| Citation: | He G W, Zhou J P, Zhang W H, Gu Y D, Zhang P F, Chen M, Kang Q, Long M, Tian Q, Zhang L, Ba J, Zhu J H, Wang L Z, Lyu S Q, Li Z B. Microgravity science: The new horizon for knowledge expansion and transformative technologies. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-043 |
| [1] |
陈余军, 邓明乐, 李峰, 等. 2025. 大型复杂航天器在轨动力学关键技术与工程实践. 中国工程科学, 27(6): 242-260 (Chen Y J, Deng M L, Li F, et al. 2025. Key technologies and engineering practices for on-orbit dynamics of large and complex spacecraft. Strategic Study of CAE, 27(6): 242-260). doi: 10.15302/J-SSCAE-2025.09.032
Chen Y J, Deng M L, Li F, et al. 2025. Key technologies and engineering practices for on-orbit dynamics of large and complex spacecraft. Strategic Study of CAE, 27(6): 242-260 doi: 10.15302/J-SSCAE-2025.09.032
|
| [2] |
杜王芳, 刘鹏, 赵建福, 等. 2022. 上中国空间站“烧开水”, 揭示沸腾现象中的重力作用机理. 力学与实践, 44(6): 1462-1469 (Du W F, Liu P, Zhao J F, et al. 2022. Water boiling aboard the China space station to reveal the influence of gravity in boiling phenomenon. Mechanics in Engineering, 44(6): 1462-1469). doi: 10.6052/1000-0879-22-308
Du W F, Liu P, Zhao J F, et al. 2022. Water boiling aboard the China space station to reveal the influence of gravity in boiling phenomenon. Mechanics in Engineering, 44(6): 1462-1469 doi: 10.6052/1000-0879-22-308
|
| [3] |
杜王芳, 张良, 何发龙, 等. 2025. 低重力池沸腾双气泡相互作用数值模拟. 工程热物理学报, 46(7): 2269-2273 (Du W F, Zhang L, He F L, et al. 2025. Numerical simulation on double-bubble interaction during pool boiling in low gravity. Journal of Engineering Thermophysics, 46(7): 2269-2273).
Du W F, Zhang L, He F L, et al. 2025. Numerical simulation on double-bubble interaction during pool boiling in low gravity. Journal of Engineering Thermophysics, 46(7): 2269-2273
|
| [4] |
杜王芳, 赵建福. 2020. 核态池沸腾传热现象中的重力标度规律. 科学通报, 65(17): 1629-1637 (Du W F, Zhao J F. 2020. Gravity scaling law of heat transfer in nucleate pool boiling. Chin Sci Bull, 65(17): 1629-1637). doi: 10.1360/TB-2019-0337
Du W F, Zhao J F. 2020. Gravity scaling law of heat transfer in nucleate pool boiling. Chin Sci Bull, 65(17): 1629-1637 doi: 10.1360/TB-2019-0337
|
| [5] |
顾逸东. 2022. 关于空间科学发展的一些思考. 中国科学院院刊, 37(8): 1031-1049 (Gu Y D. 2022. Thoughts on space science development. Bulletin of Chinese Academy of Sciences, 37(8): 1031-1049). doi: 10.6052/1000-0992-24-044
Gu Y D. 2022. Thoughts on space science development. Bulletin of Chinese Academy of Sciences, 37(8): 1031-1049 doi: 10.6052/1000-0992-24-044
|
| [6] |
胡海岩, 田强, 文浩, 等. 2025. 极大空间结构在轨组装的动力学与控制. 力学进展, 55(1): 1-29 (Hu H Y, Tian Q, Wen H, et al. 2025. Dynamics and control of on-orbit assembly of ultra-large space structures. Advances in Mechanics, 55(1): 1-29). doi: 10.6052/1000-0992-24-044
Hu H Y, Tian Q, Wen H, et al. 2025. Dynamics and control of on-orbit assembly of ultra-large space structures. Advances in Mechanics, 55(1): 1-29 doi: 10.6052/1000-0992-24-044
|
| [7] |
胡海岩, 田强, 张伟, 等. 2013. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 43(4): 390-414 (Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 43(4): 390-414). doi: 10.6052/1000-0992-13-045
Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 43(4): 390-414 doi: 10.6052/1000-0992-13-045
|
| [8] |
胡文瑞, 等. 2010. 微重力科学概论. 北京: 科学出版社
|
| [9] |
康琦, 胡文瑞. 2016. 微重力科学实验卫星−“实践十号”. 中国科学院院刊, 31(5): 574-580 (Kang Q, Hu W R. 2016. Microgravity experimental satellite — SJ-10. Bulletin of Chinese Academy of Sciences, 31(5): 574-580). doi: 10.16418/j.issn.1000-3045.2016.05.011
