Volume 51 Issue 1
Mar.  2021
Turn off MathJax
Article Contents
LI Xiang, YAN Ziming, LIU Zhanli, ZHUANG Zhuo. Advanced structural material design based on simulation and data-driven method[J]. Advances in Mechanics, 2021, 51(1): 82-105. doi: 10.6052/1000-0992-20-012
Citation: LI Xiang, YAN Ziming, LIU Zhanli, ZHUANG Zhuo. Advanced structural material design based on simulation and data-driven method[J]. Advances in Mechanics, 2021, 51(1): 82-105. doi: 10.6052/1000-0992-20-012

Advanced structural material design based on simulation and data-driven method

doi: 10.6052/1000-0992-20-012
More Information
  • Corresponding author: LIU Zhanli
  • Received Date: 2020-05-29
  • Publish Date: 2021-03-25
  • Advanced structural materials have received extensive attention in the field of materials and structural design in recent years. These materials generally achieve excellent performances via structural design at multiple length-scales. In the early material design, some researchers created reasonable mathematical and mechanical models from the natural topologies; some researchers established bionic mechanical models based on the structural and functional characteristics of biological systems. Nevertheless, it isn't easy to obtain the optimal designs only based on ingenious design. To traverse the design space to search for the optimal design by trial and error is also not practical. For these reasons, the topology optimization method has been successfully applied to the design of advanced structural materials such as phononic crystals, cellular materials, etc. However, the existing topology optimization methods still have challenges in achieving accurate reverse designs. Data-driven methods can establish complex relationships of multi-dimensional variables, and they can reveal mechanical mechanisms and laws that are difficult to be discovered by traditional methods. Hence, this paper systematically reviews the development of advanced structural material design methods. Various mainstream design methods are compared and illustrated. The status of intelligent design of advanced structural materials based on data-driven methods is introduced. The prospect of this research area is discussed.

     

  • loading
  • [1]
    Adibi A, Lee R, Xu Y, Yariv A, Scherer A. 2000. Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap. Electronics Letters, 36:1376-1378.
    [2]
    Allaire G, Jouve F, Toader A M. 2002. A level-set method for shape optimization. Comptes Rendus Mathematique, 334:1125-1130.
    [3]
    AlQuraishi M. 2019. AlphaFold at CASP13. Bioinformatics, 35:4862-4865.
    [4]
    Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59:345-359.
    [5]
    Arulkumaran K, Cully A, Togelius J. 2019. Alphastar: An evolutionary computation perspective. arXiv preprint arXiv: 1902. 01724.
    [6]
    Ballard D H. 1987. Modular learning in neural networks//The 6th National Conference on Artificial Intelligence (AAAI-87), 1987, Seattle, USA, 279-284.
    [7]
    Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O. 2014. High-strength cellular ceramic composites with 3D microarchitecture. Proceedings of the National Academy of Sciences, 111:2453-2458.
    [8]
    Beigzadeh R, Rahimi M. 2012. Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks. International Communications in Heat and Mass Transfer, 39:1279-1285.
    [9]
    Bertoldi K. 2017. Harnessing instabilities to design tunable architected cellular materials. Annual Review of Materials Research, 47:51-61.
    [10]
    Bessa M A, Glowacki P, Houlder M. 2019. Bayesian machine learning in metamaterial design: Fragile becomes supercompressible. Advanced Materials, 31:1904845.
    [11]
    Borel P I, Frandsen L H, Harp?th A, Kristensen M, Jensen J S, Sigmund O. 2005. Topology optimised broadband photonic crystal Y-splitter. Electronics Letters, 41:69-71.
    [12]
    Borel P I, Harp?th A, Frandsen L H, Kristensen M, Shi P, Jensen J S, Sigmund O. 2004. Topology optimization and fabrication of photonic crystal structures. Optics Express, 12:1996-2001.
    [13]
    Bourdin B, Chambolle A. 2003. Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, 9:19-48.
