HE Zheng, JIANG Bicong. Development and applications of hybrid simulation and experimentation using opensees[J]. Advances in Mechanics, 2012, 42(6): 804-820. doi: 10.6052/1000.0992-11-080
Citation: HE Zheng, JIANG Bicong. Development and applications of hybrid simulation and experimentation using opensees[J]. Advances in Mechanics, 2012, 42(6): 804-820. doi: 10.6052/1000.0992-11-080

Development and applications of hybrid simulation and experimentation using opensees

doi: 10.6052/1000.0992-11-080
Funds:  The project was supported by the National Natural Science Foundation of China (90915005, 51161120359), the Program for New Century Excellent Talentsin University (NCET) of the Ministry of Education of China (NCET-08-0096).
More Information
  • Corresponding author: HE Zheng
  • Received Date: 2011-06-04
  • Rev Recd Date: 2012-03-01
  • Publish Date: 2012-11-25
  • In this paper, modern structural performance simulation or experimentation systems can be classified into global (i.e. structure) and local (substructure) categories. The background, some basic concepts, state-of-the-art development and applications of hybrid simulation (experimentation) are discussed in detail within this kind of classification. Based on the object-oriented finite element program Open System for Earthquake Engineering Simulation (OpenSees) and its high-level software architecture as well as parallel computing program structure, four OpenSees-based hybrid simulation and hybrid experimentation systems are addressed. Further, a brief introduction of the concepts and applications of multi-scale integrated hybrid modeling is given herein. It has been proved to be feasible for developing hybrid simulations or hybrid experimentations based on some commercially and non-commercially available finite element (FE) software platforms. The key issue confronted is how to incorporate different FE software platforms with the testing apparatus locating at different places and to make them work in a precisely synchronized mode. Hybrid simulation technology has some advantages over other conventional analytical methods, especially for the case of progress collapse simulation of structures subjected to severe earthquakes. However, as critically pointed out in this paper, substantial development of this novel technology cannot be achieved without seamless fusion of multi-disciplinary that should be stressed right now.

     

  • 1 凌炯. 面向对象开放程序OpenSees 在钢筋混凝土结构非线 性分析中的应用与初步开发: [硕士论文]. 重庆: 重庆大学,2004
    2 Fenves G L, Mckenna F, Scott M H, et al. An object- oriented software environment for collaborative network simulation. In:Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver B C: 13 WCEE Secretariat, 2004
    3 邱法维, 钱稼茹, 陈志鹏. 结构抗震实验方法. 北京: 科学出 版社, 2000
    4 邱法维. 结构抗震实验方法进展. 土木工程学报, 2004,37(10): 19-27
    5 肖岩, 易伟建. 结构实验学的发展. 建筑结构学报, 2009,30(6): 16-22
    6 王大鹏. 远程协同结构拟动力试验方法与技术研究: [博士论 文]. 哈尔滨:哈尔滨工业大学, 2010
    7 中华人民共和国行业标准. 建筑抗震试验方法规程, JGJ1012-96. 北京:中国建筑工业出版社, 1997
    8 王强, 冯帆, 张帆, 等. 基于通用有限元软件ABAQUS 的子 结构拟动力试验研究. 土木工程学报, 2010, 43(增刊): 515-519
    9 Hakuno M, Shidawara M, Hara T. Dynamic destruc- tive test of a cantilever beam controlled by an analog- computer. Transactions of Japan Society of Civil Engi- neering, 1969, 171: 1-9
    10 Takanashi K, Udagawa K, Seki M, et al. Non-linear earthquake response analysis of structures by a computer- actuator on-lin system. Transaction of the Architectural Institute of Japan, 1975, 229: 77-83
    11 Iemura H. Development and future prospect of hybrid ex- periment. Transactions of Japan Society of Civil Engi- neering, 1985, 356: 1-10
    12 Thewalt C, Mahin S. Hybrid solution techniques for gener- alized pseudodynamic testing. In: Earthquake Engineer-ing Research Center Report UCB/EERC-87/09, Univer- sity of California, Berkeley, 1987
    13 Nakashima M, Kaminosono T, Ishida M, et al. Integra- tion techniques for substructure pseudo dynamic test. In: Proceedings of the 4th U.S. National Conference on Earth- quake Engineering. Oakland: Earthquake Engineering Research Institute (EERI), 1990
