Citation: | GUO Ziyi, LI Kai, KANG Qi, DUAN Li, HU Wenrui. Study on bifurcation to chaos of surface tension gradient driven flow[J]. Advances in Mechanics, 2021, 51(1): 1-28. doi: 10.6052/1000-0992-20-022 |
[1] |
胡文瑞, 唐泽眉, 李凯, 等. 2010. 矩形液池中热毛细对流起振过程的数值模拟. 中国科学: 技术科学, 40(4):370-377.
|
[2] |
胡文瑞, 徐硕昌. 1999. 微重力流体力学 (第一版). 北京: 科学出版社.
|
[3] |
吕金虎, 陆君安, 陈士华. 2002. 混沌时间序列分析及其应用. 武汉: 武汉大学出版社.
|
[4] |
石万元, 李友荣, 彭岚, 等. 2009. 环形浅液池内热流体波的本质特征. 计算力学学报, 26:59-65
(Shi W Y, Li Y R, Peng L, et al. 2009. Natural characteristics of hydrothermal wave in a shallow annular pool. Chinese Journal of Computational Mechanics, 26:59-65).
|
[5] |
唐登斌. 2015. 边界层转捩. 北京: 科学出版社.
|
[6] |
唐泽眉, 胡文瑞. 2007. 液池中大Pr数流体的热流体波. 中国科学: G 辑, 37:250-258.
|
[7] |
Aa Y, Li K, Tang Z M, et al. 2010. Period-doubling bifurcations of the thermocapillary convection in a floating half zone. Science China Physics, Mechanics and Astronomy, 53:1681-1686.
|
[8] |
Abe Y, Iwaski A, Tanaka K. 2005. Thermal management with self-rewetting fluids. Microgravity-Science and Technology, 16:148-152. doi: 10.1007/BF02945966.
|
[9] |
Bandt C, Pompe B. 2002. Permutation entropy: A natural complexity measure for time series. Physical Review Letters, 88:174102. doi: 10.1103/PhysRevLett.88.174102.
|
[10] |
Barna G, Tsuda I. 1993. A new method for computing Lyapunov exponents. Physics Letters A, 175:421-427. doi: 10.1016/0375-9601(93)90994-B.
|
[11] |
Benard H. 1901. Les Tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent. Annales de Chimie et de Physique, 23:62-144.
|
[12] |
Boro$acute{n}$ska K, Tuckerman L. 2010a. Extreme multiplicity in cylindrical Rayleigh-Benard convection. I. Time dependence and oscillations. Physical review. E, Statistical, nonlinear, and soft matter physics, 81:036320. doi: 10.1103/PhysRevE.81.036320.
|
[13] |
Boro$acute{n}$ska K, Tuckerman L. 2010b. Extreme multiplicity in cylindrical Rayleigh-Benard convection. II. Bifurcation diagram and symmetry classification. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81:036321. doi: 10.1103/PhysRevE.81.036321.
|
[14] |
Braun R, Feudel F, Guzdar P. 1998. Route to chaos for a two-dimensional externally driven flow. Physical Review E, 58:1927.
|
[15] |
Broze G, Hussain F. 1996. Transitions to chaos in a forced jet: intermittency, tangent bifurcations and hysteresis. Journal of Fluid Mechanics, 311:37-71.
|
[16] |
Bucchignani E, Mansutti D. 2004. Horizontal thermocapillary convection of succinonitrile: Steady state, instabilities, and transition to chaos. Physical Review E, 69:056319.
|
[17] |
Chan C L, Chen C. 2010. Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer. Journal of Fluid Mechanics, 647:91.
|
[18] |
Chen G, Lizee A, Roux B. 1997. Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges. Journal of Crystal Growth, 180:638-647
|
[19] |
Chen Z W, Li Y S, Zhan J M. 2010. Double-diffusive Marangoni convection in a rectangular cavity: Onset of convection. Physics of Fluids, 22:034106.
