| Citation: | Xie Y Z, Liuzhao X R, Xu F, Wei Z. Advances in matrix engineering and matrix therapy driven by extracellular matrix mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-029 |
| [1] |
程波, 卢梦楠, 贾渊博, et al. 2025. 细胞的力学智能. 力学进展, 55(2): 340-377 (Cheng B, Lu M N, Jia Y B, et al. 2025. Cellular mechanical intelligence. Advances in Mechanics, 55(2): 340-377). doi: 10.6052/1000-0992-24-028
Cheng B, Lu M N, Jia Y B, et al. 2025. Cellular mechanical intelligence. Advances in Mechanics, 55(2): 340-377. doi: 10.6052/1000-0992-24-028
|
| [2] |
李林达, 丁奇寒, 陈深宝, et al. 2021. CD44-配体相互作用的生物力学与功能调控. 力学学报, 53(2): 539-553 (Li Linda, Ding Qihan, Chen Shenbao, et al. 2021. Biomechanics and Functional Regulations of CD44–Ligand Interactions. Chinese Journal of Theoretical and Applied Mechanics, 53(2): 539-553).
Li Linda, Ding Qihan, Chen Shenbao, et al. 2021. Biomechanics and Functional Regulations of CD44–Ligand Interactions. Chinese Journal of Theoretical and Applied Mechanics, 53(2): 539-553.
|
| [3] |
吕东媛, 周吕文, 龙勉, et al. 2017. 干细胞的生物力学研究. 力学进展, 47(1): 534-585 ((Dongyuan Lü, Lüwen ZHOU, Mian LONG. 2017. Biomechanics of stem cells. Advances in Mechanics, 47(1): 534-585).
(Dongyuan Lü, Lüwen ZHOU, Mian LONG. 2017. Biomechanics of stem cells. Advances in Mechanics, 47(1): 534-585
|
| [4] |
Akkiz H, Gieseler R KCanbay A. 2024. Liver Fibrosis: From Basic Science towards Clinical Progress, Focusing on the Central Role of Hepatic Stellate Cells. International Journal of Molecular Sciences, 25(14): 7873. doi: 10.3390/ijms25147873
|
| [5] |
Al-u’datt D a, Allen B GNattel S. 2019. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovascular Research, 115(13): 1820-1837. doi: 10.1093/cvr/cvz176
|
| [6] |
Aranapakam V, Grosu G T, Davis J M, et al. 2003. Synthesis and structure-activity relationship of alpha-sulfonylhydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. Journal of Medicinal Chemistry, 46(12): 2361-2375. doi: 10.1021/jm0205548
|
| [7] |
Aumailley M. 2013. The laminin family. Cell Adh Migr, 7(1): 48-55. doi: 10.4161/cam.22826
|
| [8] |
Balestrini J L, Chaudhry S, Sarrazy V, et al. 2012. The mechanical memory of lung myofibroblasts. Integrative Biology, 4(4): 410-21. doi: 10.1039/c2ib00149g
|
| [9] |
Bates M E, Troop L, Brown M E, et al. 2023. Temporal application of lysyl oxidase during hierarchical collagen fiber formation differentially effects tissue mechanics. Acta Biomaterialia, 160: 98-111. doi: 10.1016/j.actbio.2023.02.024
|
| [10] |
Bei Y-r, Zhang S-c, Song Y, et al. 2022. EPSTI1 promotes monocyte adhesion to endothelial cells in vitro via upregulating VCAM-1 and ICAM-1 expression. Acta Pharmacologica Sinica, 44(1): 71-80. doi: 10.1038/s41401-022-00923-5
|
| [11] |
Benn M C, Weber W, Klotzsch E, et al. 2019. Tissue transglutaminase in fibrosis — more than an extracellular matrix cross-linker. Current Opinion in Biomedical Engineering, 10: 156-164. doi: 10.1016/j.cobme.2019.06.003
|
| [12] |
Bhadriraju K, Yang M, Alom Ruiz S, et al. 2007. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Experimental Cell Research, 313(16): 3616-23. doi: 10.1016/j.yexcr.2007.07.002
|
| [13] |
Byun K, Yoo Y, Son M, et al. 2017. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacology & Therapeutics, 177: 44-55. doi: 10.1016/j.pharmthera.2017.02.030
|
| [14] |
Cai P, Wang C, Gao H, et al. 2021. Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 33(46): 2007977. doi: 10.1002/adma.202007977
|
| [15] |