    [14]
    Bückmann T, Stenger N, Kadic M, Kaschke J, Fr?lich A, Kennerknecht T, Eberl C, Thiel M, Wegener M. 2012. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Advanced Materials, 24:2710-2714.
    [15]
    Butz T, Von Stryk O. 2002. Modelling and simulation of electro-and magnetorheological fluid dampers. ZAMM-Journal of Applied Mathematics and Mechanics, 82:3-20.
    [16]
    Caicedo J C, Lazebnik S. 2015. Active object localization with deep reinforcement learning//Proceedings of the IEEE International Conference on Computer Vision, 2015, Santiago, Chile, 2488-2496.
    [17]
    Carstensen J V, Lotfi R, Guest J K, Chen W, Schroers J. 2015. Topology optimization of cellular materials with maximized energy absorption//ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015, Boston, USA, 57083.
    [18]
    Chen C, Wang S, Shen X. 2001. Predicting models to estimate stability of rock slope based on artificial neural network. Chinese Journal of Geotechnical Engineering-Chinese Edition, 23:157-161.
    [19]
    Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. 2018. The rise of deep learning in drug discovery. Drug Discovery Today, 23:1241-1250.
    [20]
    Cheng Z, Yang Q, Sheng B. 2015. Deep colorization//Proceedings of the IEEE International Conference on Computer Vision, 2015, Santiago, Chile, 415-423.
    [21]
    Cheung K C, Gershenfeld N. 2013. Reversibly assembled cellular composite materials. Science, 341:1219-1221.
    [22]
    Chiu C C, Sainath T N, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss R J, Rao K, Gonina E. 2018. State-of-the-art speech recognition with sequence-to-sequence models//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, Calgary, Canada, 4774-4778.
    [23]
    Choi J, Lakes R. 1992. Non-linear properties of polymer cellular materials with a negative Poisson's ratio. Journal of Materials Science, 27:4678-4684.
    [24]
    Chu C, Graf G, Rosen D W. 2008. Design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 5:686-696.
    [25]
    Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J. 2019. Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials. arXiv preprint arXiv: 1911. 05020.
    [26]
    Digaum J L, Pazos J J, Chiles J, D'Archangel J, Padilla G, Tatulian A, Rumpf R C, Fathpour S, Boreman G D, Kuebler S M. 2014. Tight control of light beams in photonic crystals with spatially-variant lattice orientation. Optics Express, 22:25788-25804.
    [27]
    Dissanayake M, Phan-Thien N. 1994. Neural-network-based approximations for solving partial differential equations. Communications in Numerical Methods in Engineering, 10:195-201.
    [28]
    Dong H W, Su X X, Wang Y S. 2012. Topology optimization of two-dimensional phononic crystals using FEM and genetic algorithm//2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2012, Shanghai, China, 45-48.
    [29]
    Dong H W, Su X X, Wang Y S. 2014a. Multi-objective optimization of two-dimensional porous phononic crystals. Journal of Physics D: Applied Physics, 47:155301.
    [30]
    Dong H W, Su X X, Wang Y S, Zhang C. 2014b. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 50:593-604.
    [31]
    Dong H W, Wang Y S, Zhang C. 2017a. Topology optimization of chiral phoxonic crystals with simultaneously large phononic and photonic bandgaps. IEEE Photonics Journal, 9:1-16.
    [32]
    Dong H W, Zhao S D, Wang Y S, Zhang C. 2017b. Topology optimization of anisotropic broadband double-negative elastic metamaterials. Journal of the Mechanics and Physics of Solids, 105:54-80.
    [33]
    Dyskin A V, Estrin Y, Kanel-Belov A J, Pasternak E. 2001. A new concept in design of materials and structures: Assemblies of interlocked tetrahedron-shaped elements. Scripta Materialia, 44:2689-2694.
    [34]
    Dyskin A V, Estrin Y, Kanel-Belov A J, Pasternak E. 2003. Topological interlocking of platonic solids: A way to new materials and structures. Philosophical Magazine Letters, 83:197-203.