|
[20] |
Cliffe K A, Spence A, Tavener S J. 2000. The numerical analysis of bifurcation problems with application to fluid mechanics. Acta Numerica, 9:47. doi: 10.1017/S0962492900000398.
|
[21] |
Cliffe K A, Tavener S J. 1998. Marangoni-Bénard convection with a deformable free surface. Journal of Computational Physics, 145:193-227.
|
[22] |
Cr?ll A, Dold P, Benz K W. 1994. Segregation in Si floating-zone crystals grown under microgravity and in a magnetic field. Journal of Crystal Growth, 137:95-101. doi: 10.1016/0022-0248(94)91254-8.
|
[23] |
Davis S H. 1983. Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. Journal of Fluid Mechanics, 132:145-162.
|
[24] |
Derby J, Brown R. 1986. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation. Journal of Crystal Growth, 74:605-624.
|
[25] |
Dijkstra H A. 1992. On the structure of cellular solutions in Rayleigh-Bénard-Marangoni flows in small-aspect-ratio containers. Journal of Fluid Mechanics, 243:73-102.
|
[26] |
Dijkstra H A, Wubs F W, Cliffe A K, et al. 2014. Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Communications in Computational Physics, 15:1-45. doi: 10.4208/cicp.240912.180613a.
|
[27] |
Feigenbaum M J. 1979. The onset spectrum of turbulence. Physics Letters A, 74:375-378. doi: 10.1016/0375-9601(79)90227-5.
|
[28] |
Frank S, Schwabe D. 1997. Temporal and spatial elements of thermocapillary convection in floating zones. Experiments in Fluids, 23:234-251.
|
[29] |
Fraser A M, Swinney H L. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A, 33:1134.
|
[30] |
Garnier N, Chiffaudel A, Daviaud F. 2003a. Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. II. Convective/absolute transitions. Physica D: Nonlinear Phenomena, 174:30-55.
|
[31] |
Garnier N, Chiffaudel A, Daviaud F, et al. 2003b. Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. I. General presentation and periodic solutions. Physica D: Nonlinear Phenomena, 174:1-29.
|
[32] |
Garnier N, Normand C. 2001. Effects of curvature on hydrothermal waves instability of radial thermocapillary flows. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 2:1227-1233.
|
[33] |
Gollub J, Benson S. 1980. Many routes to turbulent convection. Journal of Fluid Mechanics, 100:449-470.
|
[34] |
Grassberger P, Procaccia I. 1983. Characterization of strange attractors. Physical Review Letters, 50:346-349. doi: 10.1103/PhysRevLett.50.346.
|
[35] |
Griewank A, Reddien G. 1983. The calculation of Hopf points by a direct method. IMA Journal of Numerical Analysis, 3:295-303.
|
[36] |
Hu W R, Tang Z M, Li K. 2008. Thermocapillary convection in floating zones. Applied Mechanics Reviews, 61:010803.
|
[37] |
Jepson A D. 1981. Numerical Hopf Bifurcation. California Institute of Technology, Pasadena, California, USA.
|
[38] |
Jiang H, Duan L, Kang Q. 2017a. A peculiar bifurcation transition route of thermocapillary convection in rectangular liquid layers. Experimental Thermal and Fluid Science, 88:8-15.
|
[39] |
Jiang H, Duan L, Kang Q. 2017b. Instabilities of thermocapillary-buoyancy convection in open rectangular liquid layers. Chinese Physics B, 26:114703. doi: 10.1088/1674-1056/26/11/114703.
|
[40] |
Johns L E, Narayanan R. 2002. Interfacial Instability. New York: Springer.
|
[41] |
Kamotani Y, Ostrach S, Masud J. 1999. Oscillatory thermocapillary flows in open cylindrical containers induced by CO$_2$ laser heating. International Journal of Heat and Mass Transfer, 42:555-564.
