Volume 42 Issue 3
May  2012
Turn off MathJax
Article Contents
MA Guojun, WU Chengwei. A REVIEW ON MECHANICS PROBLEMS IN MICRONEEDLE DESIGN AND PENETRATING PROCESS[J]. Advances in Mechanics, 2012, 42(3): 314-331. doi: 10.6052/1000-0992/11-155
Citation: MA Guojun, WU Chengwei. A REVIEW ON MECHANICS PROBLEMS IN MICRONEEDLE DESIGN AND PENETRATING PROCESS[J]. Advances in Mechanics, 2012, 42(3): 314-331. doi: 10.6052/1000-0992/11-155

A REVIEW ON MECHANICS PROBLEMS IN MICRONEEDLE DESIGN AND PENETRATING PROCESS

doi: 10.6052/1000-0992/11-155
Funds:  The project was supported by the National Natural Foundation of China (10972050, 10802019, 10925209).
More Information
  • Corresponding author: WU Chengwei
  • Received Date: 2011-11-16
  • Rev Recd Date: 2012-01-19
  • Publish Date: 2012-05-25
  • Recently, a novel technology known as microneedles have received much attention because they can be used for transdermal drug delivery and blood sampling in a painless and minimally invasive manner. However, there are still some problems that restrict its practical applications in clinical therapies. In this review, we first give a presentation of this novel technology, including its development history and development trends, and then discuss the existing mechanics problems. First, researches on the mechanics problems of microneedle are elaborated, including insertion force, structure strength, stiffness and drug deliver via microneedle. And then, we present new developments in the study on biomicroneedles and bionicmicroneedles, and describe the micronanostructures and mechanics principle of the biomicroneedle using a super small penetrating force, and finally discuss the inspirations provided by the biomicroneedle for the improvement of artificial microneedles design.

     

  • loading
  • 1 Prausnitzl M R, Langer R. Transdermal drug delivery. Nature Biotechnology, 2008, 26(11): 1261-1268
    2 Tanner T, Marks R. Delivering drugs by the transdermal route: review and comment. Skin Research and Technol- ogy, 2008, 14(3): 249-260
    3 Subedi R K, Oh S, Chun M, et al. Recent advances in transdermal drug delivery. Archives of Pharmacal Re- search, 2010, 33(3): 339-351
    4 Elias P M. Epidermal lipids, barrier function, and desquamation. Journal of Investigative Dermatology, 1983, 80: S44-S49
    5 韩璐, 胡晋红, 朱全刚. 经皮给药系统促渗方法研究的新进 展. 中国新药杂志, 2007, 16(4): 274-278
    6 边佳明, 赵维娟, 许景峰. 国外经皮给药系统的研究进展. 中 国药房, 2005, 16(14): 1112-1114
    7 McAllister D V, Allen M G, Prausnitz M R. Microfabricated microneedles for gene and drug delivery. Annual Review of Biomedical Engineer, 2000, 2: 289-313
    8 Prausnitz M R. Microneedle for transdermal drug delivery. Advanced Drug Delivery Reviews, 2004, 56: 581-587
    9 Arora A, Prausnitz M R, Mitragotri S. Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, 2008, 364(2): 227-236
    10 Donnelly R F, Singh T R R, Woolfson A D. Microneedlebased drug delivery systems: microfabrication, drug delivery, and safety. Drug Delivery, 2010, 17(4): 187-207
    11 Garland M J, Miqalska K, Mahmood T M, et al. Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Review of Medical Devices,2011, 8(4): 459-482
    12 Sachdeva V Banga A K Microneedles and their applications. Recent Patents on Drug Delivery & Formulation,2011, 5(2): 95-132
    13 许宝建, 金庆辉, 赵建龙. 基于MEMS 微针技术的研究现状 与展望. MEMS 器件与技术. 2005, 4: 150-156
    14 高志义, 刘志东, 张伯礼. 经皮给药技术的新突破—- 微针. 中国医院药学杂志, 2009, 29(7): 571-573
    15 陈娟, 陈志鹏, 瞿敏明, 等. 微针技术在经皮给药中的应用. 国际药学研究杂志, 2011, 38(2): 142-147
    16 Kaushik S, Allen H H, Donald D D, et al. Lack of pain associated with microfabricated microneedles. Anesthesia and Analgesia, 2001, 92: 502-504