    [35]
    Eraslan G, Simon L M, Mircea M, Mueller N S, Theis F J. 2019. Single-cell RNA-seq denoising using a deep count autoencoder. Nature Communications, 10:390.
    [36]
    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M. 2010. Three-dimensional invisibility cloak at optical wavelengths. Science, 328:337-339.
    [37]
    Faller W E, Schreck S J. 1997. Unsteady fluid mechanics applications of neural networks. Journal of Aircraft, 34:48-55.
    [38]
    Fan K, Liu Y M, Zhang Y H. 1998. Inverse analysis of rock soil mechanics parameters based on neural network. Journal of Hohai University (Nature Sciences), 4:98-102.
    [39]
    Feng X T, Wang Y J, Lu S Z. 1995. Neural network estimation of slope stability. Journal of Engineering Geology, 4:54-61.
    [40]
    Frandsen L H, Harp?th A, Borel P I, Kristensen M, Jensen J S, Sigmund O. 2004. Broadband photonic crystal waveguide 60 bend obtained utilizing topology optimization. Optics Express, 12:5916-5921.
    [41]
    Furukawa T, Yagawa G. 1998. Implicit constitutive modelling for viscoplasticity using neural networks. International Journal for Numerical Methods in Engineering, 43:195-219.
    [42]
    Gabrielli L H, Cardenas J, Poitras C B, Lipson M. 2009. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 3:461.
    [43]
    Gatys L A, Ecker A S, Bethge M. 2016. Image style transfer using convolutional neural networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 2414-2423.
    [44]
    Gawehn E, Hiss J A, Schneider G. 2016. Deep learning in drug discovery. Molecular Informatics, 35:3-14.
    [45]
    Gehring J, Auli M, Grangier D, Yarats D, Dauphin Y N. 2017. Convolutional sequence to sequence learning//Proceedings of the 34th International Conference on Machine Learning, 2017, Sydney, Australia, 1243-1252.
    [46]
    Ghaboussi J, Pecknold D A, Zhang M, Haj-Ali R M. 1998. Autoprogressive training of neural network constitutive models. International Journal for Numerical Methods in Engineering, 42:105-126.
    [47]
    Gholizadeh S, Salajegheh E, Torkzadeh P. 2008. Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network. Journal of Sound and Vibration, 312:316-331.
    [48]
    Gibson I, Ashby M F. 1982. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382:43-59.
    [49]
    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014. Generative adversarial nets//Advances in Neural Information Processing Systems, 2014, Montréal, Canada, 2672-2680.
    [50]
    Gori M, Monfardini G, Scarselli F. 2005. A new model for learning in graph domains//Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Montréal, Canada, 729-734.
    [51]
    Gr?nbech C H, Vording M F, Timshel P N, S?nderby C K, Pers T H, Winther O. 2018. scVAE: Variational auto-encoders for single-cell gene expression data. bioRxiv, 36:318295.
    [52]
    Gu G X, Takaffoli M, Buehler M J. 2017. Hierarchically enhanced impact resistance of bioinspired composites. Advanced Materials, 29:1700060.
    [53]
    Gu G X, Takaffoli M, Hsieh A J, Buehler M J. 2016. Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mechanics Letters, 9:317-323.
    [54]
    Haghpanah B, Salari-Sharif L, Pourrajab P, Hopkins J, Valdevit L. 2016. Multistable shape-reconfigurable architected materials. Advanced Materials, 28:7915-7920.
    [55]
    Hajela P, Lee E. 1995. Genetic algorithms in truss topological optimization. International Journal of Solids and Structures, 32:3341-3357.
    [56]
    Halkj?r S, Sigmund O, Jensen J S. 2005. Inverse design of phononic crystals by topology optimization. Zeitschrift für Kristallographie-Crystalline Materials, 220:895-905.
    [57]
    Han S C, Lee J W, Kang K. 2015. A new type of low density material: Shellular. Advanced Materials, 27:5506-5511.
    [58]
    Hashash Y M, Jung S, Ghaboussi J. 2004. Numerical implementation of a neural network based material model in finite element analysis. International Journal for numerical methods in engineering, 59:989-1005.