|
[42] |
Kamotani Y, Ostrach S, Pline A. 1995. A thermocapillary convection experiment in microgravity. Journal of Heat Transfer, 117:611-618
|
[43] |
Kang Q, Jiang H, Duan L, et al. 2019a. The critical condition and oscillation-transition characteristics of thermocapillary convection in the space experiment on SJ-10 satellite. International Journal of Heat and Mass Transfer, 135:479-490.
|
[44] |
Kang Q, Wang J, Duan L, et al. 2019b. The volume ratio effect on flow patterns and transition processes of thermocapillary convection. Journal of Fluid Mechanics, 868:560-583. doi: 10.1017/jfm.2019.108.
|
[45] |
Kang Q, Wu D, Duan L, et al. 2019c. Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Physics of Fluids, 31:044105. doi: 10.1063/1.5090466.
|
[46] |
Kang Q, Wu D, Duan L, et al. 2019d. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge. Journal of Fluid Mechanics, 881:951-982. doi: 10.1017/jfm.2019.757.
|
[47] |
Kang Q, Wu D, Duan L, et al. 2020. Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2. Physics of Fluids, 32:034107. doi: 10.1063/1.5143219.
|
[48] |
Keller H B. 1987. Lectures on Numerical Methods in Bifurcation Problems. Berlin: Springer.
|
[49] |
Kim H S, Eykholt R, Salas J D. 1999. Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 127:48-60.
|
[50] |
Lappa M. 2009. Thermal Convection: Patterns, Evolution and Stability. Chichester, UK: John Wiley & Sons, Ltd.
|
[51] |
Laure P, Roux B, Ben Hadid H. 1990. Nonlinear study of the flow in a long rectangular cavity subjected to thermocapillary effect. Physics of Fluids A: Fluid Dynamics, 2:516-524.
|
[52] |
Li K, Tang Z M, Hu W R. 2012. Coupled thermocapillary convection on Marangoni convection in liquid layers with curved free surface. International Journal of Heat and Mass Transfer, 55:2726-2729.
|
[53] |
Li K, Xun B, Hu W R. 2016. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent. Physics of Fluids, 28:054106.
|
[54] |
Li Y R, Imaishi N, Azami T, et al. 2004. Three-dimensional oscillatory flow in a thin annular pool of silicon melt. Journal of Crystal Growth, 260:28-42.
|
[55] |
Li Y R, Peng L, Akiyama Y, et al. 2003. Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. Journal of Crystal Growth, 259:374-387.
|
[56] |
Li Y R, Wang S C, Wu C M. 2011a. Steady thermocapillary-buoyant convection in a shallow annular pool. Part 1: Single layer fluid. Acta Mechanica Sinica, 27:360.
|
[57] |
Li Y R, Wang S C, Wu C M. 2011b. Steady thermocapillary-buoyant convection in a shallow annular pool. Part 2: Two immiscible fluids. Acta Mechanica Sinica, 27:636.
|
[58] |
Li Y S, Chen Z W, Zhan J M. 2010. Double-diffusive Marangoni convection in a rectangular cavity: Transition to chaos. International Journal of Heat and Mass Transfer, 53:5223-5231.
|
[59] |
Libchaber A, Maurer J. 1978. Local probe in a Rayleigh-Benard experiment in liquid helium. Journal de Physique Lettres, 39:369-372.
|
[60] |
Lorenz E N. 1963. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20:130-141.
|
[61] |
Ma C, Bothe D. 2011. Direct numerical simulation of thermocapillary flow based on the volume of fluid method. International Journal of Multiphase Flow, 37:1045-1058.
|
[62] |
Madruga S, Perez G C, Lebon G. 2003. Convective instabilities in two superposed horizontal liquid layers heated laterally. Physical Review E, 68:041607.
|
[63] |
Madruga S, Pérez-García C, Lebon G. 2004. Instabilities in two-liquid layers subject to a horizontal temperature gradient. Theoretical and Computational Fluid Dynamics, 18:277-284.
