Turn off MathJax
Article Contents
Li J C, Nie B C, Lin H H trans. A few frontier issues in ocean engineering mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-044
Citation: Li J C, Nie B C, Lin H H trans. A few frontier issues in ocean engineering mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-044

A few frontier issues in ocean engineering mechanics

doi: 10.6052/1000-0992-25-044 cstr: 32046.14.1000-0992-25-044
More Information
  • In this review, we primarily address the present state of the arts and latest progresses in a few frontier issues mostly relevant to free surface/interface in ocean engineering. They include TC (tropical cyclone) induced extreme surface wave, sloshing of LNG (liquefied natural gas), cavitation/bubble dynamics and VIM (vortex-induced motion) and VIV (vortex-induced vibration). In addition to general description, we mainly focus on the recent advances and challenging aspects of above-mentioned topics. Inspired by the achievements in the previous 70 years, mankind starts a new round of ocean exploration activities. Then, we can find obvious trends: the realm of ocean engineering is expanding from sea surface to deep sea, from low and middle latitude to polar region and from fossil to renewable energy in near future.

     

  • loading
  • [1]
    刘俊, 高福平. 2019. 近壁面柱体涡激振动的迟滞效应. 力学学报, 51(6): 1630-1640 (Liu J, Gao F P. 2019. Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics, 51(6): 1630-1640). doi: 10.6052/0459-1879-19-293