    [59]
    He J, Kang Z. 2018. Achieving directional propagation of elastic waves via topology optimization. Ultrasonics, 82:1-10.
    [60]
    He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 770-778.
    [61]
    Heaton J, Polson N, Witte J H. 2017. Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33:3-12.
    [62]
    Hermann K M, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, Blunsom P. 2015. Teaching machines to read and comprehend//Advances in Neural Information Processing Systems, 2015, Montréal, Canada, 1693-1701.
    [63]
    Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313:504-507.
    [64]
    Ho K M, Cheng C K, Yang Z, Zhang X, Sheng P. 2003. Broadband locally resonant sonic shields. Applied Physics Letters, 83:5566-5568.
    [65]
    Hu X, Shen Y, Liu X, Fu R, Zi J. 2004. Superlensing effect in liquid surface waves. Physical Review E, 69:030201.
    [66]
    Huang H, Sun C. 2012. Continuum modeling of a composite material with internal resonators. Mechanics of Materials, 46:1-10.
    [67]
    Huang X, Radman A, Xie Y. 2011. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Computational Materials Science, 50:1861-1870.
    [68]
    Huang X, Zhou S, Xie Y, Li Q. 2013. Topology optimization of microstructures of cellular materials and composites for macrostructures. Computational Materials Science, 67:397-407.
    [69]
    Ivakhnenko A G. 1971. Polynomial theory of complex systems. IEEE transactions on Systems, Man, and Cybernetics: 364-378.
    [70]
    Jensen J S, Sigmund O. 2004. Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends. Applied Physics Letters, 84:2022-2024.
    [71]
    Jensen J S, Sigmund O. 2005. Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide. Journal of the Optical Society of America B, 22:1191-1198.
    [72]
    Jensen J S, Sigmund O. 2011. Topology optimization for nano-photonics. Laser & Photonics Reviews, 5:308-321.
    [73]
    Jeon K, Yang S, Kang D, Na J, Lee W B. 2019. Development of surrogate model using CFD and deep neural networks to optimize gas detector layout. Korean Journal of Chemical Engineering, 36:325-332.
    [74]
    Ji G, Li F, Li Q, Li H, Li Z. 2011. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Materials Science and Engineering: A, 528:4774-4782.
    [75]
    Jin C Y, Ma Z Y, Zhang Y L, Sha R H, Chen Q F. 2006. Application of neural network to back analysis of mechanical parameters and initial stress field of rock masses. Rock and Soil Mechanics, 27:1263-1266.
    [76]
    John S. 1987. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58:2486.
    [77]
    Jung S, Ghaboussi J. 2006. Neural network constitutive model for rate-dependent materials. Computers & Structures, 84:955-963.
    [78]
    Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K, Zhavoronkov A. 2017. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 8:10883.
    [79]
    Killoran N, Lee L J, Delong A, Duvenaud D, Frey B J. 2017. Generating and designing DNA with deep generative models. arXiv preprint arXiv: 1712. 06148.
    [80]
    Kingma D P, Welling M. 2013. Auto-encoding variational bayes. arXiv preprint arXiv: 1312. 6114.
    [81]
    Kong W, Wang C, Jia C, Kuang Y, Pastel G, Chen C, Chen G, He S, Huang H, Zhang J. 2018. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Advanced Materials, 30:1801934.
    [82]
    Kr?del S, Thomé N, Daraio C. 2015. Wide band-gap seismic metastructures. Extreme Mechanics Letters, 4:111-117.
    [83]
    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B. 1993. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71:2022.
    [84]
    Lagaris I E, Likas A, Fotiadis D I. 1998. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9:987-1000.
    [85]
    Larsen U D, Signund O, Bouwsta S. 1997. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6:99-106.
    [86]
    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521:436.
    [87]
    Lee J H, Wang L, Kooi S, Boyce M C, Thomas E L. 2010. Enhanced energy dissipation in periodic epoxy nanoframes. Nano Letters, 10:2592-2597.