Cazzanelli PWuertz-Kozak K. 2020. MicroRNAs in Intervertebral Disc Degeneration, Apoptosis, Inflammation, and Mechanobiology. International Journal of Molecular Sciences, 21(10): 3601. doi: 10.3390/ijms21103601
|
| [16] |
Chakraborty S, Dutta A, Roy A, et al. 2025. The theatrics of collagens in the myocardium: the supreme architect of the fibrotic heart. American Journal of Physiology-Cell Physiology, 328(6): 1893-1920. doi: 10.1152/ajpcell.01043.2024
|
| [17] |
Charlesworth C T, Hsu I, Wilkinson A C, et al. 2022. Immunological barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology, 22(12): 719-733. doi: 10.1038/s41577-022-00698-0
|
| [18] |
Chaudhuri O, Gu L, Klumpers D, et al. 2016. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15(3): 326-334. doi: 10.1038/nmat4489
|
| [19] |
Chen X, Giles J, Yao Y, et al. 2022. The path to healthy ageing in China: a Peking University–Lancet Commission. The Lancet, 400(10367): 1967-2006. doi: 10.1016/S0140-6736(22)01546-X
|
| [20] |
Chen Y, Chen L, Zhang J-Y, et al. 2019. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing αⅤβ3 integrin/FAK/PI3K/Akt signaling activation. OncoTargets and Therapy, 12: 6253-6265. doi: 10.2147/OTT.S209056
|
| [21] |
Chiquet-Ehrismann R, Orend G, Chiquet M, et al. 2014. Tenascins in stem cell niches. Matrix Biology, 37: 112-23. doi: 10.1016/j.matbio.2014.01.007
|
| [22] |
Chitty J L, Yam M, Perryman L, et al. 2023. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. Nature Cancer, 4(9): 1326-1344. doi: 10.1038/s43018-023-00614-y
|
| [23] |
Cho C, Horzempa C, Jones D, et al. 2016. The fibronectin III-1 domain activates a PI3-Kinase/Akt signaling pathway leading to αvβ5 integrin activation and TRAIL resistance in human lung cancer cells. BMC Cancer, 16: 574. doi: 10.1186/s12885-016-2621-6
|
| [24] |
Cho S, Rhee S, Madl C M, et al. 2025. Selective inhibition of stromal mechanosensing suppresses cardiac fibrosis. Nature, 642(8068): 766-775. doi: 10.1038/s41586-025-08945-9
|
| [25] |
Chopra V, Sangarappillai R M, Romero-Canelón I, et al. 2020. Lysyl Oxidase Like-2 (LOXL2): An Emerging Oncology Target. Advanced Therapeutics, 3(2): 1900119. doi: 10.1002/adtp.201900119
|
| [26] |
Clezardin P. 2018. Thrombospondin. H√§mostaseologie, 07(06): 172-182. doi: 10.1007/springerreference_177452
|
| [27] |
Cox T R, Bird D, Baker A-M, et al. 2013. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Research, 73(6): 1721-32. doi: 10.1158/0008-5472.CAN-12-2233
|
| [28] |
D'Amore A, Yoshizumi T, Luketich S K, et al. 2016. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials, 107: 1-14. doi: 10.1016/j.biomaterials.2016.07.039
|
| [29] |
De Boeck KAmaral M D. 2016. Progress in therapies for cystic fibrosis. The Lancet Respiratory Medicine, 4(8): 662-674. doi: 10.1016/S2213-2600(16)00023-0
|
| [30] |
de Vos L C, Lefrandt J D, Dullaart R P F, et al. 2016. Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis, 254: 291-299. doi: 10.1016/j.atherosclerosis.2016.10.012
|
| [31] |
Ding M, Huang Z, Wang X, et al. 2022. Heparan sulfate proteoglycans-mediated targeted delivery of TGF-β1-binding peptide to liver for improved anti-liver fibrotic activity in vitro and in vivo. International Journal of Biological Macromolecules, 209: 1516-1525. doi: 10.1016/j.ijbiomac.2022.04.085
|
| [32] |
Dong Y, Zheng Q, Wang Z, et al. 2019. Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. Journal of Hematology & Oncology, 12(1): 112. doi: 10.1186/s13045-019-0795-5
|
| [33] |
Dupont S, Morsut L, Aragona M, et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature, 474(7350): 179-183. doi: 10.1038/nature10137