    Liu J, Gao F P. 2019. Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics, 51(6): 1630-1640 doi: 10.6052/0459-1879-19-293
    [2]
    Bauer H F. 1984. Oscillations of immiscible liquids in a rectangular container: A new damper for excited structures. Journal of Sound and Vibration, 93(1): 117-133. doi: 10.1016/0022-460X(84)90354-7
    [3]
    Bearman P W. 1984. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 16: 195-222. doi: 10.1146/annurev.fl.16.010184.001211
    [4]
    Benjamin T B, Ellis A T. 1966. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 260: 221-240. doi: 10.1098/rsta.1966.0046
    [5]
    Blake J R. 1988. The Kelvin impulse: Application to cavitation bubble dynamics. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 30(2): 127-146. doi: 10.1017/S0334270000006111
    [6]
    Blake J R, Leppinen D M, Wang Q X. 2015. Cavitation and bubble dynamics: The Kelvin impulse and its applications. Interface Focus, 5(5): 20150017. doi: 10.1098/rsfs.2015.0017
    [7]
    Bowyer P J, MacAfee A W. 2005. The theory of trapped-fetch waves within tropical cyclones—An operational perspective. Weather Forecast, 20: 229-244. doi: 10.1175/WAF849.1
    [8]
    Bulian G, Gercos-Pita J L. 2018. Co-simulation of ship motions and sloshing in tanks. Ocean Engineering, 152: 353-376. doi: 10.1016/j.oceaneng.2018.01.028
    [9]
    Cangialosi J P, Franklin P P. 2016. 2015 hurricane season. National Hurricane Center Forecast Verification Report.
    [10]
    Cole R H. 1965. Underwater explosions. Dover Publications New York.
    [11]
    Dias F, Ghidaglia J-M. 2018. Slamming: Recent progress in the evaluation of impact pressure. Annual Review of Fluid Mechanics, 50: 243-273. doi: 10.1146/annurev-fluid-010816-060121
    [12]
    Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9: 1937-1958. doi: 10.5194/gmd-9-1937-2016
    [13]
    Faltinsen O M, Timokha A N. 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470: 319-357. doi: 10.1017/s0022112002002112
    [14]
    Faltinsen O M, Rognebakke O, Timokha A. 2005. Resonant three-dimensional nonlinear sloshing in a square-base basin, Part 2, effect of higher modes. Journal of Fluid Mechanics, 523: 199-218. doi: 10.1017/s002211200400196x
    [15]
    Faltinsen O M. 2017. Sloshing. Advances in Mechanics, 47: 201701. doi: 10.6052/1000-0992-16-017
    [16]
    Flemming F, Williamson C H K. 2005. Vortex-induced vibrations of a pivoted cylinder. Journal of Fluid Mechanics, 522: 215-252. doi: 10.1017/s0022112004001831
    [17]
    Fong S W, Ahhikari D, Klaserboer E, Khoo B C. 2009. Interactions of multiple spark-generated bubbles with phase differences. Experiments in Fluids, 46: 705-724. doi: 10.1007/s00348-008-0603-4
    [18]
    Fujarra A L C, Rosetti G F, Wilde J, Gonçalves R T. 2012. State-of-art on vortex-induced motion: A comprehensive survey after more than one decade of experimental investigation. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil. July 1–6.
    [19]
    Ganesh H, Makiharju S A, Ceccio S L. 2016. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. Journal of Fluid Mechanics, 802: 37-78. doi: 10.1017/jfm.2016.425
    [20]
    Gañán-Calvo A M. 2017. Revision of bubble bursting: Universal scaling laws of top jet drop size and speed. Physical Review Letters, 119(20): 204502. doi: 10.1103/PhysRevLett.119.204502
    [21]
    Gilmore F R. 1952. The growth or collapse of a spherical bubble in a viscous compressible liquid. Hydrodynamics Laboratory, California Institute of Technology, Report No 26-4.
    [22]
    Govardhan R, Williamson C H K. 2000. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420: 85-130. doi: 10.1017/s0022112000001233
    [23]
    Hsu J-Y, Lien R-C, D’Asaro E A, Sanford T B. 2019. Scaling of drag coefficients under five tropical cyclones. Geophysical Research Letters, 46: 3349-3358. doi: 10.1029/2018GL081574
    [24]
    Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108: 1212-1218. doi: 10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2
    [25]
    Holland G J, Belanger J I, Fritz A. 2010. A revised model for radial profiles of hurricane winds. Monthly Weather Review, 138: 4393-4401. doi: 10.1175/2010MWR3317.1
    [26]
    Kana D D. 1989. Validated spherical pendulum model for rotary liquid slosh. Journal of Spacecraft and Rockets, 26(3): 188-195. doi: 10.2514/3.26052
    [27]
    Keller J B, Miksis M. 1980. Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America, 68: 628-633. doi: 10.21236/ada095754
    [28]
    Khalak A, Williamson C H K. 1999. Motions, forces and mode transitions in vortex-induced vibrations at low mass damping. Journal of Fluids and Structures, 13(7-8): 813-851. doi: 10.1006/jfls.1999.0236
    [29]
    Kim Y, Nam B W, Kim D W, Kim Y S. 2007. Study on coupling effects of ship motion and sloshing. Ocean Engineering, 34: 2176-2187. doi: 10.1016/j.oceaneng.2007.03.008
    [30]
    Kossin J P. 2018. A global slowdown of tropical-cyclone translation speed. Nature, 558: 104-107. doi: 10.1038/s41586-018-0158-3
    [31]
    Lafeber W, Brosset L, Bogaert H. 2012. Elementary Loading Processes (ELP) involved in breaking wave impacts: Findings from the Sloshel project. The Proceedings of the 22nd International Offshore and Polar Engineering Conference.
    [32]
    Mafi S, Amirinia G. 2017. Forecasting hurricane wave height in Gulf of Mexico using soft computing methods. Ocean Engineering, 146: 352-362. doi: 10.1016/j.oceaneng.2017.10.003
    [33]
    Nie B C, Li J C, Zhang H Q. 2015. On the regimes of underwater explosion for a submerged slender structure by pulsating bubble. Marine Structure, 44: 85-100. doi: 10.1016/j.marstruc.2015.07.003
    [34]
    Ogink R H M, Metrikine A V. 2010. A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration. Journal of Sound and Vibration, 329: 5452-5473. doi: 10.1016/j.jsv.2010.07.008
    [35]
    Parlitz U, Englisch V, Scheffczyk C, Lauterborn W. 1990. Bifurcation structure of bubble oscillators. The Journal of the Acoustical Society of America, 88: 1061-1077. doi: 10.1121/1.399855
    [36]
    Qu Y, Metrikine A V. 2020. A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction. Journal of Sound and Vibration, 469: 115161. doi: 10.1016/j.jsv.2019.115161
    [37]
    Rayleigh O M F R S. 1917. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200): 94-98. doi: 10.1017/CBO9780511704017.076
    [38]
    Saeki S, Madarame H, Okamoto K. 2001. Self-induced sloshing excited by a horizontally injected plane jet. Journal of Fluid Mechanics, 448: 81-114. doi: 10.1017/s0022112001004153
    [39]
    Sarpkaya T. 1995. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. Journal of Offshore Mechanics and Arctic Engineering, 117(4): 232-238. doi: 10.1115/1.2827228
    [40]
    Sarpkaya T. 2004. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19: 389-447. doi: 10.1016/j.jfluidstructs.2004.02.005
    [41]
    Sayar B A, Baumgarten J R. 1981. Pendulum analogy for nonlinear fluid oscillations in spherical containers. Journal of Applied Mechanics, 48: 769-772. doi: 10.1115/1.3157731
    [42]
    Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M. 2016. Scaling laws for jets of single cavitation bubbles. Journal of Fluid Mechanics, 802: 263-293. doi: 10.1017/jfm.2016.463
    [43]
    Tapiador F J, Navarro A, Moreno R, Sánchez J L, García-Ortega E. 2020. Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235: 104785. doi: 10.1016/j.atmosres.2019.104785
    [44]
    Wang L Z, Li J C. 2016. Estimation of extreme wind speed in SCS and NWP by a non-stationary model. Theoretical and Applied Mechanics Letters, 6: 131-138. doi: 10.1016/j.taml.2016.04.001
    [45]
    Wang Y W, Huang C G, Du T Z, Wu X C, Fang X, Liang N G, Wei Y P. 2012. Shedding phenomenon of ventilated partial cavitation around an underwater projectile. Chinese Physics Letters, 29: 014601. doi: 10.1088/0256-307X/29/1/014601
    [46]
    Waterhouse D D. 1994. Resonant sloshing near a critical depth. Journal of Fluid Mechanics, 281: 313-318. doi: 10.1017/s0022112094003125
    [47]
    Wuxi Q Y, Li J C, Nie B C. 2018. Effects of tide-surge interaction and wave set-up/set-down on surge: Case studies of tropical cyclones landing China’s Zhe-Min coast. Theoretical & Applied Mechanics Letters, 8: 153-159. doi: 10.1016/j.taml.2018.03.002
    [48]
    Young I R. 2017. A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8: 194. doi: 10.3390/atmos8100194
    [49]
    Zeff B W, Kleber B, Fineberg J, Lathrop D P. 2000. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature, 403: 401-404. doi: 10.1038/35000151
    [50]
    Zijema M. 2010. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57: 267-277. doi: 10.1016/j.coastaleng.2009.10.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (92) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return