain J, Sankar L N. 2010. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA J., 48: 2418-2429. doi: 10.2514/1.J050471
|
[31] |
Hall K C, Thomas J P, Dowell E H. 2000. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J., 38: 1853-1862. doi: 10.2514/2.867
|
[32] |
Hall K C, Thomas J P, Clark W S. 2002. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J., 40: 879-886. doi: 10.2514/2.1754
|
[33] |
Hu H Y, Wang Z H. 2002. Dynamics of Controlled Mechanical Systems with Delayed Feedback. Berlin: Springer-Verlag.
|
[34] |
Hu W, Yang Z C, Gu Y S. 2016. Aeroelastic study for folding wing during the morphing process. J. Sound Vib., 365: 216-229. doi: 10.1016/j.jsv.2015.11.043
|
[35] |
Huang R, Hu H Y, Zhao Y H. 2014. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems. AIAA J., 52: 1219-1231. doi: 10.2514/1.J052323
|
[36] |
Huang R, Hu H Y, Zhao Y H. 2012. Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay. J Fluids Struct, 34: 33-50. doi: 10.1016/j.jfluidstructs.2012.05.012
|
[37] |
Huang R, Hu H Y, Zhao Y H. 2013. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play. J Fluids Struct, 42: 245-269. doi: 10.1016/j.jfluidstructs.2013.06.007
|
[38] |
Huang R, Li H K, Hu H Y, Zhao Y H. 2015a. Open/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models. AIAA J., 53: 1812-1824. doi: 10.2514/1.J053424
|
[39] |
Huang R, Liu H J, Yang Z J, Zhao Y H, Hu H Y. 2018. Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems. AIAA J., 56: 3718-3731. doi: 10.2514/1.J056760
|
[40] |
Huang R, Qian W M, Hu H Y, Zhao Y H. 2015b. Design of active flutter suppression and wind-tunnel tests of a wing model involving a control delay. J Fluids Struct, 55: 409-427. doi: 10.1016/j.jfluidstructs.2015.03.014
|
[41] |
Huang R, Yang Z J, Yao X J, Zhao Y H, Hu H Y. 2019. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing. AIAA J., 57: 5543-5552. doi: 10.2514/1.J058211
|
[42] |
Huang R, Zhao Y H, Hu H Y. 2016. Wind-tunnel tests for active flutter control and closed-loop flutter identification. AIAA J., 54: 2089-2099. doi: 10.2514/1.J054649
|
[43] |
Huang R, Zhou X H. 2021. Parameterized fictitious mode of a morphing wing with bilinear hinge stiffness. AIAA J, 00: 1-16.
|
[44] |
Hwangbo J, Sa I, Siegwart R, Hutter M. 2017. Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett., 2: 2096-2103. doi: 10.1109/LRA.2017.2720851
|
[45] |
Ivanco T G, Scott R C, Love M H, Zink S, Weisshaar T A. 2007. Validation of the Lockheed Martin morphing concept with wind tunnel testing// 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, AIAA 2007-2235.
|
[46] |
Kashki M, Abdel-Magid Y L, Abido M A. 2008. A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. // Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 684-692.
|
[47] |
Keidel D, Molinari G, Ermanni P. 2019. Aero-structural optimization and analysis of a camber-morphing flying wing: Structural and wind tunnel testing. J Intell Mater Syst Struct, 30: 908-923. doi: 10.1177/1045389X19828501
|
[48] |
Koch W, Mancuso R, West R, Bestavros A. 2019. Reinforcement learning for UAV attitude control. ACM Trans. Cyber-Phys. Syst. 3(2): article 22.