|
| [34] |
Elfenbein ASimons M. 2010. Auxiliary and autonomous proteoglycan signaling networks. Methods Enzymol, 480: 3-31. doi: 10.1016/s0076-6879(10)80001-1
|
| [35] |
Fan W, Adebowale K, Vancza L, et al. 2024. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver. Nature, 626(7999): 635-642. doi: 10.1038/s41586-023-06991-9
|
| [36] |
Feng Y, Zou R, Zhang X, et al. 2021. YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis. Angiogenesis, 24(3): 489-504. doi: 10.1007/s10456-020-09760-8
|
| [37] |
Findlay A, Turner C, Schilter H, et al. 2021. An activity-based bioprobe differentiates a novel small molecule inhibitor from a LOXL2 antibody and provides renewed promise for anti-fibrotic therapeutic strategies. Clinical and Translational Medicine, 11(11): e572. doi: 10.1002/ctm2.572
|
| [38] |
Gao W, Zhang X, Hu W, et al. 2024. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials, 314: 122881. doi: 10.1016/j.biomaterials.2024.122881
|
| [39] |
Garantziotis SSavani R C. 2019. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biology, 78: 1-10. doi: 10.1016/j.matbio.2019.02.002
|
| [40] |
Ge C, Li Y, Wu F, et al. 2023. Synthetic peptides activating discoidin domain receptor 2 and collagen‐binding integrins cooperate to stimulate osteoblast differentiation of skeletal progenitor cells. Acta Biomaterialia, 166: 109-118. doi: 10.1016/j.actbio.2023.05.039
|
| [41] |
Ge H, Tian M, Pei Q, et al. 2021. Extracellular Matrix Stiffness: New Areas Affecting Cell Metabolism. Frontiers in Oncology, 11: 631991. doi: 10.3389/fonc.2021.631991
|
| [42] |
Gilbert P M, Havenstrite K L, Magnusson K E G, et al. 2010. Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture. Science, 329(5995): 1078-1081. doi: 10.1126/science.1191035
|
| [43] |
Godwin A R F, Singh M, Lockhart-Cairns M P, et al. 2019. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biology, 84: 17-30. doi: 10.1016/j.matbio.2019.06.006
|
| [44] |
Gulley J L, Schlom J, Barcellos‐Hoff M H, et al. 2021. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Molecular Oncology, 16(11): 2117-2134.
|
| [45] |
Guo J, Niu Z, Lv R, et al. 2024. A novel GARP humanized mouse model for efficacy assessment of GARP-targeting therapies. International Immunopharmacology, 130: 111782. doi: 10.1016/j.intimp.2024.111782
|
| [46] |
Han B, Zheng R, Zeng H, et al. 2024. Cancer incidence and mortality in China, 2022. Journal of the National Cancer Center, 4(1): 47-53. doi: 10.1016/j.jncc.2024.01.006
|
| [47] |
Hashimoto H, Olson E NBassel-Duby R. 2018. Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10): 585-600. doi: 10.1038/s41569-018-0036-6
|
| [48] |
He C-P, Chen C, Jiang X-C, et al. 2022a. The role of AGEs in pathogenesis of cartilage destruction in osteoarthritis. Bone & Joint Research, 11(5): 292-300. doi: 10.1302/2046-3758.115.BJR-2021-0334.R1
|
| [49] |
He Y, Li Q, Chen P, et al. 2022b. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nature Communications, 13(1): 7666. doi: 10.1038/s41467-022-35437-5
|
| [50] |
Hohenester E. 2019. Structural biology of laminins. Essays in Biochemistry, 63(3): 285-295. doi: 10.1042/EBC20180075
|
| [51] |
Hu S C-SLan C-C E. 2016. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing. Journal of Dermatological Science, 84(2): 121-127. doi: 10.1016/j.jdermsci.2016.07.008
|
| [52] |
Hu Y, Jia Y, Wang S, et al. 2022. An ECM-Mimicking, Injectable, Viscoelastic Hydrogel for Treatment of Brain Lesions. Advanced Healthcare Materials, 12(1): 2201594.
