Volume 43 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
XU Wei, SUN Chunyan, SUN Jianqiao, HE Qun. DEVELOPMENT AND STUDY ON CELL MAPPING METHODS[J]. Advances in Mechanics, 2013, 43(1): 91-100. doi: 10.6052/1000-0992-12-022
Citation: XU Wei, SUN Chunyan, SUN Jianqiao, HE Qun. DEVELOPMENT AND STUDY ON CELL MAPPING METHODS[J]. Advances in Mechanics, 2013, 43(1): 91-100. doi: 10.6052/1000-0992-12-022

DEVELOPMENT AND STUDY ON CELL MAPPING METHODS

doi: 10.6052/1000-0992-12-022
Funds:  The project was supported by the National Natural Science Foundation of China (11172233, 10932009).
More Information
  • Corresponding author: XU Wei
  • Received Date: 2012-02-28
  • Rev Recd Date: 2012-11-25
  • Publish Date: 2013-01-24
  • This paper presents brie y the research and development of cell mapping methods. Several main cell mapping methods are summarized, including simple cell mapping, generalized cell mapping, digraph cell mapping, symbolic analysis method of digraph cell mapping, set-oriented method of digraph cell mapping, adjoining cell mapping, Poincare-like simple cell mapping, interpolated cell mapping and point mapping under cell reference. For these methods, basic features and characteristics are analyzed, and both domestic and foreign research developments are outlined. Furthermore, the research developments of cell mapping method for control and related fields are presented. Finally, the paper suggests some research prospects and some directions that may first be broken through in the research field of cell mapping method.

     

  • loading
  • 1 Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983
    2 Ott E. Chaos in Dynamical Systems. Cambridge: Cambridge University Press, 1993
    3 Moon F C. Chaotic and Fractal Dynamics. New York: John Wiley & Sons, 1992
    4 Wiggins S. Global Bifurcations and Chaos: Analytical Methods. Beijing: Springer-Verlag, 1990
    5 Smale S. Differentiable dynamical systems. Bull. Amer. Math. Soc., 1957, 73: 747-753
    6 张芷芬. 微分方程定性理论. 北京: 科学出版社, 1985
    7 Parker T S, Chua L O. Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag, 1989
    8 Hsu C S. A theory of cell-to-cell mapping dynamical systems. J. Applied Mechanics, 1980, 147: 931-939
    9 Hsu C S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. New York: Springer-Verlag,1987
    10 Hsu C S. Global analysis by cell mapping. Int. J. Bifurcation and Chaos, 1992, 2(4): 727-771  
    11 Hsu C S. Global analysis of dynamical systems using posets and digraphs. Int. J. Bifurcation and Chaos, 1995,5: 1085-1118  
    12 Hong L, Xu J X. Crises and chaotic transients studied by the generalized cell mapping digraph method. Phys. Lett. A, 1999, 262: 361-375  
    13 Hong L, Xu J X. Discontinuous bifurcations of chaotic attractors in forced oscillators by generalized cell mapping digraph (GCMD) method. Int. J. Bifurcation and Chaos,2001, 11: 723-736  
    14 Tongue B H, Gu K Q. Interpolated cell mapping of dynamical systems. J. Applied Mechanics, 1988, 55: 461-466  
    15 Golat M, Flashner H. A new methodology for the analysis of periodic systems. Nonlinear Dynamics, 2002, 28: 29-51  
    16 Jiang J, Xu J X. A method of point mapping under cell reference for global analysis of nonlinear dynamical systems. Phys. Lett. A, 1994, 188: 137-145  
    17 凌复华. 非线性动力学系统的数值研究. 上海: 上海交通大 学出版社, 1989
    18 Hsu C S. A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. J. Applied Mechanics, 1981,48: 634-642  
    19 Bestle D, Kreuzer E. Modification and extension of an algorithm for generalized cell mapping. Computer Methods in Applied Mechanics and Engineering, 1986, 59: 1-9  
    20 Levitas J. Global stability analysis of fuzzy controllers using cell mapping methods. Fuzzy Sets and Systems, 1999,106: 85-97  