|
[49] |
Kou J Q, Zhang W W. 2019. Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows. Phys. Fluids, 31: 057106. doi: 10.1063/1.5093507
|
[50] |
Li D, Zhao S, Ronch A Da, Xiang J, Drofelnik J, Li Y, Zhang L, Wu Y, Kintscher M, Monner H P, et al. 2018. A review of modelling and analysis of morphing wings. Prog. Aerosp. Sci., 100: 46-62. doi: 10.1016/j.paerosci.2018.06.002
|
[51] |
Li W W, Pak C G. 2015. Mass balancing optimization study to reduce flutter speeds of the X-56A aircraft. J Aircr., 52: 1359-1365. doi: 10.2514/1.C033044
|
[52] |
Lillicrap T P, Hunt J J., Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2016. Continuous control with deep reinforcement learning// 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.
|
[53] |
Liu H, Hu H Y, Zhao Y H, Huang R. 2014. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations. J Fluids Struct, 49: 728-741. doi: 10.1016/j.jfluidstructs.2014.06.015
|
[54] |
Livne E. 2018. Aircraft active flutter suppression: State of the art and technology maturation needs. J Aircr., 55: 410-452. doi: 10.2514/1.C034442
|
[55] |
Luo K, Hu H Y, Liu C, et al. 2017. Model order reduction for dynamic simulation of flexible multibody system via absolute nodal coordinate formulation. Comp. Meth. Appl. Mech. Engng, 324: 573-594. doi: 10.1016/j.cma.2017.06.029
|
[56] |
Moradi M, Sadeghi M H, Dowell E H. 2018. Experimental and theoretical flutter investigation for a range of wing wind-tunnel models. J Aircr, 55: 891-897. doi: 10.2514/1.C034311
|
[57] |
Moulin B, Karpel M. 2007. Gust loads alleviation using special control surfaces. J Aircr., 44: 17-25. doi: 10.2514/1.19876
|
[58] |
Mukhopadhyay V. 1995. Flutter suppression control law design and testing for the active flexible wing. J Aircr, 32: 45-51. doi: 10.2514/3.46682
|
[59] |
Mukhopadhyay V. 2000. Transonic flutter suppression control law design and wind-tunnel test results. J. Guid. Control. Dyn., 23: 930-937. doi: 10.2514/2.4635
|
[60] |
Noack B R, Afanasiev K, Morzynski M, Tadmor G, Thiele F. 2003. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech., 497: 335-363. doi: 10.1017/S0022112003006694
|
[61] |
Noack B R, Papas P, Monkewitz P A. 2005. The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech., 523: 339-365. doi: 10.1017/S0022112004002149
|
[62] |
Noeel J P, Esfahani A F, Kerschen G, Schoukens J. 2017. A nonlinear state-space approach to hysteresis identification. Mech Syst Signal Process, 84: 171-184. doi: 10.1016/j.ymssp.2016.08.025
|
[63] |
Opgenoord M M J, Drela M, Willcox K E. 2018. Physics-based low-order model for transonic flutter prediction. AIAA J., 56: 1519-1531. doi: 10.2514/1.J056710
|
[64] |
Pankonien A M, Reich G W. 2018. Multi-Material printed wind-tunnel flutter model. AIAA J., 56: 793-807. doi: 10.2514/1.J056097
|
[65] |
Pendleton E W, Bessette D, Field P B, Miller G D, Griffin K E. 2000. Active aeroelastic wing flight research program: technical program and model analytical development. J Aircr, 37: 554-561. doi: 10.2514/2.2654
|
[66] |
Proctor J L, Brunton S L, Kutz J N. 2016. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst., 15: 142-161. doi: 10.1137/15M1013857
|
[67] |
Proctor J L, Brunton S L, Kutz J N. 2018. Generalizing Koopman theory to allow for inputs and control. SIAM J. Appl. Dyn. Syst., 17: 909-930. doi: 10.1137/16M1062296
|
[68] |
Rowley C W, Colonius T, Murray R M. 2004. Model reduction for compressible flows using POD and Galerkin projection. Physica D, 189: 115-129. doi: 10.1016/j.physd.2003.03.001
|
[69] |
Rowley C W, Mezic I, Bagheri S, Schlatter P, Henningson D S. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech., 641: 115-127. doi: 10.1017/S0022112009992059
|
[70] |
Schmidt D K. 2016. Stability augmentation and active flutter suppression of a flexible flying-wing drone. J. Guid. Control. Dyn., 39: 409-422. doi: 10.2514/1.G001484
|
[71] |
Schmid P J. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech., 656: 5-28. doi: 10.1017/S0022112010001217
|
[72] |
Schmidt D K, Danowsky B P, Kotikalpudi A, Theis J, Regan C D, Seiler P J, Kapania R K. 2020. Modeling, design, and flight testing of three flutter controllers for a flying-wing drone. J Aircr, 57: 615-634. doi: 10.2514/1.C035720
|
[73] |
Seena A, Sung H J. 2011. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int J Heat Fluid Flow, 32: 1098-1110. doi: 10.1016/j.ijheatfluidflow.2011.09.008
|
[74] |
Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M. 2014. Deterministic policy gradient algorithms // The 31st International Conference on Machine Learning, PMLR, Bejing, China, 387–395.