|
| [53] |
Hu Y, Yu B, Jia Y, et al. 2023. Hyaluronate- and gelatin-based hydrogels encapsulating doxycycline as a wound dressing for burn injury therapy. Acta Biomaterialia, 164: 151-158. doi: 10.1016/j.actbio.2023.04.021
|
| [54] |
Huang H, Ke Q, Li N, et al. 2025. Advanced biomaterials and delivery modalities to alleviate cancer therapy-induced inflammation. Biomaterials, 324: 123419. doi: 10.1016/j.biomaterials.2025.123419
|
| [55] |
Huang R, Fu PMa L. 2023. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduction and Targeted Therapy, 8(1): 129. doi: 10.1038/s41392-023-01379-7
|
| [56] |
Hynes R O. 2009. The Extracellular Matrix: Not Just Pretty Fibrils. Science, 326(5957): 1216-1219. doi: 10.1126/science.1176009
|
| [57] |
Iozzo R VSchaefer L. 2010. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. The FEBS Journal, 277(19): 3864-75. doi: 10.1111/j.1742-4658.2010.07797.x
|
| [58] |
Ippolito L, Duatti A, Iozzo M, et al. 2024. Lactate supports cell-autonomous ECM production to sustain metastatic behavior in prostate cancer. EMBO Reports, 25(8): 3506-3531. doi: 10.1038/s44319-024-00180-z
|
| [59] |
Ito SNagata K. 2018. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. Journal of Biological Chemistry, 294(6): 2133-2141. doi: 10.1074/jbc.tm118.002812
|
| [60] |
Jahed Z, Domkam N, Ornowski J, et al. 2021. Molecular models of LINC complex assembly at the nuclear envelope. Journal of Cell Science, 134(12): 258194. doi: 10.1242/jcs.258194
|
| [61] |
Jaillon S, Ponzetta A, Di Mitri D, et al. 2020. Neutrophil diversity and plasticity in tumour progression and therapy. Nature Reviews Cancer, 20(9): 485-503. doi: 10.1038/s41568-020-0281-y
|
| [62] |
Jakubowska K, Pryczynicz A, Iwanowicz P, et al. 2016. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases. Gastroenterology Research and Practice, 2016(1): 2456179. doi: 10.1155/2016/2456179
|
| [63] |
Jandl K, Marsh L M, Hoffmann J, et al. 2020. Basement Membrane Remodeling Controls Endothelial Function in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 63(1): 104-117. doi: 10.1165/rcmb.2019-0303OC
|
| [64] |
Jayadev RSherwood D R. 2017. Basement membranes. Current Biology, 27(6): 207-211. doi: 10.1016/j.cub.2017.02.006
|
| [65] |
Jia Y, Wei Z, Feng J, et al. 2024. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. Research, 7: 0517. doi: 10.34133/research.0517
|
| [66] |
Jiang S, Lan Z, Zhang X, et al. 2025. Bioenergetic-active hydrogel drives extracellular matrix synthesis for cartilage repair. Bioactive Materials, 54: 34-46. doi: 10.1016/j.bioactmat.2025.07.043
|
| [67] |
Jones L S, Rodriguez Cetina Biefer H, Mekkattu M, et al. 2025. Volumetric 3D Printing and Melt-Electrowriting to Fabricate Implantable Reinforced Cardiac Tissue Patches. Advanced Materials, 37(45): 2504765. doi: 10.1002/adma.202504765
|
| [68] |
Jud PSourij H. 2019. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Research and Clinical Practice, 148: 54-63. doi: 10.1016/j.diabres.2018.11.016
|
| [69] |
Kim H N, Elgundi Z, Lin X, et al. 2023. Engineered short forms of perlecan enhance angiogenesis by potentiating growth factor signalling. Journal of Controlled Release, 362: 184-196. doi: 10.1016/j.jconrel.2023.08.052
|
| [70] |
Kimata M, Otani Y, Kubota T, et al. 2002. Matrix Metalloproteinase Inhibitor, Marimastat, Decreases Peritoneal Spread of Gastric Carcinoma in Nude Mice. Japanese Journal of Cancer Research, 93(7): 834-841. doi: 10.1111/j.1349-7006.2002.tb01326.x