    21 徐健学, 洪灵. 全局分析的广义胞映射图论方法. 力学学报,1999, 31(6): 724-730
    22 洪灵, 徐健学. 两参量平面上双重激变尖点研究. 物理学报,2002, 51(12): 2694-2701
    23 Hong L, Sun J Q. Bifurcations of fuzzy nonlinear dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 2006, 11: 1-12  
    24 Hong L, Sun J Q. Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method. Chaos Solitions & Fractals, 2006, 27: 895-904  
    25 Hong L, Sun J Q. Codimension two bifurcations of nonlinear systems driven by fuzzy noise. Physica D, 2006, 213:181-189  
    26 Osipenko G. Dynamical Systems, Graphs, and Algorithms. Berlin: Springer-Verlag 2007
    27 Osipenko G, Ayter S, Kobyakov S. The structure matrix of dynamical system: Tools for mathematical modeling. Mathematical Research, 2001, 8: 06-114
    28 Osipenko G, Pehlivan S. Verification of structural stability, tools for mathematical modeling. Mathematical Research,2001, 8: 115-126
    29 Osipenko G. Calculation of Lyapunov exponents by applied symbolic dynamics. International Journal of Nonlinear Sciences and Numerical Simulation, 2001, 2(1): 53-72
    30 Osipenko G. Spectrum of a dynamical system and applied symbolic dynamics. Journal of Mathematical Analysis and Applications, 2000, 252: 587-616  
    31 Osipenko G, Campbell S. Applied symbolic dynamics: Attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5(1-2): 43-60
    32 Dellnitz M, Hohmann A. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 1997, 75: 293-317  
    33 Dellnitz M, Junge O. In: Handbook of Dynamical Systems II: Towards Applications. Singapore: World Scientific,2002. 221-264
    34 Dellnitz M, Froyland G, Junge O. Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Berlin: Springer, 2001. 145-174,
    35 Dellnitz M, Junge O. An adaptive subdivision technique for the approximation of attractors and invariant measures. Comput. Visual. Sci., 1998, 1: 63-68  
    36 Dellnitz M, Junge O. Almost invariant sets in Chua's circuit. Int. J. Bifurcation and Chaos, 1997, 7(11): 2475-2485  
    37 Mehta P G, Hessel-von Molo M, Dellnitz M. Symmetry of attractors and the Perron-Frobenius operator. Journal of Difference Equations and Applications, 2006, 12(11):1147-1178  
    38 Sertl S, Dellnitz M. Global optimization using a dynamical systems approach. Journal of Global Optimization,2006, 34(4): 569-587  
    39 Dellnitz M, Junge O, Koon WS, et al. Transport in dynamical astronomy and multibody problems. Int. J. Bifurcation and Chaos, 2005, 15(3): 699-727  
    40 Dellnitz M, Sch¨utze O, Hestermeyer T. Covering pareto sets by multilevel subdivision techniques. Journal of Optimization, Theory and Applications, 2005, 124(1): 113-136  
    41 Day S, Junge O, Mischaikow K. A Rigorous numerical method for the global analysis of infinite dimensional discrete dynamical systems. SIAM Journal on Applied Dynamical Systems, 2004, 3(2): 117-160  
    42 Junge O, Osinga H. A set oriented approach to global optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 2004, 3(2): 259-270
    43 Froyland G, Dellnitz M. Detecting and locating nearoptimal almost invariant sets and cycles. SIAM Journal on Scientific Computing, 2003, 24(6): 1839-1863  
    44 Dellnitz M, Schutze O, Sertl S. Finding zeros by multilevel subdivision techniques. Journal of Numerical Analysis,2002, 22(2): 167-185  
    45 Dellnitz M, Junge O, Thiere B. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems Series B, 2001, 1(1): 125-135  
    46 Froyland G, Junge O, Ochs G. Rigorous computation of topological entropy with respect to a finite partition. Physica D, 2001, 154: 68-84  
    47 Junge O. An adaptive subdivision technique for the approximation of attractors and invariant measures: Proof of convergence. Dynamical Systems, 2001, 16(3): 213-222
    48 贺群, 徐伟, 李爽, 等. 图胞映射的一种改进方法. 物理学报,2008, 57(2): 743-748