    17 Gill H S, Denson D D, Burris B A, et al. Effect of microneedle design on pain in human subjects. Clinical Journal of Pain, 2008, 24(7): 585-594
    18 Henry S, McAllister D V, Allen M G, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of Pharmaceutical Sciences, 1998, 87(8):922-925
    19 Wang P M, Cornwell M, Hill J, et al. Precise microinjection into skin using hollow microneedles. Journal of Investigative Dermatology, 2006, 126: 1080-1087
    20 Gattiker G E, Kaler K V I S, Mintchev M P. Electronic mosquito: designing a semi-invasive microsystem for blood sampling, analysis and drug delivery applications. Microsystem Technologies, 2005, 12(1-2): 44-51
    21 Chaktraborty S, Tsuchiya K. Development and fluidic simulation of microneedles for painless pathological interfacing with living systems. Journal of Applied Physics,2008, 103: 114701
    22 Lee K, Lee H C, Lee D S, et al. Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Advanced Materials, 2010, 22(4): 483-486
    23 Mukeree E V, Issseroff R R, Collins S D. Microneedle array with integrated micronchannels for transdermal sample extraction and in situ analysis. In: Proceedings of the12th International Conference on Solid-State Sensors and Actuators, Boston, MA, 2003. 1439-1441
    24 Gerstel M S, Place V A. Drug delivery device. US Patent No. 3,964,482, 1976
    25 Griss P, Stemme G. Side open out-of-plane microneedles for microfluidic transdermal interfacing. Journal of Mi- croelectromechanical Systems, 2003, 12(3): 296-301
    26 Lin L W, Pisano A P. Silicon-processed microneedles. IEEE Journal of Microelectromechanical Systems, 1999,8(1): 78-84
    27 Kim K, Lee J B. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Mi- crosystem Technologies, 2007, 13(3-4): 231-235
    28 Verbaan F J, Bal S M, van den D J B, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin.Journal of Controlled Re- lease, 2007, 117: 238-245
    29 Badran M M, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller R?) in vitro: dependency on needle size and applied formulation. European Journal of Pharmaceutical Sciences, 2009, 36:511-523
    30 Martanto W, Davis S P, Nicholas R H, et al. Transdermal delivery of insulin using microneedles in vivo. Pharmacal Research, 2004, 21: 947-952
    31 McAllister D V, Wang P M, Davis P, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13755-13760
    32 Wang J, Lu J, Suw Y L, et al. Lab-on-a-cable for electrochemical monitoring of phenolic contaminants. Analytical Chemistry, 2000, 72: 2659-2663
    33 孙潇, 贾书海, 朱军, 等. 新型MEMS 微针设计及其力学性 能. 半导体学报, 2007, 28(1): 113-116
    34 肖丽君, 陈翔, 汪鹏, 等. 一种聚合物实心微针的制作方法. 微纳电子技术, 2009, 46(12): 744-749
    35 陈少军, 李以贵, 杉山进. 应用X 射线光刻的微针阵列及掩 模板补偿. 光学精密工程, 2010, 18(2): 420-425
    36 Li Y G, Yang C S, Liu J Q, et al. Fabrication of a polymer micro needle array by mask-dragging X-ray lithography and alignment X-Ray lithography.Chinese Physics Letters, 2011, 28(3): 038101
    37 Sullivan S P, Koutsonanos D G, Martin M P, et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 2010, 16: 915-920
    38 Sammoura F, Kang J J, Heo Y M, et al. Plolymeric microneedle fabrication using a microinjection molding technique. Microsystem Technologies, 2007, 13: 517-522
    39 Lee K, Lee C Y, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 2011, 32: 3134-3140
    40 Miyano T, Tobinaga Y, Takahiro K, et al. Sugar micro needles as transdermic drug delivery system. Biomedical Microdevices, 2005, 7: 185-188
    41 Donnelly R F, Morrissey A, McCarron P A, et al. Microstructured devices for transdermal drug delivery and minimally-invasive patient monitoring. Recent Patents on Drug Delivery & Formulation, 2007, 1: 195-200