Kang Q, Hu W R. 2016. Microgravity experimental satellite — SJ-10. Bulletin of Chinese Academy of Sciences, 31(5): 574-580 doi: 10.16418/j.issn.1000-3045.2016.05.011
|
| [10] |
康琦, 赵建福. 2024. 中国空间科学2035发展战略. 北京: 科学出版社
|
| [11] |
康琦, 等. 2019. 中国学科发展战略−空间科学. 北京: 科学出版社
|
| [12] |
李盛阳, 王震, 谭洪, 等. 2023. 载人航天工程数据管理现状研究与启示. 载人航天, 29(4): 527-535 (Li S Y, Wang Z, Tan H, et al. 2023. Current status and enlightenment of engineering data management in manned spaceflight. Manned Spaceflight, 29(4): 527-535). doi: 10.16329/j.cnki.zrht.2023.04.013
Li S Y, Wang Z, Tan H, et al. 2023. Current status and enlightenment of engineering data management in manned spaceflight. Manned Spaceflight, 29(4): 527-535 doi: 10.16329/j.cnki.zrht.2023.04.013
|
| [13] |
刘有晟, 李星贤, 温禹哲, 等. 2025. 中国空间站气体射流火焰科学实验进展. 清华大学学报(自然科学版), 65(9): 1609-1620 (Li Y S, Li X X, Wen Y Z, et al. 2025. Gas jet flame science experiments aboard the China Space station. J Tsinghua Univ (Sci & Technol), 65(9): 1609-1620). doi: 10.16511/j.cnki.qhdxxb.2024.27.039
Li Y S, Li X X, Wen Y Z, et al. 2025. Gas jet flame science experiments aboard the China Space station. J Tsinghua Univ (Sci & Technol), 65(9): 1609-1620 doi: 10.16511/j.cnki.qhdxxb.2024.27.039
|
| [14] |
田强, 刘铖, 李培, 等. 2017. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 15(5): 385-405 (Tian Q, Liu C, Li P, et al. 2017. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 15(5): 385-405). doi: 10.6052/1672-6553-2017-039
Tian Q, Liu C, Li P, et al. 2017. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 15(5): 385-405 doi: 10.6052/1672-6553-2017-039
|
| [15] |
王明明, 罗建军, 袁建平, 等. 2021. 空间在轨装配技术综述. 航空学报, 42(1): 523913 (Wang M M, Luo J J, Yuan J P, et al. 2021. In-orbit assembly technology: Review. Acta Aeronautica et Astronautica Sinica, 42(1): 523913). doi: 10.7527/S1000-6893.2020.23913
Wang M M, Luo J J, Yuan J P, et al. 2021. In-orbit assembly technology: Review. Acta Aeronautica et Astronautica Sinica, 42(1): 523913 doi: 10.7527/S1000-6893.2020.23913
|
| [16] |
王双峰, 吴传嘉. 2023. 载人空间探索环境中固体材料可燃特性研究进展与态势. 空间科学学报, 43(3): 531-548 (Wang S f, Wu C J. 2023. Recent progress and development trend of solid combustion research for manned space exploration. Chinese Journal of Space Science, 43(3): 531-548). doi: 10.11728/cjss2023.03.2022-0049
Wang S f, Wu C J. 2023. Recent progress and development trend of solid combustion research for manned space exploration. Chinese Journal of Space Science, 43(3): 531-548 doi: 10.11728/cjss2023.03.2022-0049
|
| [17] |
新华网. 2025. 完成首年太空考验我国首批“月壤砖”状态良好. Available at: https://www.xinhuanet.com/sci-tech/20251120/2e80b8a326bf48299b0463b5ee71fb9b/c.html
|
| [18] |
薛源, 徐国鑫, 胡松林, 等. 2020. 国际空间站微重力燃烧项目规划及进展. 载人航天, 26(2): 252-260 (Xue Y, Xu G X, Hu S L, et al. 2020. Planning and progress of microgravity combustion science on the international space station. Manned Spaceflight, 26(2): 252-260). doi: 10.3969/j.issn.1674-5825.2020.02.017
Xue Y, Xu G X, Hu S L, et al. 2020. Planning and progress of microgravity combustion science on the international space station. Manned Spaceflight, 26(2): 252-260 doi: 10.3969/j.issn.1674-5825.2020.02.017
|
| [19] |