|
[64] |
Moore G, Spence A. 1980. The calculation of turning points of nonlinear equations. SIAM Journal on Numerical Analysis, 17:567-576.
|
[65] |
Mukolobwiez N, Chiffaudel A, Daviaud F. 1998. Supercritical Eckhaus instability for surface-tension-driven hydrothermal waves. Physical Review Letters, 80:4661.
|
[66] |
Mukutmoni D, Yang K T. 1993. Rayleigh-Benard convection in a small aspect ratio enclosure: Part I——Bifurcation to oscillatory convection. Journal of Heat Transfer, 115:360-376
|
[67] |
Newhouse S, Ruelle D, Takens F. 1978. Occurrence of strange AxiomA attractors near quasi periodic flows on T m, $mgeq 3$. Communications in Mathematical Physics, 64:35-40.
|
[68] |
Packard N H, Crutchfield J P, Farmer J D, et al. 1980. Geometry from a time series. Physical Review Letters, 45:712.
|
[69] |
Pearson J R A. 1958. On convection cells induced by surface tension. Journal of Fluid Mechanics, 4:489-500. doi: 10.1017/S0022112058000616.
|
[70] |
Pérez-García C, Madruga S, Echebarria B, et al. 2004. Hydrothermal waves and corotating rolls in laterally heated convection in simple liquids. Journal of Non-Equilibrium Thermodynamics, 29:377-388.
|
[71] |
PoincaréH, Magini R. 1899. Les méthodes nouvelles de la mécanique céleste. Il Nuovo Cimento (1895-1900), 10:128-130.
|
[72] |
Pomeau Y, Manneville P. 1980. Intermittent transition to turbulence in dissipative dynamical systems. Communications in Mathematical Physics, 74:189-197. doi: 10.1007/BF01197757.
|
[73] |
Prandtl L. 1904. über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verh 3 int. Math-Kongr, Heidelberg.
|
[74] |
Rahal S, Cerisier P, Abid C. 2007. Transition to chaos via the quasi-periodicity and characterization of attractors in confined Bénard-Marangoni convection. The European Physical Journal B, 59:509-518.
|
[75] |
Riley R, Neitzel G. 1998. Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. Journal of Fluid Mechanics, 359:143-164.
|
[76] |
Rosenstein M T, Collins J J, De Luca C J. 1993. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65:117-134. doi: 10.1016/0167-2789(93)90009-P.
|
[77] |
Ruelle D, Takens F. 1971. On the nature of turbulence. Les rencontres physiciens-mathématiciens de Strasbourg-RC25, 12:1-44.
|
[78] |
Saenz P J, Valluri P, Sefiane K, et al. 2013. Linear and nonlinear stability of hydrothermal waves in planar liquid layers driven by thermocapillarity. Physics of Fluids, 25:094101.
|
[79] |
Saha A K, Muralidhar K, Biswas G. 2000. Transition and chaos in two-dimensional flow past a square cylinder. Journal of Engineering Mechanics, 126:523-532.
|
[80] |
Salinger A G, Burroughs E A, Pawlowski R P, et al. 2005. Bifurcation tracking algorithms and software for large scale applications. International Journal of Bifurcation and Chaos, 15:1015-1032.
|
[81] |
Salinger A G, Lehoucq R B, Pawlowski R P, et al. 2002. Computational bifurcation and stability studies of the $8:1$ thermal cavity problem. International Journal for Numerical Methods in Fluids, 40:1059-1073.
|
[82] |
Schwabe D, Benz S. 2002. Thermocapillary flow instabilities in an annulus under microgravity--results of the experiment magia. Advances in Space Research, 29:629-638.
|
[83] |
Schwabe D, Cramer A, Schneider J, et al. 1999. Experiments on the multi-roll-structure of thermocapillary flow in side-heated thin liquid layers. Advances in Space Research, 24:1367-1373.