    42 Banga A K. Microporation applications for enhancing drug delivery. Expert Opinion on Drug Delivery, 2009,6(4): 343-354
    43 Khumpuang S, Maeda R, Sugiyama S. Design and fabrication of coupled microneedle array and insertion guide array for safe penetration through skin. In: Proceedings of 2003 International Symposium on Micromechatronics and Human Science, 2003. 233-237
    44 Braybrook J H. Biodegradation and toxicokinetic studies. In: Braybrook J H, ed. Biocompatiblity: Assessment of Medical Devices and Materials. New York: Wiley, 1997.97-109
    45 Paik S J, Byun S, Lim J M, et al. In-plane single-crystalsilicon microneedles for minimally invasive microfluidic systems. Sensors and Actuators A-Physical, 2004, 114(2-3): 276-284
    46 Park J H, Choi S, Seo S, et al. A microneedle roller for transdermal drug delivery. European Journal of Pharma- ceutics and Biopharmaceutics, 2010, 76: 282-289
    47 沈修成, 刘景全, 王亚军, 等. 基于MEMS 技术的异平面空 心金属微针. 传感技术学报, 2009, 22(2): 151-154
    48 Davis S P, Martanto W, Allen M G, et al. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transactions on Biomedical Engineering, 2005, 52(5):909-915
    49 Khanna P, Luongo K, Strom J A, et al. Sharpening of hollow silicon microneedles to reduce skin penetration force. Journal of Micromechanics and Microengineering, 2010,20: 045011
    50 Hashmi S, Ling P, Hashmi G, et al. Genetic transformation of nematodes using arrays of micromechanical piercing structures. Biotechniques, 1995, 19: 766-770
    51 Lin W Q, Cormier M, Samiee A, et al. Transdermal delivery of antisense oligonucleotides with microprojection patch (macro-flux) technology. Pharmaceutical Research,2001, 18(12): 1789-1793
    52 Matriano J A, Cormier M, Johnson J, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharmaceuti- cal Research, 2002, 19: 63-70
    53 Mikszta J A, Alarcon J B, Brittingham J M, et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nature Medicine, 2002, 8: 415-419
    54 Oka K, Aoyagi S, Arai Y, et al. Fabrication of a micro needle for a trace blood test. Sens Actuators A, 2002,97-98: 478-485
    55 Mukerjee E, Collins S D, Isseroff R R, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A-Physical, 2004,114: 267-275
    56 Liu R, Wang X H, Zhou Z Y, et al. Microneedles array for fluid extraction and drug delivery. In: Proceedings of
    2003 International Symposium on Micromechatronics and Human Science, 2003. 239-244
    57 Hendriks F M. Mechanical behaviour of human skin in vivo. Unclassified Report, 2001
    58 Hendriks F M. Mechanical behaviour of human epidermal and dermal layers in vivo: [PhD Thesis]. Eindhoven: Technische Universiteit Eindhoven, 2005
    59 Odland G F. Structure of the skin. In: Goldsmith L A, Physiology, Biochemistry, and Molecular Biology of the Skin. Oxford: Oxford University Press, 1991
    60 Norlén L P O. The skin barrier: structure and physical function. Stockholm: Karolinska Institute, 1999
    61 Kendall M A F, Chong Y R, Cock A. The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials, 2007, 28(33): 4968-4977
    62 Lanir Y. Skin mechanics. In: Skalak R, Chien S. eds. Handbook of Bioengineering. New York: McGraw-Hill,1987. 11
    63 Wilkes G L, Brown I A, Wildnauer R H. The biomechanical properties of skin. Critical Reviews in Bioengineering,1973, 6: 453-495
    64 Delalleau A, Josse G, Lagarde J M, et al. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Research and Technology, 2008,14: 152-164
    65 Sivamani R K, Maibach H I. Tribology of skin. Journal of Engineering Tribology, 2006, 220: 729-737