|
| [71] |
Kisseleva TBrenner D. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews Gastroenterology & Hepatology, 18(3): 151-166. doi: 10.1038/s41575-020-00372-7
|
| [72] |
Kollert M R, Krämer M, Brisson N M, et al. 2025. Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology. Nature Biomedical Engineering, 9(5): 772-786. doi: 10.1038/s41551-025-01369-w
|
| [73] |
Kollet O, Das A, Karamanos N, et al. 2023. Redefining metalloproteases specificity through network proteolysis. Trends in Molecular Medicine, 30(2): 147-163. doi: 10.1016/j.molmed.2023.11.001
|
| [74] |
Kopyeva I, Brady R PDeForest C A. 2025. Light-based fabrication and 4D customization of hydrogel biomaterials. Nature Reviews Bioengineering, 3(2): 159-180. doi: 10.1038/s44222-024-00234-w
|
| [75] |
Korneenko T V, Pestov N B, Nevzorov I A, et al. 2023. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals, 16(12): 1675. doi: 10.3390/ph16121675
|
| [76] |
Kozel B AMecham R P. 2019. Elastic fiber ultrastructure and assembly. Matrix Biology, 84: 31-40. doi: 10.1016/j.matbio.2019.10.002
|
| [77] |
Kumar Pasupulati A, Chitra P SReddy G B. 2016. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. BioMolecular Concepts, 7(5-6): 293-309. doi: 10.1515/bmc-2016-0021
|
| [78] |
Lan Z, Chen L, Feng J, et al. 2021. Mechanosensitive TRPV4 is required for crystal-induced inflammation. Annals of the Rheumatic Diseases, 80(12): 1604-1614. doi: 10.1136/annrheumdis-2021-220295
|
| [79] |
Leitinger B. 2014. Discoidin domain receptor functions in physiological and pathological conditions. International Review of Cell and Molecular Biology, 310: 39-87. doi: 10.1016/b978-0-12-800180-6.00002-5
|
| [80] |
Li Y, Li L, Wang M, et al. 2023. O-alg-THAM/gel hydrogels functionalized with engineered microspheres based on mesenchymal stem cell secretion recruit endogenous stem cells for cartilage repair. Bioactive Materials, 28: 255-272. doi: 10.1016/j.bioactmat.2023.05.003
|
| [81] |
Li Z, Wang X, Hong T-p, et al. 2021. Advanced glycosylation end products inhibit the proliferation of bone-marrow stromal cells through activating MAPK pathway. European Journal of Medical Research, 26(1): 94. doi: 10.1186/s40001-021-00559-x
|
| [82] |
Ligorio M, Sil S, Malagon-Lopez J, et al. 2019. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell, 178(1): 160-175. doi: 10.1016/j.cell.2019.05.012
|
| [83] |
Lin X, Liu Y, Bai A, et al. 2019a. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nature Biomedical Engineering, 3(8): 632-643. doi: 10.1038/s41551-019-0380-9
|
| [84] |
Lin Y-C, Guo Y R, Miyagi A, et al. 2019b. Force-induced conformational changes in PIEZO1. Nature, 573(7773): 230-234. doi: 10.1038/s41586-019-1499-2
|
| [85] |
Ling B, Watt K, Banerjee S, et al. 2017. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget, 8(35): 58372-58385. doi: 10.18632/oncotarget.17702
|
| [86] |
Liu T, Hao Y, Zhang Z, et al. 2024. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation, 149(25): 2002-2020. doi: 10.1161/CIRCULATIONAHA.123.067097
|
| [87] |
Liu X, Yu L, Xiao A, et al. 2025. Analytical methods in studying cell force sensing: principles, current technologies and perspectives. Regenerative Biomaterials, 12: rbaf007. doi: 10.1093/rb/rbaf007
|
| [88] |
Luo J, Xiang X, Gong G, et al. 2025. Cancer-associated fibroblast-mediated immune evasion: molecular mechanisms of stromal-immune crosstalk in the tumor microenvironment. Frontiers in Immunology, 16: 1617662. doi: 10.3389/fimmu.2025.1617662