杨健, 庞松, 朱基裔, 等. 2025. 微重力条件下超高纯铝凝固与杂质偏析机理研究. 航天制造技术, 251: 37-41 (Yang J, Pang S, Zhu J Y, et al. 2025. Study on the solidification and impurity segregation mechanism of ultra-high purity aluminum under microgravity conditions. Aerospace Manufacturing Technology, 251: 37-41). doi: 10.3969/j.issn.1674-5108.2025.03.005
Yang J, Pang S, Zhu J Y, et al. 2025. Study on the solidification and impurity segregation mechanism of ultra-high purity aluminum under microgravity conditions. Aerospace Manufacturing Technology, 251: 37-41 doi: 10.3969/j.issn.1674-5108.2025.03.005
|
| [20] |
张日晗, 王统才, 李亮, 等. 2024. 面向月面原位制造/建造的月壤成型利用技术综述. 宇航学报, 45(6): 815-830 (Zhang R H, Wang T C, Li L, et al. 2024. In-situ manufacturing and utilization of lunar regolith for fabrication/construction on the lunar surface: A review. Journal of Astronautics, 45(6): 815-830). doi: 10.3873/j.issn.1000-1328.2024.06.002
Zhang R H, Wang T C, Li L, et al. 2024. In-situ manufacturing and utilization of lunar regolith for fabrication/construction on the lunar surface: A review. Journal of Astronautics, 45(6): 815-830 doi: 10.3873/j.issn.1000-1328.2024.06.002
|
| [21] |
张夏. 2014. 微重力燃烧研究进展. 力学进展, 34(4): 507-528 (Zhang X. 2014. Research advances on microgravity combustion. Advances in Mechanics, 34(4): 507-528). doi: 10.3321/j.issn:1000-0992.2004.04.008
Zhang X. 2014. Research advances on microgravity combustion. Advances in Mechanics, 34(4): 507-528 doi: 10.3321/j.issn:1000-0992.2004.04.008
|
| [22] |
中国科学院, 国家航天局, 中国载人航天工程办公室. 2023. 国家空间科学中长期发展规划(2024—2050年). 中国政府网
|
| [23] |
中国载人航天官方网站. 2023. 空间站应用与发展工程空间科学与应用项目征集公告. Available at: https://www.cmse.gov.cn/gfgg/202306/t20230616_53912.html
|
| [24] |
中国载人航天工程办公室. 2024. 中国空间站科学研究与应用进展报告.
|
| [25] |
Adeoti L. 2022. Radiation effects on composite materials used in space systems: A review. NRIAG Journal of Astronomy and Geophysics, 11(1): 313-324. doi: 10.1080/20909977.2022.2079902
|
| [26] |
Afshinnekoo E, et al. 2021. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell, 184: 6002. doi: 10.1016/j.cell.2020.10.050
|
| [27] |
Airbus Defence and Space. 2021. Large-scale 3D printing goes to space on airbus’ eurostar neo satellites. Available at: https://www.airbus.com/en/newsroom/stories/2021-02-large-scale-3d-printing-goes-to-space-on-airbus-eurostar-neo-satellites
|
| [28] |
Aubert A E, et al. 2016. Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. NPJ Microgravity, 2: 16031. doi: 10.1038/npjmgrav.2016.31
|
| [29] |
Bagherian A, et al. 2020. A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images. Continuum Mechanics and Thermodynamics, 32: 17. doi: 10.1007/s00161-019-00798-8
|
| [30] |
Bauer J. 2020. Microgravity and cell adherence. International Journal of Molecular Sciences, 21. doi: https://doi.org/10.3390/ijms21062214
|
| [31] |
Blaber E, Marcal H, Burns B P. 2010. Bioastronautics: The influence of microgravity on astronaut health. Astrobiology, 10: 463-473. doi: 10.1089/ast.2009.0415
|
| [32] |
Buravkova L, Romanov Y, Rykova M, Grigorieva O, Merzlikina N. 2005. Cell-to-cell interactions in changed gravity: Ground-based and flight experiments. Acta Astronautica, 57: 67-74. doi: 10.1016/j.actaastro.2005.03.012
|
| [33] |
Chaikin P, Clark N, Nagel S. 2021. Grand challenges in soft matter science: Prospects for microgravity research. Proceedings of a NASA Glenn Research Center virtual meeting American Physical Society (APS).
|
| [34] |
Chen J, et al. 2023. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell, 186: 4788-4802. e15.