    66 Maeno T, Kobayashi K, Yamazaki N. Relationship between the structure of human finger tissue and the location of tactile receptors. Mechanical Systems Machine El- ements and Manufacturing JSME Series C, 1998, 41(1):94-100
    67 Srinivasan M A, Dandekar K. An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip. Journal of Biomechanical Engi- neering, Transactions of the ASME, 1996, 118: 48-55
    68 曾衍钧, 倪茜. 皮肤力学进展. 力学进展, 1990, 20(2): 211-224
    69 卢天健, 徐峰. 皮肤的力学性能概述. 力学进展, 2008, 38(4):393-426
    70 徐峰, 卢天健. 皮肤组织的热力学行为表征: I. 拉压行为. 西 安交通大学学报(医学版), 2008, 29(3): 247-251
    71 徐峰, 卢天健. 皮肤组织的热力学行为表征: II. 黏弹性行为. 西安交通大学学报(医学版), 2008, 29(4): 365-369
    72 孔祥清, 蚊子浮水与针刺力学行为研究: [博士论文]. 大连: 大连理工大学, 2010
    73 Wildnauer R H, Bothwell J W, Douglass A B. Stratum corneum biomechanical properties: I. Influence of relative humidity on normal andextracted human stratum corneum. Journal of Investigative Dermatology, 1971, 56:72-80
    74 Edwards C, Marks R. Evaluation of biomechanical properties of human skin. Clinics in Dermatology, 1995, 13:375-380
    75 Diridollou S, Black D, Lagarde J M, et al. Sex- and site-dependent variations in the thickness and mechanical properties of human skin in vivo. International Journal of Cosmetic Science, 2000, 22: 421-435
    76 Rivlin R S. Large elastic deformation of isotropic materials: I. Fundamental concepts, II. some uniqueness theories for pure homogeneous deformations. Philosophical Trans- actions of the Royal Society of London Series A, 1948,240: 459-525
    77 Mooney R. A theory of large elastic deformation. Journal of Applied Physics, 1940, 11: 582-592
    78 Ogden R W. Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society, Se- ries A, 1972, 326(1567): 565-584
    79 Kong X Q,Wu C W. Measurement and prediction of insertion force for the mosquito fascicle penetrating into human skin. Journal of Bionic Engineering, 2009, 6: 143-152
    80 Tong P, Fung Y C. The stress-strain relationship for the skin. Journal of Biomechanics, 1976, 9: 649-657
    81 Davis S, Landis B, Adams Z H, et al. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. Journal of Biome- chanics, 2004, 37: 1155-1163
    82 Park J, Allen M G, Prausnitz M R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, 2005,104: 51-66
    83 Roxhed N, Gasser T C, Griss P. Penetration-Enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. Journal of Micro- electromechanical Systems, 2007, 16(6): 1429-1440
    84 Okamura A M, Simone C, O’Leary M D. Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering, 2004, 10(51): 1707-1716
    85 Simone C, Okamura A M. Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proceeding of the IEEE international conference on robotics and automation (ICRA), Washington, DC, USA 2002.2085-2091
    86 Abolhassani N, Ratel R, Moallem M. Needle insertion into soft tissue: a survey. Medical Engineering & Physics,2007, 29: 413-431
    87 Karnopp D. Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of Dynamic Systems Measurement and Control, Transaction of the ASME, 1985, 107: 100-103
    88 Kataoka H, Washio T, Chinzei K. Measurement of tip and friction acting on a needle during penetration. In: 5th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2002. 216-223
    89 Frick T B, Marucci D D, Cartmill J A, et al. Resistance forces acting on suture needles. Journal of Biomechanics,2001, 34: 1335-1340
    90 Hing J T, Brooks A D, Desai J P. A biplanar fluoroscopic approach for the measurement, modeling, and simulation of needle and soft-tissue interaction. Medical Image Anal- ysis, 2007, 11: 62-78
    91 Ji J, Tay F E H, Jianmin M, et al. Microfabricated microneedle with porous tip for drug delivery. Journal of Micromechanics & Microengineering, 2006, 16: 958-964
