Citation: | CHANG Tienchong. Kelvin Equation for atomic scale capillary condensation[J]. Advances in Mechanics, 2021, 51(1): 141-144. doi: 10.6052/1000-0992-20-037 |
[1] |
杨卫, 马新玲, 王宏涛, 洪伟. 2002. 纳米力学进展. 力学进展, 32:161
(Yang W, Ma X L, Wang H T, Hong W. 2002. Advances in nanomechanics. Advances in Mechanics, 32:161).
|
[2] |
赵亚溥. 2012. 表面与界面物理力学. 北京: 科学出版社
(Zhao Y P. 2012. Physical Mechanics of Surfaces and Interfaces. Beijing: Science Press).
|
[3] |
赵亚溥. 2014. 纳米与介观力学. 北京: 科学出版社
(Zhao Y P. 2014. Nano-and Meso-Mechanics. Beijing: Science Press).
|
[4] |
Fisher L R, Gamble R A, Middlehurst J. 1981. The Kelvin equation and the capillary condensation of water. Nature, 290:575-576.
|
[5] |
Kim S, Kim D, Kim J, et al. 2018. Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale. Phys. Rev. X, 8:41046.
|
[6] |
Thomson W. 1972. On the equilibrium of vapour at a curved surface of liquid. Proc. R. Soc. Edinb. , 7:63-68.
|
[7] |
van Honschoten J W, Brunets N, Tas N R. 2010. Capillarity at the nanoscale. Chem. Soc. Rev., 39:1096-1114.
|
[8] |
Wang F C, Yang F Q, Zhao Y P. 2011. Size effect on the coalescence-induced self-propelled droplet. Appl. Phys. Lett., 98:053112.
|
[9] |
Wang J, Qian J, Gao H. 2009. Effects of capillary condensation in adhesion between rough surfaces. Langmuir, 25:11727.
|
[10] |
Wei Z, Zhao Y P. 2007. Growth of liquid bridge in AFM. J. Phys. D: Appl. Phys., 40:4368-4375.
|
[11] |
Yang Q, Sun P Z, Fumagalli L, et al. 2020. Capillary condensation under atomic-scale confinement. Nature, 588:250-253.
|
[12] |
Yin J, Zhou J, Fang S, et al. 2020. Hydrovoltaic energy on the way. Joule, 4:1852.
|
[13] |
Zhang Z, Li X, Yin J, et al. 2018. Emerging hydrovoltaic technology. Nat. Nanotechnol., 13:1109-1119.
|