|
[84] |
Schwabe D, Frank S. 1999. Experiments on the transition to chaotic thermocapillary flow in floating zones under microgravity. Advances in Space Research, 24:1391-1396.
|
[85] |
Shi W, Ermakov M K, Imaishi N. 2006. Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil. Journal of Crystal Growth, 294:474-485.
|
[86] |
Shi W, Li Y R, Ermakov M K, et al. 2010. Stability of thermocapillary convection in rotating shallow annular pool of silicon melt. Microgravity Science and Technology, 22:315-320.
|
[87] |
Sim B C, Zebib A. 2004. Thermocapillary convection in cylindrical liquid bridges and annuli. Comptes Rendus Mecanique, 332:473-486.
|
[88] |
Sim B C, Zebib A, Schwabe D. 2003. Oscillatory thermocapillary convection in open cylindrical annuli. Part 2. Simulations. Journal of Fluid Mechanics, 491:259.
|
[89] |
Smith M K. 1986. Instability mechanisms in dynamic thermocapillary liquid layers. The Physics of Fluids, 29:3182-3186.
|
[90] |
Smith M K, Davis S H. 1983. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 132:119-144.
|
[91] |
Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2. 2020. Physics of Fluids, 32:034107. doi: 10.1063/1.5143219.
|
[92] |
Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. 2019. Physics of Fluids, 31:044105. doi: 10.1063/1.5090466.
|
[93] |
Takens F. 1981. Detecting strange attractors in turbulence//Dynamical Systems and Turbulence, Warwick 1980. Edited by D. Rand and L.S. Young. Berlin Heidelberg, Berlin: Springer.,Heidelberg. pp. 366-381.
|
[94] |
Tang Z M, Hu W R. 2007. The hydrothermal wave of large-Prandtl-number fluid in a shallow cavity. Science in China Series G: Physics, Mechanics and Astronomy, 50:787-796.
|
[95] |
Tang Z M, Hu W R, Xie J C, et al. 1995. Transition from steady to oscillatory convection with chaotic feature in thermocapillary convection. Advances in Space Research, 16:67-70.
|
[96] |
Tuckerman L S. 2020. Computational Challenges of Nonlinear Systems//Emerging Frontiers in Nonlinear Science. Springer. pp. 249-277.
|
[97] |
Walter H U. 1987. Fluid Sciences and Materials Science in Space. Berlin, Heidelberg: Springer.
|
[98] |
Werner B, Janovsky V. 1991. Computation of Hopf branches bifurcating from Takens-Bogdanov points for problems with symmetries//Bifurcation and Chaos: Analysis, Algorithms, Applications. Springer. pp. 377-388.
|
[99] |
Werner B, Spence A. 1984. The computation of symmetry-breaking bifurcation points. SIAM Journal on Numerical Analysis, 21:388-399.
|
[100] |
Wolf A, Swift J B, Swinney H L, et al. 1985. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16:285-317. doi: 10.1016/0167-2789(85)90011-9.
|
[101] |
Xu J Y, Zebib A. 1998. Oscillatory two-and three-dimensional thermocapillary convection. Journal of Fluid Mechanics, 364:187-209.
|
[102] |
Xu J J, Davis S H. 1984. Convective thermocapillary instabilities in liquid bridges. The Physics of Fluids, 27:1102-1107.
|
[103] |
Yu J J, Ruan D F, Li Y R, et al. 2015. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient. Experimental Thermal and Fluid Science, 61:79-86.
|
[104] |
Zhang L, Li Y R, Wu C M, et al. 2018. Flow bifurcation routes to chaos of thermocapillary convection for low Prandtl number fluid in shallow annular pool with surface heat dissipation. International Journal of Thermal Sciences, 125:23-33.
|
[105] |
Zhu P, Duan L, Kang Q. 2013. Transition to chaos in thermocapillary convection. International Journal of Heat and Mass Transfer, 57:457-464. doi: 10.1016/j.ijheatmasstransfer.2012.10.033.
|