|
| [35] |
Chen S, Hu L, Chen S, et al. 2024a. Study on the shape and motion of bubbles in the tank model with a central column aboard the Chinese space station. Physics of Fluids, 36(1): 012124. doi: 10.1063/5.0180681
|
| [36] |
Chen S, Duan L, Li W, et al. 2024b. Profiles of free surfaces in revolved containers under microgravity. Microgravity Science and Technology, 36(11). doi: 10.1007/s12217-023-10093-6
|
| [37] |
Chen S, Chen S, Wu D, et al. 2024c. Study on liquid climbing behavior during filling process in tank models aboard the Chinese space station. Microgravity Science and Technology, 36: 36. doi: 10.1007/s12217-024-10123-x
|
| [38] |
Chen Y, Duan L, Kang Q. 2022. Control of quasi-equilibrium state of annular flow through reinforcement learning. Physics of Fluids, 34(9): 94105. doi: 10.1063/5.0102668
|
| [39] |
Chen Y, Wu D, Duan L, et al. 2021. Machine learning method for the supplement, correction, and prediction of the nonlinear dynamics in pattern formation. Physics of Fluids, 33(2): 17. doi: 10.1063/5.0036762
|
| [40] |
Chen Z, Chen Y, Wu D, et al. 2024. Static analysis and contact angle hysteresis study of bubbles in Chinese space station tank models under different gravity effects. Physics of Fluids, 36(7): 072101. doi: 10.1063/5.0211985
|
| [41] |
Cheng K, Hou M, Sun W, et al. 2024a. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media. Communications Physics, 7: 425. doi: 10.1038/s42005-024-01927-9
|
| [42] |
Cheng K, Hou M, Li T, et al. 2024b. Tracking the motion of an intruder particle in a three-dimensional granular bed onboard the Chinese space station. Microgravity Science and Technology, 36: 15. doi: 10.1007/s12217-024-10102-2
|
| [43] |
Choi J U A, et al. 2021. The mechanosensory role of osteocytes and implications for bone health and disease states. Frontiers in Cell and Developmental Biology, 9: 770143. doi: 10.3389/fcell.2021.770143
|
| [44] |
Cialdai F, et al. 2023. How do gravity alterations affect animal and human systems at a cellular/tissue level. NPJ Microgravity, 9: 84. doi: 10.1038/s41526-023-00330-y
|
| [45] |
Coffin L F. 1972. The effect of high vacuum on the low cycle fatigue law. Metallurgical Transactions, 3(7): 1777-1788. doi: 10.1007/BF02642561
|
| [46] |
Cooper R, Hari P, et al. 2008. Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings. Thin Solid Films, 12: 4036-4039. doi: 10.1016/j.tsf.2007.07.150
|
| [47] |
da Silveira W A, et al. 2020. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell, 183: 1185-1201. e20. doi: 10.1016/j.cell.2020.11.002
|
| [48] |
Dance A. 2021. The secret forces that squeeze and pull life into shape. Nature, 589: 186-188. doi: 10.1038/d41586-021-00018-x
|
| [49] |
Davis T, et al. 2024. How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms. NPJ Microgravity, 10: 16. doi: 10.1038/s41526-024-00357-9
|
| [50] |
de Groh K K, Whitt A, Banks B A. 2025. Effect of space exposure on the tensile properties of MISSE teflon flight samples. National Aeronautics and Space Administration.
|
| [51] |
Du H, et al. 2023. Tuning immunity through tissue mechanotransduction. Nature Reviews Immunology, 23: 174-188. doi: 10.1038/s41577-022-00761-w
|
| [52] |
Du Y, et al. 2025. Lunar and martian gravity alter immune cell interactions with endothelia in parabolic flight. NPJ Microgravity, 11: 4. doi: 10.1038/s41526-024-00456-7
|
| [53] |
Duan E, Long M. 2019. Life science in space: Experiments on board the SJ-10 recoverable satellite. Springer Nature.
|
| [54] |
European Cooperation for Space Standardization. 2021. Processing and quality assurance requirements for metallic powder bed fusion technologies for space applications. Available at: https://ecss.nl/standard/ecss-q-st-70-80c-processing-and-quality-assurance-requirements-for-metallic-powder-bed-fusion-technologies-for-space-applications-30-july-2021/.
|
| [55] |
European Space Agency. 2024. SA launches first metal 3D printer to ISS. Available at: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/ESA_launches_first_metal_3D_printer_to_ISS.