    14 Nakashima M, Akazawa T, Sakaguchi O. Integration method capable of controlling experimental error growth in substructure pseudo dynamic test. Journal of Struc- tural and Construction Engineering, 1993, 454: 61-70
    15 Combescure D, Pegon P.-operator splitting time inte- gration technique for pseudodynamic testing error propa- gation analysis. Soil Dynamics and Earthquake Engineer- ing, 1997, 16(7-8): 427-443
    16 Wang Y, Lee C, Yo T. Modied state-space procedures for pseudodynamic testing. Earthquake Engineering & Structural Dynamics, 2001, 30(1): 59-80
    17 Mahin S, Shing P, Christopher R, et al. Pseudodynamic test method|current status and future directions. Jour- nal of Structural Engineering, 1989, 115(8): 2113-2128
    18 Shing P, Nakashima M, Bursi O. Application of pseudo dynamic test method to structural research. Earthquake Spectra, 1996, 12(1): 29-56  
    19 Magonette G. Development and application of large-scale continuous pseudo-dynamic testing techniques. Philo- sophical Transactions of the Royal Society of London,2001, A(359): 1771-1799
    20 Mosqueda G, Stojadinovic B, Mahin S A. Geographically distributed continuous hybrid simulation. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver B C: 13 WCEE Secretariat, 2004
    21 Nakashima M, Masaoka N. Real-time on-line test for MDOF systems. Earthquake Engineering & Structural Dynamics, 1999, 28(4): 393-420  
    22 Nakashima M, Kato H, Takaoka E. Development of real- time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 79-92  
    23 Horiuchi T, Inoue M, Konno T, et al. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy ab- sorber. Earthquake Engineering & Structural Dynamics,1999, 28(10): 1121-1141  
    24 邱法维, 潘鹏, 钱稼茹, 等. 建筑结构拟动力实验软件的开发 与应用. 建筑结构学报, 2000, 21(5): 22-32
    25 邱法维. 拟动力实验中的数值积分方法. 哈尔滨建筑工程学 院学报, 1994, 27(3): 120-124
    26 王倩颖, 吴斌, 欧进萍. 实时子结构实验的研究与应用. 世界 地震工程, 2008, 24(1): 40-46
    27 田石柱, 蔡新江. 远程协同结构试验方法研究与发展. 地震 工程与工程振动, 2006, 26(5): 47-54.
    28 吕建民, 郭玉荣, 肖岩. 结构远程协同试验研究进展. 建筑科 学与工程学报, 2006, 23(4): 38-43
    29 Jr. Spencer B, Finholt T A, Foster I, et al. NEESgrid: a distributed collaboratory for advanced earthquake en- gineering experiment and simulation. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver B C: 13 WCEE Secretariat, 2004
    30 Pan P, Tada M, Nakashima M. Online hybrid test by in- ternet linkage of distributed test-analysis domains. Earth- quake Engineering & Structural Dynamics, 2005, 34(11):1407-1425  
    31 Yang Y, Hsieh S, Tsai K, et al. ISEE: internet-based sim- ulation for earthquake engineering|part I: database ap- proach. Earthquake Engineering & Structural Dynamics,2007, 36(15): 2291-2306  
    32 Wang K, Tsai K, Wang S, et al. ISEE: internet-based simulation for earthquake engineering|part II: the ap- plication protocol approach. Earthquake Engineering & Structural Dynamics, 2007, 36(15): 2307-2323  
    33 肖岩, 胡庆, 郭玉荣, 等. 结构拟动力远程协同试验网络平台 的开发研究. 建筑结构学报, 2005, 26(3): 122-129
    34 佟震亚, 马巧梅. 计算机网络与通信, 第2 版. 北京: 人民邮 电出版社, 2010
    35 张文, 赵子铭, 杨天路, 等. P2P 网络技术原理与C++ 开发 案例. 北京: 人民邮电出版社, 2008
    36 张翠莲, 刘方爱, 王亚楠. 基于MPI 的并行程序设计. 计算 机技术与发展, 2006, 16(8): 72-74
    37 Pan P, Tomofuji H, Wang T, et al. Development of peer- to-peer (P2P) internet online hybrid test system. Earth- quake Engineering & Structural Dynamics, 2006, 35(7):867-890  
    38 Kwon O, Nakata N, Elnashai A S, et al. Technical note a framework for multi-site distributed simulation and appli- cation to complex structural systems. Journal of Earth- quake Engineering, 2005, 9(5): 741-753
    39 周炎涛, 李立明. TCP/IP 协议下网络编程技术及其实现. 航空计算技术, 2002, 32(3): 122-124
    40 Mckenna F T. Object-oriented nite element program- ming frameworks for analysis, algorithms, and parallel computing[PhD Thesis]. Berkeley: University of Califor- nia, Berkeley, 1997
    41 Mckenna F T, Fenves G L. An object-oriented software design for parallel structural analysis. In: Proceedings of the ASCE Structures Congress 2000, Reston: ASCE Press, 2000
    42 Takahashi Y, Fenves G L. Software framework for dis- tributed experimental-computational simulation of struc- tural systems. Earthquake Engineering & Structural Dy- namics, 2006, 35(3): 267-291  