|
[75] |
Simiriotis N, Fragiadakis M, Rouchon J F, Braza M. 2021. Shape control and design of aeronautical configurations using shape memory alloy actuators. Comput. Struct., 244: 106434. doi: 10.1016/j.compstruc.2020.106434
|
[76] |
Snyder M P, Sanders B, Eastep F E, Frank G J. 2009. Vibration and flutter characteristics of a folding wing. J Aircr, 46: 791-799. doi: 10.2514/1.34685
|
[77] |
Taira K, Brunton S L, Dawson S T M, Rowley C W, Colonius T, McKeon B J, Schmidt O T, Gordeyev S, Theofilis V, Ukeiley L S. 2017. Modal analysis of fluid flows: An overview. AIAA J., 55: 4013-4041. doi: 10.2514/1.J056060
|
[78] |
Taira K, Hemati M S, Brunton S L, Sun Y Y, Duraisamy K, Bagheri S, Dawson S T M, Yeh C A. 2020. Modal analysis of fluid flows: applications and outlook. AIAA J., 58: 998-1022. doi: 10.2514/1.J058462
|
[79] |
Tang D, Dowell E H. 2008. Theoretical and experimental aeroelastic study for folding wing structures. J Aircr, 45: 1136-1147. doi: 10.2514/1.32754
|
[80] |
Tang Y X, Hu H Y, Tian Q. 2019. Model order reduction based on successively local linearizations for flexible multibody dynamics, Int. J. Nume. Meth. Engng, 118: 159-180.
|
[81] |
Theis J, Pfifer H, Seiler P. 2016. Robust control design for active flutter suppression// AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics Inc, AIAA.
|
[82] |
Theodorsen T. 1935. General theory of aerodynamic instability and the mechanism of flutter. Tech.Rep.496, NACA.
|
[83] |
Wang X, Zhou W, Zhang Z, Jiang J, Wu Z. 2021. Theoretical and experimental investigations on modified LQ terminal control scheme of piezo-actuated compliant structures in finite time. J. Sound Vib., 491: 115762. doi: 10.1016/j.jsv.2020.115762
|
[84] |
Wang Y, Wynn A, Palacios R. 2016. Nonlinear modal aeroservoelastic analysis framework for flexible aircraft. AIAA J., 54: 3075-3090. doi: 10.2514/1.J054537
|
[85] |
Waszak M R. 2001. Robust multivariable flutter suppression for Benchmark Active Control Technology wind-tunnel model. J. Guid. Control. Dyn., 24: 147-153. doi: 10.2514/2.4694
|
[86] |
Waszak M R, Srinathkumar S. 1995. Flutter suppression for the active flexible wing: a classical design. J Aircr, 32: 61-67. doi: 10.2514/3.46684
|
[87] |
Watkins C J C H, Dayan P. 1992. Q-Learning. Mach. Learn, 8: 279-292.