|
| [56] |
Favata F, Hasinger G, Tacconi L J, et al. 2021. Introducing the voyage 2050 white papers: Contributions from the science community to ESA’s long-term plan for the scientific programme. Experimental Astronomy, 51(3): 551-558. doi: 10.1007/s10686-021-09746-4
|
| [57] |
Ginés-Palomares J C, Fateri M, Kalhöfer E, et al. 2023. Laser melting manufacturing of large elements of lunar regolith simulant for paving on the moon. Scientific Reports, 13(1): 15593. doi: 10.1038/s41598-023-42008-1
|
| [58] |
GITAI. 2021. Space robotics start-up GITAI completes successful technology demonstration inside the ISS Available at: https://gitai.tech/2021/10/28/iss-tech-demo-ja/.
|
| [59] |
Goto A, Umeda K, Yukumatsu K, Kimoto Y. 2021. Property changes in materials due to atomic oxygen in the low earth orbit. CEAS Space Journal, 13(3): 415-432. doi: 10.1007/s12567-021-00376-2
|
| [60] |
Goto A, Yukumatsu K, Tsuchiya Y, et al. 2023. Changes in optical properties of polymeric materials due to atomic oxygen in very low earth orbit. Acta Astronautica, 212: 70-83. doi: 10.1016/j.actaastro.2023.07.036
|
| [61] |
Gu Y D. 2022. The China space station: A new opportunity for space science. National Science Review, 9(1). doi: 10.1093/nsr/nwab219
|
| [62] |
Hino N, Camelo C, Heisenberg C P. 2024. Development: Turing mechanics. Current Biology, 34: R1230-R1232. doi: 10.1016/j.cub.2024.10.065
|
| [63] |
Hu J S, Wang B L. 2021. Enhanced fatigue performance of auxetic honeycomb/substrate structures under thermal cycling. International Journal of Mechanical Sciences, 199: 106432. doi: 10.1016/j.ijmecsci.2021.106432
|
| [64] |
Hu W, Kang Q. 2018. Science research of microgravity satellite SJ-10. Chinese Journal of Space Science, 38(5): 615-622. doi: 10.11728/cjss2018.05.615
Hu W, Kang Q. 2018. Science research of microgravity satellite SJ-10. Chinese Journal of Space Science, 38(5): 615-622. doi: 10.11728/cjss2018.05.615
|
| [65] |
Hu W, Kang Q. 2019. Physical science under microgravity: Experiments on board the SJ-10 recoverable satellite. Springer Nature.
|
| [66] |
Ilangovan H, et al. 2024. Harmonizing heterogeneous transcriptomics datasets for machine learning-based analysis to identify spaceflown murine liver-specific changes. NPJ Microgravity, 10: 61. doi: 10.1038/s41526-024-00379-3
|
| [67] |
ISS National Lab. 2018. Manufacturing ZBLAN in space. Available at: https://issnationallab.org/upward/exotic-glass-fibers-from-space-the-race-to-manufacture-zblan/.
|
| [68] |
Jiang H, Hawkes E W, Fuller C, et al. 2017. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2(7): eaan4545. doi: 10.1126/scirobotics.aan4545
|
| [69] |
Jiang H, Li S, Zhang L, et al. 2019. Effect of microgravity on the solidification of aluminum–bismuth–tin immiscible alloys. NPJ Microgravity, 5(1): 26. doi: 10.1038/s41526-019-0086-z
|
| [70] |
Jiang W, Li Z, Zhao J, et al. 2022. The study of an integrated sensor for partial nucleate pool boiling at low heat flux. IEEE Sensors Journal, 22(24): 23692-23698. doi: 10.1109/JSEN.2022.3215680
|
| [71] |
Johnson L, Carr J A, Boyd D. 2017. The lightweight integrated solar array and antenna (LISA-T) big power for small spacecraft. In: International Astronautical Congress (IAC). IAC-17-C3.4. 1.
|
| [72] |
Juhl O J T, et al. 2021. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity, 7: 28.