    [88]
    Lefebvre L P, Banhart J, Dunand D C. 2008. Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials, 10:775-787.
    [89]
    Lei X, Liu C, Du Z, Zhang W, Guo X. 2019. Machine learning-driven real-time topology optimization under moving morphable component-based framework. Journal of Applied Mechanics, 86:011004.
    [90]
    Li X, Liu Z, Cui S, Luo C, Li C, Zhuang Z. 2019. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deeping learning. Computer Methods in Applied Mechanics and Engineering, 347:735-753.
    [91]
    Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z. 2020. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Computer Methods in Applied Mechanics Engineering, 361:112737.
    [92]
    Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv: 1509. 02971.
    [93]
    Lim J, Ryu S, Kim J W, Kim W Y. 2018. Molecular generative model based on conditional variational autoencoder for de novo molecular design. Journal of Cheminformatics, 10:31.
    [94]
    Lin Z, Groever B, Capasso F, Rodriguez A W, Lon?ar M. 2018. Topology-optimized multilayered metaoptics. Physical Review Applied, 9:044030.
    [95]
    Lipperman F, Ryvkin M, Fuchs M. 2009. Design of crack-resistant two-dimensional periodic cellular materials. Journal of Mechanics of Materials and Structures, 4:441-457.
    [96]
    Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M. 2005. Design of a compact photonic-crystal-based polarizing beam splitter. IEEE Photonics Technology Letters, 17:1435-1437.
    [97]
    Liu Y, Qin Z, Wan T, Luo Z. 2018. Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks. Neurocomputing, 311:78-87.
    [98]
    Liu Z, Meyers M A, Zhang Z, Ritchie R O. 2017. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 88:467-498.
    [99]
    Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C T, Sheng P. 2000. Locally resonant sonic materials. Science, 289:1734-1736.
    [100]
    Liu Z, Zhu D, Rodrigues S P, Lee K T, Cai W. 2018. Generative model for the inverse design of metasurfaces. Nano letters, 18:6570-6576.
    [101]
    Luo C, Ning S, Liu Z, Zhuang Z. 2020. Interactive inverse design of layered phononic crystals based on reinforcement learning. Extreme Mechanics Letters, 36:100651.
    [102]
    Ma W, Cheng F, Liu Y. 2018. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12:6326-6334.
    [103]
    Ma W, Cheng F, Xu Y, Wen Q, Liu Y. 2019. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Advanced Materials, 31:1901111.
    [104]
    Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. 2015. Adversarial autoencoders. arXiv preprint arXiv: 1511. 05644.
    [105]
    Malek A, Beidokhti R S. 2006. Numerical solution for high order differential equations using a hybrid neural network——optimization method. Applied Mathematics and Computation, 183:260-271.
    [106]
    Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H. 2018. Deep learning for the design of nano-photonic structures//2018 IEEE International Conference on Computational Photography (ICCP), 2018, Pittsburgh,USA, 1-14.
    [107]
    McCarthy J, Hayes P J. 1981. Some philosophical problems from the standpoint of artificial intelligence. Readings in Artificial Intelligence, 431-450.
    [108]
    McCulloch W S, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5:115-133.
    [109]
    Mcnulty T, Bhate D, Zhang A, Kiser M, Ferry L, Suder A, Bhattacharya S, Boradkar P. 2017. Framework for the Design of Biomimetic Cellular Materials for Additive Manufacturing//Proceedings of the 2017 Annual International Solid Freeform Fabrication Symposium, 2017, Austin, USA, 7-9.
    [110]
    Meade Jr A J, Fernandez A A. 1994. Solution of nonlinear ordinary differential equations by feedforward neural networks. Mathematical and Computer Modelling, 20:19-44.
    [111]
    Mehrkanoon S, Suykens J A. 2015. Learning solutions to partial differential equations using LS-SVM. Neurocomputing, 159:105-116.
    [112]
    Men H, Lee K Y, Freund R M, Peraire J, Johnson S G. 2014. Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Optics Express, 22:22632-22648.