    43 Mckenna F T, Scott M H, Fenves G L. Nonlinear nite-element analysis software architecture using object com- position. Journal of Computing in Civil Engineering,2010, 24(1): 95-107
    44 Booch B G, Rumbaugh J, Jacobson I. Unied Modeling Language User Guide, second edition. Indiana: Addison Wesley Professional, 2005
    45 Agha G A. Actors: a model of concurrent computation in distributed systems. In: MIT Articial Intelligence Labo- ratory, 1985
    46 Shing P B, Wei Z, Jung R, et al. NEES fast hybrid test system at the University of Colorado. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver B C: 13 WCEE Secretariat, 2004
    47 Wei Z. Fast hybrid test system for substructure evalu- ation[PhD Thesis]. Boulder: University of Colorado at Boulder, 2005
    48 Schellenberg A, Mahin S A, Fenves G L. Applications of an experimental software framework for international hybrid simulation. In: Proceedings of the 4th International Con- ference on Earthquake Engineering, Taipei, China, 2006
    49 Shing P B, Stavridis A, Wei Z, et al. Validation of a fast hybrid test system with substructure tests. In: Pro- ceedings of the 17th Analysis and Computation Specialty Conference. Reston: ASCE Press, 2005
    50 Stavridis A, Shing P B. Hybrid testing and modeling of a suspended zipper steel frame. Earthquake Engineering & Structural Dynamics, 2010, 39(2): 187-209
    51 Elnashai A, Kwon O. Multi-platform earthquake analy- sis of geotechnical-structural systems. In: Proceedings of the 2005 ASCE International Conference on Computing in Civil Engineering. Reston: ASCE Press, 2005
    52 Wang T, Yoshitake N, Pan P, et al. Numerical charac- teristics of peer-to-peer (P2P) internet online hybrid test system and its application to seismic simulation of SRC structure. Earthquake Engineering & Structural Dynam- ics, 2008, 37(2): 265-282  
    53 Kwon O, Elnashai A S. Seismic analysis of meloland road overcrossing using multiplatform simulation software in- cluding ssi. Journal of Structural Engineering, 2008,134(4): 651-660  
    54 Kwon O, Elnashai A S, Spencer B F. A framework for distributed analytical and hybrid simulations. Structure Engineering and Mechanics, 2008, 30(3): 331-350
    55 Sasani M, Kropelnicki J. Progressive collapse analysis of an RC structure. The Structural Design of Tall and Spe- cial Buildings, 2008, 17(4): 757-771  
    56 张雷明, 刘西拉. 钢筋混凝土结构倒塌分析的前沿研究. 地 震工程与工程振动, 2003, 23(3): 47-52
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 80.6 %META: 80.6 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.8 %其他: 1.8 %其他: 0.2 %其他: 0.2 %Central District: 0.1 %Central District: 0.1 %China: 0.5 %China: 0.5 %United States: 0.6 %United States: 0.6 %[]: 0.1 %[]: 0.1 %上海: 2.7 %上海: 2.7 %东莞: 0.4 %东莞: 0.4 %丽水: 1.2 %丽水: 1.2 %九江: 0.2 %九江: 0.2 %北京: 7.1 %北京: 7.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %台州: 3.9 %台州: 3.9 %呼和浩特: 0.1 %呼和浩特: 0.1 %唐山: 0.1 %唐山: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.6 %天津: 0.6 %安阳: 0.1 %安阳: 0.1 %密尔沃基: 0.2 %密尔沃基: 0.2 %密蘇里城: 0.2 %密蘇里城: 0.2 %常州: 0.4 %常州: 0.4 %广州: 0.4 %广州: 0.4 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.5 %张家口: 0.5 %意法半: 0.2 %意法半: 0.2 %成都: 0.2 %成都: 0.2 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %杭州: 3.9 %杭州: 3.9 %武汉: 0.1 %武汉: 0.1 %江门: 0.2 %江门: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛桑: 0.2 %洛桑: 0.2 %洛阳: 0.2 %洛阳: 0.2 %海口: 0.1 %海口: 0.1 %淮北: 0.2 %淮北: 0.2 %淮安: 0.1 %淮安: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 2.6 %湖州: 2.6 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.1 %福州: 0.1 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 15.2 %芒廷维尤: 15.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %衢州: 2.0 %衢州: 2.0 %西宁: 45.9 %西宁: 45.9 %西安: 0.1 %西安: 0.1 %西雅图: 0.1 %西雅图: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.5 %重庆: 0.5 %金华: 0.8 %金华: 0.8 %长沙: 1.1 %长沙: 1.1 %青岛: 1.0 %青岛: 1.0 %香港: 0.2 %香港: 0.2 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaUnited States[]上海东莞丽水九江北京十堰南京南充南宁南昌台州呼和浩特唐山大连天津安阳密尔沃基密蘇里城常州广州廊坊张家口意法半成都无锡昆明杭州武汉江门沈阳洛桑洛阳海口淮北淮安深圳湖州湘潭漯河烟台石家庄福州美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衢州西宁西安西雅图运城郑州重庆金华长沙青岛香港齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1967) PDF downloads(4001) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return