Citation: | JIANG Zonglin. On supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2021, 51(1): 130-140. doi: 10.6052/1000-0992-21-008 |
[1] |
顾诵芬, 史超礼. 1988. 世界航空发展史. 河南: 河南科学技术出版社.
|
[2] |
姜宗林. 2009. 关于吸气式高超声速推进技术研究的思考. 力学进展, 39(4):398-406.
|
[3] |
姜宗林 等. 2020. 气体爆轰物理及其统一框架理论. 北京: 科学出版社.
|
[4] |
刘大响, 程荣辉. 2002. 世界航空动力技术的现状及发展动向. 北京航空航天大学学报, 28(5):490-496.
|
[5] |
Anderson J D. 1989. Hypersonic and High Temperature Gas Dynamics. New York: McGraw-Hill Book Company.
|
[6] |
Billig F S. 1993. Research on supersonic combustion. Journal of Propulsion & Power, 9(4):499-514.
|
[7] |
Choi J Y, Ma F, Yang V. 2005. Combustion oscillations in a scramjet engine combustor with transverse fuel injection. Proc Combust Inst. 30:2851-2858.
|
[8] |
Heiser W H, Pratt D T. 1994. Hypersonic Air-breathing Propulsion. Reston. AIAA Ins.
|
[9] |
Jiang Z, Yu H. 2017. Theories and technologies for duplicating hypersonic flight conditions for ground testing. National Science Review, 4(3):290-296.
|
[10] |
Jiang Z, Liu Y, Wang C, Luo C. 2019. Shock waves generated from the combustion in supersonic flows//32nd International Symposium on Shock Waves. Singapore, July 14-19.
|
[11] |
Jiang Z, Li J, Hu Z, Liu Y, Yu H. 2020. On theory and methods for advanced detonation-driven hypervelocity shock tunnels. National Science Review, 7(7):1198-1207.
|
[12] |
Jiang Z, Zhang Z, Liu Y, Wang C, Luo C. 2021. The criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 34(3):94-104.
|
[13] |
Lin K C, Ma F, Yang V. 2010. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flame-holder. J Propul Power, 6(26):1161-1169.
|
[14] |
Oppenheim A K. 2006. Dynamics of Combustion Systems. New York: Springer.
|
[15] |
Peedles C. 2007. Road to Mach 10: Lessons Learned from the X-43A Flight Research Program. Reston. AIAA Ins.
|
[16] |
Stillwell W H. 1965. X-15 Research Results: With a Selected Bibliography. Washington DC: National Aeronautics and Space Administration.
|
[17] |
Teng H, Jiang Z. 2012. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 713:659-669.
|
[18] |
Teng H, Ng H D, Li K, Luo C, Jiang Z. 2015. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 162:470-477.
|
[19] |
Viguier C, Silva L, Desbordes D, et al. 1996. Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures. Symposium (International) on Combustion, 26(2):3023-3031.
|
[20] |
Wang C, Han Z, Situ M. 2006. Investigation of high speed combustible gas ignited by a hot gas jet produced in the shock tube. Shock Waves, 15(2):129-135.
|
[21] |
Yang P, Teng H, Jiang Z, Ng H. 2018. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 193:246-256.
|
[22] |
Yuan S X. 1999. On supersonic combustion. Science China Mathematics, 42(2):171-179.
|
[23] |
Zucrow M J, Hoffman J D. 1976. Gas Dynamics. John Wiley and Sons. Ins.
|