    49 贺群, 徐伟, 李爽, 等. 基于复合胞化空间的图胞映射方法. 物理学报, 2008, 57(7): 4021-4028
    50 Yue X L, Xu W. Stochastic bifurcation of an asymmetric single-well potential Duffing oscillator under bounded noise excitation. International Journal of Bifurcation and Chaos, 2010, 20(10): 3359-3371  
    51 Xu W, Yue X L. Global analyses of crisis and stochastic bifurcation in the hardening Helmholtz-Duffing oscillator. Science China Technological Sciences, 2010, 53(3): 664-673  
    52 He Q, Xu W, Rong H W, et al. Stochastic bifurcation in duffing-van der pol oscillators. Physica A, 2004, 338:319-334  
    53 Xu W, He Q, Fang T, et al. Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise. International Journal of Non-Linear Mechanics, 2004, 39: 1473-1479  
    54 Xu W, He Q, Fang T, et al. Global analysis of stochastic bifurcation in Duffing system. International Journal of Bifurcation and Chaos, 2003, 13: 3115-3123  
    55 Zufiria P J, Guttalu R S. The adjoining cell mapping and its recursive unraveling, part one: description of adaptive and recursive algorithms. Nonlinear Dynamics, 1993, 4:207-226
    56 Zufiria P J, Guttalu R S. The adjoining cell mapping and its recursive unraveling, part two: Application to selected problems. Nonlinear Dynamics, 1993, 4: 309-336
    57 Sun J Q, Hsu C S. The generalized cell mapping method in nonlinear random vibration based upon short-time Gaus Gaussian approximation. J. Applied Mechanics, 1990, 57:1018-1025  
    58 Levitas J, Weller T, Singer J. Poincare-like simple cell mapping for nonlinear dynamical systems. J. Sound and Vibration, 1994, 176: 641-662  
    59 Levitas J, Weller T. Poincare linear interpolated cell mapping: method for global analysis of oscillating systems. J. Applied Mechanics, 1995, 62: 489-495  
    60 Hsu C S, Chiu H M. Global analysis of a system with multiple responses including a strange attractor. J. Sound and Vibration, 1987, 114: 203-218  
    61 Zhu W H, Wu Q T. New methods of determining the strange attractor by generalized cell mapping approach. Commun. Appl. Numer. Methods, 1988, 4: 543-548
    62 Jiang J, Xu J X. An iterative method of point mapping under cell reference for the global analysis of nonlinear dynamical systems. J. Sound and Vibration, 1996, 194:605-621  
    63 Jiang J, Xu J X. An iterative method of point mapping under cell reference for the global analysis: Theory and a multiscale reference technique. Nonlinear Dynamics,1998, 15: 103-114  
    64 Guder R, Dellnitz M, Kreuzer E. An adaptive method for the approximation of the generalized cell mapping. Chaos, Solitons and Fractals, 1997, 8(4): 525-534  
    65 Tongue B H, Gu K Q. A higher order method of mapping. J. Sound and Vibration, 1988, 125: 169-179  
    66 文成秀, 姚玉玺, 闻邦椿. 动力系统的点映射胞映射综合 法. 振动工程学报, 1997, 10(4): 413-419
    67 Tongue B H, Gu K Q. A theoretic basis for interpolated cell mapping. SIAM J. Applied Mathematics, 1988, A8:1206-1212
    68 Tongue B H. On obtaining global nonlinear system characteristics through interpolated cell mapping. Physica D,1987, 28: 401-408  
    69 Tongue B H, Gu K Q. A higher order method of interpolated cell mapping. J. Sound and Vibration, 1988, 125:169-179  
    70 Whitf M T, Tongue R H. Application of interpolated cell mapping to analysis of the Lorenz equations. J. Sound and Vibration, 1995, 188(2): 209-226  
    71 Hsu C S. A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications, 1985, 46(4): 547-569  
    72 Bursal F H, Hsu C S. Application of a cell-mapping method to optimal control problems. International Journal of Control, 1989, 49: 1505-1522
    73 Flashner H, Burns T F. Spacecraft momentum unloading: the cell mapping approach. Journal of Guidance, Control and Dynamics, 1990, 13: 89-98  