    [113]
    Mi Y, Ishii M, Tsoukalas L. 2001. Flow regime identification methodology with neural networks and two-phase flow models. Nuclear Engineering and Design, 204:87-100.
    [114]
    Mirkhalaf M, Barthelat F. 2017. Design, 3D printing and testing of architectured materials with bistable interlocks. Extreme Mechanics Letters, 11:1-7.
    [115]
    Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv: 1312. 5602.
    [116]
    Mohammadi S, Eftekhar A A, Khelif A, Hunt W D, Adibi A. 2008. Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Applied Physics Letters, 92:221905.
    [117]
    Mutitu J G, Shi S, Chen C, Creazzo T, Barnett A, Honsberg C, Prather D W. 2008. Thin film silicon solar cell design based on photonic crystal and diffractive grating structures. Optics Express, 16:15238-15248.
    [118]
    Nanthakumar S, Zhuang X, Park H S, Nguyen C, Chen Y, Rabczuk T. 2019. Inverse design of quantum spin hall-based phononic topological insulators. Journal of the Mechanics and Physics of Solids, 125:550-571.
    [119]
    Narasimhan K, Kulkarni T, Barzilay R. 2015. Language understanding for text-based games using deep reinforcement learning. arXiv preprint arXiv: 1506. 08941.
    [120]
    N$breve{e}$mec H, Ku?el P, Duvillaret L, Pashkin A, Dressel M, Sebastian M. 2005. Highly tunable photonic crystal filter for the terahertz range. Optics Letters, 30:549-551.
    [121]
    Nguyen B, Zhuang X, Park H, Rabczuk T. 2019. Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal. Journal of Applied Physics, 125:095106.
    [122]
    Niu B, Yan J, Cheng G. 2009. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Structural and Multidisciplinary Optimization, 39:115.
    [123]
    Ohsaki M. 1995. Genetic algorithm for topology optimization of trusses. Computers & Structures, 57:219-225.
    [124]
    Overvelde J T, Weaver J C, Hoberman C, Bertoldi K. 2017. Rational design of reconfigurable prismatic architected materials. Nature, 541:347-352.
    [125]
    Papadrakakis M, Lagaros N D. 2002. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 191:3491-3507.
    [126]
    Papadrakakis M, Lagaros N D, Tsompanakis Y. 1998. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 156:309-333.
    [127]
    Park J H, Ma P S, Kim Y Y. 2015. Design of phononic crystals for self-collimation of elastic waves using topology optimization method. Structural and Multidisciplinary Optimization, 51:1199-1209.
    [128]
    Pennec Y, Djafari-Rouhani B. 2016. Fundamental properties of phononic crystal//Phononic Crystals. New York: Springer, 23-50.
    [129]
    Peterson R D, Cunningham B T, Andrade J E. 2014. A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosensors and Bioelectronics, 56:320-327.
    [130]
    Popova M, Isayev O, Tropsha A. 2018. Deep reinforcement learning for de novo drug design. Science Advances, 4: eaap7885.
    [131]
    Qiu T, Shi X, Wang J, Li Y, Qu S, Cheng Q, Cui T, Sui S. 2019. Deep learning: a rapid and efficient route to automatic metasurface design. Advanced Science, 6:1900128.
    [132]
    Radman A, Huang X, Xie Y. 2013. Topology optimization of functionally graded cellular materials. Journal of Materials Science, 48:1503-1510.
    [133]
    Rajeswar S, Subramanian S, Dutil F, Pal C, Courville A. 2017. Adversarial generation of natural language. arXiv preprint arXiv: 1705. 10929.
    [134]
    Rampáe?ek L, Hidru D, Smirnov P, Haibe-Kains B, Goldenberg A. 2019. Dr. VAE: Improving drug response prediction via modeling of drug perturbation effects. Bioinformatics, 35:3743-3751.
    [135]
    Ramuhalli P, Udpa L, Udpa S S. 2005. Finite-element neural networks for solving differential equations. IEEE Transactions on Neural Networks, 16:1381-1392.