|
| [73] |
Kang Q, Wang J, Duan L, et al. 2019a. The volume ratio effect on flow patterns and transition processes of thermocapillary convection. Journal of Fluid Mechanics, 868: 560-583. doi: 10.1017/jfm.2019.108
|
| [74] |
Kang Q, Wang J, Duan L, et al. 2022. Transition to chaos of thermocapillary convection. Physical Review E, 106(3): 35103. doi: 10.1103/PhysRevE.106.035103
|
| [75] |
Kang Q, Wu D, Duan L, et al. 2019b. Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Physics of Fluids, 31: 044105. doi: 10.1063/1.5090466
|
| [76] |
Kang Q, Wu D, Duan L, et al. 2019c. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge. Journal of Fluid Mechanics, 881: 951-982. doi: 10.1017/jfm.2019.757
|
| [77] |
Li P, Liu C, Tian Q, et al. 2016. Dynamics of a deployable mesh reflector of satellite antenna: Form-finding and modal analysis. Journal of Computational and Nonlinear Dynamics, 11(4): 041017. doi: 10.1115/1.4033440
|
| [78] |
Li T, Cheng K, Hou M, et al. 2024a. The intruder motion in a cubic granular container. Physics of Fluids, 36: 073304. doi: 10.1063/5.0210406
|
| [79] |
Li W, Wu D, Li Y, et al. 2024b. Static profiles of capillary surfaces in the annular space between two coaxial cones under microgravity. Acta Mechanica Sinica, 40: 123218. doi: 10.1007/s10409-024-23218-x
|
| [80] |
Li Z, Zeng Z, Xing Y, et al. 2021. Microscopic structure and dynamics study of granular segregation mechanism by cyclic shear. Science Advances, 7: eabe8737. doi: 10.1126/sciadv.abe8737
|
| [81] |
Lockett T R, Martinez A, Boyd D, et al. 2015. Advancements of the lightweight integrated solar array and transceiver (LISA-T) small spacecraft system. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). IEEE, 1-6.
|
| [82] |
Luo Y Y, Li Y Z, Sharma P, et al. 2021. Learning human–environment interactions using conformal tactile textiles. Nature Electronics, 4(3). doi: 10.1038/s41928-021-00572-2
|
| [83] |
Mahmoud W M, Elfiky D, Robaa S M, et al. 2021. Effect of atomic oxygen on LEO CubeSat. International Journal of Aeronautical and Space Sciences, 22(3): 726-733. doi: 10.1007/s42405-020-00336-w
|
| [84] |
Majumder N, Ghosh S. 2023. 3D biofabrication and space: A ‘Far-Fetched Dream’ or a ‘Forthcoming Reality’. Biotechnology Advances, 69: 108273. doi: https://doi.org/10.1016/j.biotechadv.2023.108273
|
| [85] |
Man J, et al. 2022. The effects of microgravity on bone structure and function. NPJ Microgravity, 8: 9. doi: 10.1038/s41526-022-00194-8
|
| [86] |
Marvasi M, Monici M, Pantalone D, Cavalieri D. 2022. Exploitation of skin microbiota in wound healing: Perspectives during space missions. Frontiers in Bioengineering and Biotechnology, 10: 873384. doi: 10.3389/fbioe.2022.873384
|
| [87] |
May M, Rupakula D, Matura P. 2020. Non-Polymer-Matrix composite materials for space applications. Composites Part C: Open Access, 3: 100057. doi: 10.1016/j.jcomc.2020.100057
|
| [88] |
McCamish S B, Romano M, Nolet S, et al. 2009. Flight testing of multiple-spacecraft control on SPHERES during close-proximity operations. Journal of Spacecraft and Rockets, 46(6): 1202-1213. doi: 10.2514/1.43563
|
| [89] |
McKeown B, Dempster A G, Saydam S, et al. 2025. Placing lunar resources research in the context of mining feasibility studies. Acta Astronautica, 233: 315-329. doi: 10.1016/j.actaastro.2025.04.041
|
| [90] |
Morrissey L S, Rahnamoun A, Nakhla S. 2020. The effect of atomic oxygen flux and impact energy on the damage of spacecraft metals. Advances in Space Research, 66(6): 1495-1506. doi: 10.1016/j.asr.2020.05.021
|
| [91] |
Naden N, Prater T J. 2020. A review of welding in space and related technologies. Available at: https://ntrs.nasa.gov/api/citations/20200002259/downloads/20200002259.pdf.
|
| [92] |
NASA. 1989. Effects of thermal cycling on composite materials for space structures.
|
| [93] |
NASA. 2017. Full circle: NASA to demonstrate refabricator to recycle, reuse, repeat. Available at: https://ntrs.nasa.gov/citations/20190005004.
|
| [94] |
NASA. 2020. Candle flame-1G vs. microgravityp. Available at: https://www.nasa.gov/image-article/candle-flame-1g-vs-microgravity/ (Accessed: 04 January 2026).
|
| [95] |
NASA. 2020. 20 breakthroughs from 20 years of science aboard the international space station. Available at: https://www.nasa.gov/missions/station/20-breakthroughs-from-20-years-of-science-aboard-the-international-space-station/.
|
| [96] |
NASA. 2025. Small spacecraft technology state of the art report: Thermal systems chapter. Available at: https://www.nasa.gov/wp-content/uploads/2025/02/7-soa-thermal-2024.pdf?emrc=67af7d4756122.