    74 Zhu W H, Leu M C. Planning optimal robot trajectories by cell mapping. In: Proceedings of Conference on Robotics and Automation, IEEE, New York, 1990. 1730-1735
    75 Wang F Y, Lever P J A. A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robotics and Autonomous Systems, 1994, 12: 15-27  
    76 Yen J Y. Computer disk file track accessing controller design based upon cell to cell mapping. In: Proceedings of the American Control Conference, AACC, 1992
    77 Crespo L G, Sun J Q. Solution of fixed final state optimal control problems via simple cell mapping. Nonlinear Dynamics, 2000, 23: 391-403  
    78 Crespo L G, Sun J Q. Optimal control of target tracking via simple cell mapping. Journal of Guidance, Control and Dynamics, 2000, 24: 1029-1031
    79 Crespo L G, Sun J Q. Fixed final time optimal control via simple cell mapping. Nonlinear Dynamics, 2003, 31:119-131  
    80 Crespo L G, Sun J Q. Stochastic optimal control of nonlinear dynamic systems via bellman's principle and cell mapping. Automatica, 2003, 39: 2109-2114  
    81 Crespo L G, Sun J Q. Stochastic optimal control of nonlinear dynamic systems via short-time gaussian approximation and cell mapping. Nonlinear Dynamics, 2002, 28:323-342  
    82 Crespo L G, Sun J Q. Optimal control of populations of competing species. Nonlinear Dynamics, 2002, 27: 197-210  
    83 Chen Y Y, Tsao T C. Description of the dynamical behavior of fuzzy systems. IEEE Transactions on Systems, Man and Cybernetics, 1989, 19(4): 745-755  
    84 Yen J Y, Chao W C, Lu S S. Fuzzy cell mapping method for a sub-optimal control implementation. Control Engineering Practice, 1994, 2: 247-254.  
    85 Smith S M, Comer D J. Self-tuning of a fuzzy logic controller using a cell state space algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1990.
    86 Smith S M, Corner D J. An algorithm for automated fuzzy logic controller tuning. In: Proceedings of IEEE International Conference on Fuzzy Systems, New York, 1992
    87 Song F, Smith S M. Cell state space based incremental best estimate directed search algorithm for Takagi-Sugeno type fuzzy logic controller automatic optimization. In: Proceedings of the 9th IEEE International Conference on Fuzzy Systems. Taras, 2000
    88 Song F, Smith S M, Rizk C G. Fuzzy logic controller design methodology for 4D systems with optimal global performance using enhanced cell state space based best estimate directed search method. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, 1999
    89 Song F, Smith S M, Rizk C G. Optimized fuzzy logic controller design for 4D systems using cell state space technique with reduced mapping error. In: Proceedings of the IEEE International Fuzzy Systems Conference, South Korea, 1999
    90 Edwards D, Choi H T. Use of fuzzy logic to calculate the statistical properties of strange attractors in chaotic systems. Fuzzy Sets and Systems, 1997, 88(2): 205-217  
    91 Sun J Q, Hsu C S. Global analysis of nonlinear dynamical systems with fuzzy uncertainties by the cell mapping method. Computer Methods in Applied Mechanics and Engineering, 1990, 83: 109-120  
    92 Baglio S, Fortuna L, Presti M L. Cube collect: A new strategy to make efficient the classical cell-to-cell algorithm. In: Proceedings of the American Control Conference, New York, 1995
    93 Zufiria P J, Guttalu R S. Adjoining cell mapping and its recursive unraveling, Part I: Description of adaptive and recursive algorithms. Nonlinear Dynamics, 1993, 3: 207-225
    94 Sun J Q. Random Vibrations of Nonlinear Systems Based upon the Cell State Space Concept. [Ph.D. Thesis] Berkeley: University of California, 1988
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4062) PDF downloads(1835) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return