    92 Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sensors and Actuators A-Physical, 2008, 143: 20-28
    93 Wilke N, Mulcahy A, Ye S R. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics Journal, 2005, 36: 650-656
    94 Wilson C J, Beck P A. Fracture testing of bulk silicon microcantilever beams subjected to a side load. Journal of Microelectomechanical Systems, 1996, 5: 142-150
    95 Shibata T, Nakanishi A, Sakai T, et al. Fabrication and mechanical characterization of microneedle array for cell surgery. In: 14th International Conference on Solid-State Sensors, Actuators and Microsystems, 2007. 719-722
    96 Kawashima T, Sakai T, Kato N, et al. Mechanical characterization and insertion performance of hollow microneedle array for cell surgery. Journal of Mciro- Nanolithography MEMS and Moems, 2009, 8(3): 033014
    97 Khanna P, Luongo K, Strom J A, et al. Axial and shear fracture strength evaluation of silicon microneedles. Microsystem Technologies-Micro-and Nanosystems- information Storage and Processing Systems, 2010, 16:973-978
    98 Widera G, Johnson J, Kim L, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine, 2006, 24: 1653-1664
    99 Li G, Badkar A, Nema S, et al. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. International Journal f Pharmaceutics, 2009, 368: 109-115
    100 Martanto W, Moore J S, Kashlan O, et al. Microinfusion using hollow microneedles. Pharmaceutical Research,2006, 23(1): 104-113
    101 Bal S M, Kruithof A C, Zwier R, et al. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. Journal of Controlled Release, 2010,147: 218-224
    102 Hood R L, Kosoglu M A, Parker M, et al. Effects of microneedle design parameters on hydraulic resistance. ASME Journal of Medical Devices, 2011, 5: 031012
    103 Bodhale D W, Nisar A, Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedle for transdermal drug delivery applications. Micro u- idics & Nano uidics, 2010, 8: 373-392
    104 Martanto W, Moore J S, Couse T, et al. Mechanism of fluid infusion during microneedle insertion and retraction. Journal of Controlled Release, 2006, 112: 357-361
    105 Gardeniers H, Luttge R, Berenschot E, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. Journal of Microelectomechanical Systems,2003, 12: 855-862
    106 Stoeber B, Liepmann L. Two-dimensional arrays of out-ofplane needles. In: MEMS, ASME International Mechanical Engineering Congress and Exposition, 2000. 355-359
    107 Gupta J, Park S S, Bondy B, et al. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials, 2011, 32: 6823-6831
    108 Li W Z, Huo M R, Zhou J P, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. International Journal of Pharmaceutics, 2010,389: 122-129
    109 Millan M J. The induction of pain: an integrative review. Progress in Neurobiology, 1999, 57: 1-164
    100 卢天健, 徐峰. 皮肤热疼痛感与伤害性刺激的关联性. 西安 交通大学学报(医学版), 2008, 29(2): 128-133
    111 Xu F, Lu T J. Introduction to Skin Biothermomechanics and Thermal Pain. Beijing: Science Press Beijing, New York: Springer Heidelberg Dordrecht London, 2010
    112 Blood-Feeding Techniques of Mosquitoes, http://www.- wordsources.info/words-mod- mosquitoesPt2.html
    113 Gordon R M, Lumsden W H R. A study of the behavior of the mouth-parts of mosquitoes when taking up blood from living tissue together with some observations on the ingestion of microfilariae. Annals of Tropical Medicine & Parasitology, 1939, 33: 259-278
    114 Robinson G G. The mouthparts and their function in the female mosquito, Anopheles maculipennis. Parasitology,1939, 31: 212-242
    115 Snodgrass R E. The anatomical life of the mosquito. Smithsonian Miscellaneous Collections, 1959, 139(8): 1-87