|
[88] |
Weisshaar T A. 2013. Morphing aircraft systems: historical perspectives and future challenges. J Aircr, 50: 337-353. doi: 10.2514/1.C031456
|
[89] |
Willcox K, Peraire J. 2002. Balanced model reduction via the proper orthogonal decomposition. AIAA J., 40: 2323-2330. doi: 10.2514/2.1570
|
[90] |
Williams M O., Kevrekidis I G., Rowley C W. 2015. A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J Nonlinear Sci, 25: 1307-1346. doi: 10.1007/s00332-015-9258-5
|
[91] |
Winter M, Breitsamter C. 2016. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions. AIAA J., 54: 2705-2720. doi: 10.2514/1.J054892
|
[92] |
Xie D, Xu M, Dowell E H. 2013. Projection-free proper orthogonal decomposition method for a cantilever plate in supersonic flow. J. Sound Vib., 333: 6190-6208.
|
[93] |
Yang Z J, Huang R, Liu H J, Zhao Y H, Hu H Y. 2020. An improved nonlinear reduced-order modeling for transonic aeroelastic systems. J Fluids Struct, 90: 102926.
|
[94] |
Yang Z J, Huang R, Zhao Y H, Hu H Y. 2017. Design of an active disturbance rejection control for transonic flutter suppression. J. Guid. Control. Dyn, 40: 2905-2916. doi: 10.2514/1.G002690
|
[95] |
Yang Z J, Huang R, Zhao Y H, Hu H Y. 2019. Transonic flutter suppression for a three-dimensional elastic wing via active disturbance rejection control. J. Sound Vib., 445: 168-187. doi: 10.1016/j.jsv.2019.01.006
|
[96] |
Yao W G, Marques S. 2017. Nonlinear aerodynamic and aeroelastic model reduction using a discrete empirical interpolation method. AIAA J., 55: 624-637. doi: 10.2514/1.J055143
|
[97] |
Yao W G, Marques S. 2015. Prediction of transonic limit-cycle oscillations using an aeroelastic harmonic balance method. AIAA J., 53: 2040-2051. doi: 10.2514/1.J053565
|
[98] |
Yue T, Zhang X Y, Wang L X, Ai J Q. 2017. Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing. Aerosp Sci Technol, 70: 328-338. doi: 10.1016/j.ast.2017.08.013
|
[99] |
Zeng J, Kukreja S L, Moulin B. 2012. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation. J. Guid. Control. Dyn., 35: 1377-1390. doi: 10.2514/1.56790
|
[100] |
Zhang W W, Wang B, Ye Z, Quan J. 2012. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models. AIAA J., 50: 1019-1028. doi: 10.2514/1.J050581
|
[101] |
Zhao, Y H. 2009. Stability of a two-dimensional airfoil with time-delayed feedback control. J Fluids Struct, 25: 1-25. doi: 10.1016/j.jfluidstructs.2008.03.003
|
[102] |
Zhao, Y H. 2011. Stability of a time-delayed aeroelastic system with a control surface. Aerosp Sci Technol, 15: 72-77. doi: 10.1016/j.ast.2010.05.008
|
[103] |
Zhao Y H, Hu H Y. 2012. Parameterized aeroelastic modeling and flutter analysis for a folding wing. J. Sound Vib., 331: 308-324. doi: 10.1016/j.jsv.2011.08.028
|
[104] |
Zhao Y H, Yue C Y, Hu H Y. 2016. Gust load alleviation on a large transport airplane. J Aircr, 53: 1-15.
|
[105] |
Zou Q T, Mu X S, Li H K, Huang R, Hu H Y. 2021. Robust active suppression for body-freedom flutter of a flying-wing unmanned aerial vehicle. J Franklin I., 358: 2642-2660. doi: 10.1016/j.jfranklin.2021.01.012
|