|
| [97] |
National Academies of Sciences, Engineering, and Medicine. 2023. Thriving in space: Ensuring the future of biological and physical sciences research: A decadal survey for 2023-2032.
|
| [98] |
Pai A, Divakaran R, Anand S, et al. 2022. Advances in the whipple shield design and development: A brief review. Journal of Dynamic Behavior of Materials, 8(1): 20-38. doi: 10.1007/s40870-021-00314-7
|
| [99] |
Qin J, Minetti C, Tao Y Q, Iorio C S, Liu Q S, Glushchuk A. 2024. Evaporation of high-volatile binary sessile drop: Influence of concentration. International Journal of Heat and Fluid Flow, 106: 109313. doi: 10.1016/j.ijheatfluidflow.2024.109313
|
| [100] |
Radstake W E, et al. 2023. The effects of combined exposure to simulated microgravity, ionizing radiation, and cortisol on the in vitro wound healing process. Cells, 12(2): 246. doi: 10.3390/cells12020246
|
| [101] |
Ren H, Qiu Y, Zhou Q, et al. 2025. Erosion behaviors of silicon carbide at micro-nano scales under atomic oxygen exposure. Journal of Materials Chemistry A, 13: 22946-22961. doi: 10.1039/d5ta01613d
|
| [102] |
Roberts D R, et al. 2017. Effects of spaceflight on astronaut brain structure as indicated on MRI. New England Journal of Medicine, 377: 8. doi: 10.1056/nejmoa1705129
|
| [103] |
Saenz-Otero A, Katz J, Miller D W. 2009. SPHERES demonstrations of satellite formations aboard the ISS. In: 32nd Annual AAS Guidance and Control Conference, 2009: 2009-011.
|
| [104] |
Sharma A K, Sridhara N. 2012. Degradation of thermal control materials under a simulated radiative space environment. Advances in Space Research, 50(10): 1411-1424. doi: 10.1016/j.asr.2012.07.010
|
| [105] |
Sihver L, Kodaira S, Ambrožová I, et al. 2016. Radiation environment onboard spacecraft at LEO and in deep space. In: 2016 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 1-9.
|
| [106] |
Sui X, Gao L, Yin P. 2014. Shielding kevlar fibers from atomic oxygen erosion via layer-by-layer assembly of nanocomposites. Polymer Degradation and Stability, 110: 23-26. doi: 10.1016/j.polymdegradstab.2014.08.010
|
| [107] |
Tao Y, Liu Q. 2023. Conditions of enhanced evaporation for nanofluids droplet and inhibition of coffee-ring effect under buoyancy and marangoni convection. Surfaces and Interfaces, 42: 103320. doi: 10.1016/j.surfin.2023.103320
|
| [108] |
Tao Y, Liu Q, Qin J, et al. 2023. Thermocapillary convection of evaporating thin nanofluid layer in a rectangular cavity. Microgravity Science and Technology, 35(5): 51. doi: 10.1007/s12217-023-10076-7
|
| [109] |
Tauber S, et al. 2017. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One, 12: e0175599. doi: 10.1371/journal.pone.0175599
|
| [110] |
Thiel C S, et al. 2019. Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. International Journal of Molecular Sciences, 20(10): 2402. doi: 10.3390/ijms20102402
|
| [111] |
Thompson A W, Harris Z D, Burns J T. 2024. On the low temperature fatigue crack growth behavior of AA7075-T651 in ultra-high vacuum environments. International Journal of Fatigue, 178: 107988. doi: 10.1016/j.ijfatigue.2023.107988
|
| [112] |
Tserpes K, Sioutis I. 2025. Advances in composite materials for space applications: A comprehensive literature review. Aerospace, 12(3): 215. doi: 10.3390/aerospace12030215
|
| [113] |
van den Nieuwenhof D W A, et al. 2024. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: A narrative review. NPJ Microgravity, 10: 102. doi: 10.1038/s41526-024-00442-z
|
| [114] |
Volpe G, Bechinger C, Cichos F, et al. 2022. Active matter in space. NPJ Microgravity, 8(1): 54. doi: 10.1038/s41526-022-00230-7
|
| [115] |
Vorselen D, et al. 2014. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB Journal, 28: 536-547. doi: 10.1096/fj.13-236356
|
| [116] |
Wang C, Zhu J H, Wu M Q, et al. 2021. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components. Chinese Journal of Aeronautics, 34(5): 386-398. doi: 10.1016/j.cja.2020.08.015
|
| [117] |
Wang C, Zhang G, Wang Y, et al. 2025a. A review of lunar environment and in-situ resource utilization for achieving long-term lunar habitation. Galaxies, 13(5): 103. doi: 10.3390/galaxies13050103
|
| [118] |
Wang N, Chien S, Schwartz M A. 2025b. Mechanomedicine: Present state and future promise. Proceedings of the National Academy of Sciences of the United States of America, 122: e2509566122. doi: 10.1073/pnas.2509566122
|
| [119] |
Wang X, Li Y, Qian Y, Qi H, Li J, Sun J. 2018. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Advanced Materials, 30(36): 1803854. doi: 10.1002/adma.201803854
|
| [120] |
Wen Y, Li L, Li X, et al. 2024a. Extinction of microgravity partially premixed flame aboard the Chinese space station. Proceedings of Combustion Institute, 40: 105574. doi: 10.1016/j.proci.2024.105574
|
| [121] |
Wen Y, Li L, Li X, et al. 2024b. Extinction of microgravity partially premixed flame aboard the Chinese space station. In 40th International Symposium on Combustion, Milan, Italy, July 21–26.