    116 Hudson A. Notes on the piercing mouthparts of three species of mosquitoes viewed with the scanning electron microscope. The Canadian Entomologist, 1970, 102(4):501-509
    117 Arnell J H, Nielsen L T. The varipalpus group of aedes (ochlerotatus). Contributions of the American Entomo- logical Institute, 1972, 8(2): 1-48
    118 Magnarelli L A. Feeding behavior of mosquitoes (diptera: culicidae) on man, raccoons, and white-footed mice. An- nals of the Entomological Society of American, 1979,72(1): 162-166
    119 Clements A N. The Biology of Mosquitoes. London: Chapman and Hall, 1992
    120 http://www.radarcan.com/en/mosquitoes.html
    121 Ramasubramanian M K, Barham O M, Swaminathan V. Mechanics of a mosquito bite with applications to microneedle design. Bioinspiration & Biomimetics, 2008,3: 046001
    122 Kong X Q, Wu C W. Mosquito proboscis: an elegant biomicroelectromechanical system. Physical Review E,2010, 82: 011910
    123 Izumi H, Suzuki M, Aoyagi S, et al. Realistic imitation of mosquito’s proboscis: Electrochemically etched sharp and jagged needle and their cooperative inserting motion. Sensors and Actuators A-Physical, 2011, 165: 115-123
    124 马国军, 吴承伟. 蚊子口针的力学性能. 中国力学大会论文 集, 哈尔滨, 2011. 428
    125 Ma G J, Shi L T, Wu C W. Biomechanical property of a natural microneedle: the caterpillar spine. ASME Journal of Medical Devices, 2011, 5: 034502
    126 Timoshenko S P, Gere, J M. Mechanics of Materials, New York: Van Nostrand Reinhold Company, 1972
    127 吴承伟. 人造微针: 来自蚊子口针的启示. 科学时报, A4,2011.4.14
    128 Yum K, Wang N, Yu M F. Nanoneedle: A multifunctional tool for biological studies in living cells. Nanoscale, 2010,2: 363-372
    129 Kolhar P, Doshi N, Mitragotri S. Polymer Nanoneedle- Mediated Intracellular Drug Delivery. Small, 2011, 14:2094-2100
    130 Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Ange- wandte Chemie-International Edition, 2004, 43: 5242-5246
    131 Poater A, Saliner A G, Carb′o-Dorca R, et al. Modeling the structure-property relationships of nanoneedles: a journey toward nanomedicine. Journal of Computational Chemistry, 2008, 30(2): 275-284
    132 Jouzi M, Kerby M B, Tripathi A, et al. Nanoneedle method for high-sensitivity low back-gournd monitoring protein activity. Langmuir, 2008, 24: 10786-10790
    133 Hoshino T, Konno T, Ishihara K, et al. Live-cell-driven insertion of a nanoneedle. Japanese Journal of Applied Physics, 2009, 48: 107002
    134 刘芬, 徐克花. 碳纳米管在生物化学传感及生物传输方面的 应用. 化学分析计量, 2009, 18(1): 83-86
    135 Han S W, Nakamura C, Imai Y, et al. Monitoring of hormonal drug effect in a single breast cancer cell using an estrogen responsive GFP reporter vector delivered by a nanoneedle. Biosensors and Bioelectronics, 2009, 24:1219-1222
    136 Ahmad MR, Nakajima M, Kojima S, et al. Buckling nanoneedle for characterizing single cells mechanics inside environmental SEM. IEEE Transactions on Nanotechnol- ogy, 2011, 10(2): 226-236
    137 Kam N W S, O’Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents forselective cancer cell destruction. Proceedings of the National Academy of Sciences of the USA, 2005, 102: 11600-11605
    138 Liu Z, Tabakman S, Welsher K, et al. Carbon nanotubes in biology and medicine: in vitro and in vivo detection imaging and drug delivery Nano Research, 2009, 2: 85
    139 Yum K, Cho H N, Hu J, et al. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments. ACS Nano, 2007, 1: 440-448
    140 Chen X, Wu P, Rousseas M, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society, 2009, 131: 890
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1332) PDF downloads(2435) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return