    [136]
    Rayleigh L. 1888. XXVI. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26:256-265.
    [137]
    Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: Unified, real-time object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 779-788.
    [138]
    Riesselman A J, Ingraham J B, Marks D S. 2017. Deep generative models of genetic variation capture mutation effects. arXiv preprint arXiv: 1712. 06527.
    [139]
    Robert F. 1985. An isotropic three-dimensional structure with Poisson's ratio,$=-1$. Journal of Elasticity, 15:427-430.
    [140]
    Rosenblatt F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386.
    [141]
    Sallab A E, Abdou M, Perot E, Yogamani S. 2017. Deep reinforcement learning framework for autonomous driving. Electronic Imaging, 2017: 70-76.
    [142]
    Sánchez-Dehesa J, Caballero D, Cervera F, Sanchis L, Sánchez-Perez J, Martinez-Sala R, Rubio C, Meseguer F, Lopez C. 2002. Refractive acoustic devices for airborne sound. The Journal of the Acoustical Society of America, 112:2413-2413.
    [143]
    Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 361:360-365.
    [144]
    Scarpa F, Ciffo L, Yates J. 2003. Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 13:49.
    [145]
    Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G. 2008. The graph neural network model. IEEE Transactions on Neural Networks, 20:61-80.
    [146]
    Schriemer H P, Cowan M L, Page J H, Sheng P, Liu Z, Weitz D A. 1997. Energy velocity of diffusing waves in strongly scattering media. Physical Review Letters, 79:3166.
    [147]
    Shalev-Shwartz S, Shammah S, Shashua A. 2016. Safe, multi-agent, reinforcement learning for autonomous driving. arXiv preprint arXiv: 1610. 03295.
    [148]
    Sharma A C, Jana T, Kesavamoorthy R, Shi L, Virji M A, Finegold D N, Asher S A. 2004. A general photonic crystal sensing motif: Creatinine in bodily fluids. Journal of the American Chemical Society, 126:2971-2977.
    [149]
    Sigmund O, S?ndergaard Jensen J. 2003. Systematic design of phononic band--gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361:1001-1019.
    [150]
    Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A. 2017. Mastering the game of go without human knowledge. Nature, 550:354-359.
    [151]
    Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N. 2018. Processing bulk natural wood into a high-performance structural material. Nature, 554:224-228.
    [152]
    Speck T, Mühaupt R, Speck O. 2013. Self-healing in plants as bio-inspiration for self-repairing polymers. Self-healing Polymers, 1:61-89.
    [153]
    Srivastava G P. 2019. The Physics of Phonons. New York: Taylor & Francis Group.
    [154]
    Sun Y, Zeng W, Zhao Y, Qi Y, Ma X, Han Y. 2010. Development of constitutive relationship model of Ti600 alloy using artificial neural network. Computational Materials Science, 48:686-691.
    [155]
    Tahersima M H, Kojima K, Koike-Akino T, Jha D, Wang B, Lin C, Parsons K. 2018. Deep neural network inverse design of integrated nanophotonic devices. arXiv preprint arXiv: 1809. 03555.
    [156]
    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X. 2008. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455:376.
    [157]
    Vlasov Y A, O'boyle M, Hamann H F, McNab S J. 2005. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438:65.
    [158]
    Wang D. 2009. Impact behavior and energy absorption of paper honeycomb sandwich panels. International Journal of Impact Engineering, 36:110-114.
    [159]
    Wang D, Liao W. 2004. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 14:111.
    [160]
    Wang F, Jensen J S, Sigmund O. 2011. Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. JOSA B, 28:387-397.
    [161]
    Wang L, Boyce M C, Wen C Y, Thomas E L. 2009. Plastic dissipation mechanisms in periodic microframe-structured polymers. Advanced Functional Materials, 19:1343-1350.
    [162]
    Wang P, Shim J, Bertoldi K. 2013. Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88:014304.