|
| [122] |
White O, et al. 2016. Towards human exploration of space: The THESEUS review series on neurophysiology research priorities. NPJ Microgravity, 2: 16023. doi: 10.1038/npjmgrav.2016.23
|
| [123] |
Wu D, Tang W, Wang J, et al. 2025. On chinese space station: Pioneering space experiments unraveling the hydrodynamic instability of annular thermocapillary convection. Scientific Reports, 15: 40886. doi: 10.1038/s41598-025-24807-w
|
| [124] |
Wu X T, et al. 2022. Cells respond to space microgravity through cytoskeleton reorganization. FASEB Journal, 36: e22114. doi: 10.1096/fj.202101140R
|
| [125] |
Wubshet N H, et al. 2024. Cellular mechanotransduction of human osteoblasts in microgravity. NPJ Microgravity, 10: 35. doi: 10.1038/s41526-024-00386-4
|
| [126] |
Xiao X. 2019. Fundamental mechanisms for irradiation-hardening and embrittlement: A review. Metals, 9(10): 1132. doi: 10.3390/met9101132
|
| [127] |
Xu J, Yan G, Lu M. 2023. Evaluation of the minority-carrier lifetime of IMM3J solar cells under proton irradiation based on electroluminescence. Crystals, 13(2): 297. doi: 10.3390/cryst13020297
|
| [128] |
Xu Y, Jiang Y, Xie J, et al. 2024. Effect of temperature, vacuum condition and surface roughness on oxygen boost diffusion of Ti–6Al–4V alloy. Coatings, 14(3): 314. doi: 10.3390/coatings14030314
|
| [129] |
Yatagai F, Honma M, Dohmae N, Ishioka N. 2019. Biological effects of space environmental factors: A possible interaction between space radiation and microgravity. Life Sciences in Space Research, 20: 113-123. doi: 10.1016/j.lssr.2018.10.004
|
| [130] |
Zhan X, et al. 2021. Rapid estimation of entire brain strain using deep learning models. IEEE Transactions on Biomedical Engineering, 68: 3424-3434. doi: 10.1109/TBME.2021.3073380
|
| [131] |
Zhang J, Dong W, Wang Z, et al. 2021. Development of a new microgravity experiment facility with electromagnetic launch. Microgravity Science and Technology, 33(6): 1-18. doi: 10.1007/s12217-021-09915-2
|
| [132] |
Zhao H, Zhu J, Yuan S, et al. 2023. Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system. Frontiers of Mechanical Engineering, 18(2): 29. doi: 10.1007/s11465-022-0745-8
|
| [133] |
Zhao J, Tian Q, Hu H Y. 2013. Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mechanica Sinica, 29(1): 132-142. doi: 10.1007/s10409-013-0002-9
|
| [134] |
Zheng Z Y, Ni R, Wang Y R, et al. 2021. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. Science Advances, 7(3): 11. doi: 10.1126/sciadv.abd1958
|
| [135] |
Zhong S, Zheng L, Wu Y, et al. 2024. Rotating culture regulates the formation of HepaRG-derived liver organoids via YAP translocation. BMC Biology, 22: 262. doi: 10.1186/s12915-024-02062-1
|
| [136] |
Zhu F, Lu Z, Wang S, et al. 2019. Microgravity diffusion flame spread over a thick solid in step-changed low-velocity opposed flows. Combustion and Flame, 205: 55-67. doi: 10.1016/j.combustflame.2019.03.040
|