    [163]
    Wang Q, Wang J, Zhao D, Zhang J, Li Z, Chen Z, Zeng J, Miao L, Shi J. 2016. Investigation of terahertz waves propagating through far infrared/CO$_2$ laser stealth-compatible coating based on one-dimensional photonic crystal. Infrared Physics & Technology, 79:144-150.
    [164]
    Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. 2017. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Advanced Materials, 29:1702498.
    [165]
    Webb S. 2018. Deep learning for biology. Nature, 554:555-557.
    [166]
    Wen J, Wang G, Yu D, Zhao H, Liu Y. 2005. Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure. Journal of Applied Physics, 97:114907.
    [167]
    Wen Y, Zhang K, Li Z, Qiao Y. 2016. A discriminative feature learning approach for deep face recognition//European Conference on Computer Vision, 2016, Amsterdam, The Netherlands, 499-515.
    [168]
    Xia Y Y, Xiong H F. 2004. Sensibility analysis of slope stability based on artificial neural network. Chinese Journal of Rock Mechanics and Engineering, 16:2703-2707.
    [169]
    Xie Y M, Steven G P. 1993. A simple evolutionary procedure for structural optimization. Computers & Structures, 49:885-896.
    [170]
    Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stolcke A, Yu D, Zweig G. 2016. Achieving human parity in conversational speech recognition. arXiv preprint arXiv: 1610. 05256.
    [171]
    Xu B, Arias F, Brittain S T, Zhao X M, Grzybowski B, Torquato S, Whitesides G M. 1999. Making negative Poisson's ratio microstructures by soft lithography. Advanced Materials, 11:1186-1189.
    [172]
    Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. 2018. Flexible lithium--CO$_2$ battery with ultrahigh capacity and stable cycling. Energy Environmental Science, 11:3231-3237.
    [173]
    Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58:2059.
    [174]
    Yang L C, Chou S Y, Yang Y H. 2017. MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. arXiv preprint arXiv: 1703. 10847.
    [175]
    Zeng Y H, Huai W X. 2009. Application of artificial neural network to predict the friction factor of open channel flow. Communications in Nonlinear Science and Numerical Simulation, 14:2373-2378.
    [176]
    Zhang J, Ashby M. 1994. Mechanical selection of foams and honeycombs used for packaging and energy absorption. Journal of Materials Science, 29:157-163.
    [177]
    Zhang Q, Lin D, Deng B, Xu X, Nian Q, Jin S, Leedy K D, Li H, Cheng G J. 2017. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Advanced Materials, 29:1605506.
    [178]
    Zhang R, Li W, Tan W, Mo T. 2017. Deep and shallow model for insurance churn prediction service//2017 IEEE International Conference on Services Computing (SCC), 2017, Honolulu, USA, 346-353.
    [179]
    Zhang W, Kang Z. 2017. Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. International Journal for Numerical Methods in Engineering, 110:31-56.
    [180]
    Zhang X, He J, Takezawa A, Kang Z. 2018. Robust topology optimization of phononic crystals with random field uncertainty. International Journal for Numerical Methods in Engineering, 115:1154-1173.
    [181]
    Zhang X, Takezawa A, Kang Z. 2019a. A phase-field based robust topology optimization method for phononic crystals design considering uncertain diffuse regions. Computational Materials Science, 160:159-172.
    [182]
    Zhang X, Takezawa A, Kang Z. 2019b. Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method. Computer Methods in Applied Mechanics and Engineering, 344:766-797.
    [183]
    Zheng X, Lee H, Weisgraber T H, Shusteff M, DeOtte J, Duoss E B, Kuntz J D, Biener M M, Ge Q, Jackson J A. 2014. Ultralight, ultrastiff mechanical metamaterials. Science, 344:1373-1377.
    [184]
    Zhou J, Wei Q, Liu G. 2004. Back analysis on rock mechanics parameters for highway tunnel by BP neural network method. Chinese Journal of Rock Mechanics and Engineering, 23:941-945.
    [185]
    Zhu Z, Liang D, Zhang S, Huang X, Li B, Hu S. 2016. Traffic-sign detection and classification in the wild//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 2110-2118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3727) PDF downloads(1105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return