|
| [89] |
Mahendra Y, He M, Rouf M A, et al. 2021. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clinical Biomechanics, 88: 105417. doi: 10.1016/j.clinbiomech.2021.105417
|
| [90] |
Mai Z, Lin Y, Lin P, et al. 2024. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death & Disease, 15(5): 307. doi: 10.1038/s41419-024-06697-4
|
| [91] |
Malandrino A, Mak M, Kamm R D, et al. 2018. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mechanics Letters, 21: 25-34. doi: 10.1016/j.eml.2018.02.003
|
| [92] |
Malhotra V. 2024. Tailored assemblies of COPII proteins in secretion. Journal of Cell Biology, 223(8): e202404013. doi: 10.1083/jcb.202404013
|
| [93] |
Marchand M, Monnot C, Muller L, et al. 2018. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Seminars in Cell & Developmental Biology, 89: 147-156. doi: 10.1016/j.semcdb.2018.08.007
|
| [94] |
Marchant C L, Malmi-Kakkada A N, Espina J A, et al. 2022. Cell clusters softening triggers collective cell migration in vivo. Nature Materials, 21(11): 1314-1323. doi: 10.1038/s41563-022-01323-0
|
| [95] |
Mascharak S, desJardins-Park H E, Davitt M F, et al. 2021. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science, 372(6540): eaba2374. doi: 10.1126/science.aba2374
|
| [96] |
Miyoshi S, Kudo M, Shitara K, et al. 2016. TGF-β inhibitor LY2157299 (galunisertib) in combination with standard chemotherapy and inhibition of signaling to pSmad and EMT and suppression of tumor growth in gastric cancer. Journal of Clinical Oncology, 34(4): 50-58. doi: 10.1200/jco.2016.34.4_suppl.50
|
| [97] |
Mouw J K, Ou GWeaver V M. 2014. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology, 15(12): 771-85. doi: 10.1038/nrm3902
|
| [98] |
Muncie J M, Ayad N M E, Lakins J N, et al. 2020. Mechanical Tension Promotes Formation of Gastrulation-like Nodes and Patterns Mesoderm Specification in Human Embryonic Stem Cells. Developmental Cell, 55(6): 679-694. doi: 10.1016/j.devcel.2020.10.015
|
| [99] |
Naba A. 2024. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol, 25(11): 865-885. doi: 10.1038/s41580-024-00767-3
|
| [100] |
Naba A, Clauser K R, Hoersch S, et al. 2011. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular & cellular proteomics : MCP, 11(4): 014647.
|
| [101] |
Olejarz W, Lacheta DKubiak-Tomaszewska G. 2020. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. International Journal of Molecular Sciences, 21(11): 3946. doi: 10.3390/ijms21113946
|
| [102] |
Panciera T, Azzolin L, Cordenonsi M, et al. 2017. Mechanobiology of YAP and TAZ in physiology and disease. Nature Reviews Molecular Cell Biology, 18(12): 758-770. doi: 10.1038/nrm.2017.87
|
| [103] |
Panzarini E, Leporatti S, Tenuzzo B, et al. 2022. Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats. Journal of Personalized Medicine, 12(11): 1812. doi: 10.3390/jpm12111812
|
| [104] |
Pawar J S, Salam M A, Dipto M S U, et al. 2025. Cancer-Associated Fibroblasts: Immunosuppressive Crosstalk with Tumor-Infiltrating Immune Cells and Implications for Therapeutic Resistance. Cancers, 17(15): 2484. doi: 10.3390/cancers17152484
|
| [105] |
Pehrsson M, Mortensen J H, Manon-Jensen T, et al. 2021. Enzymatic cross-linking of collagens in organ fibrosis – resolution and assessment. Expert Review of Molecular Diagnostics, 21(10): 1049-1064. doi: 10.1080/14737159.2021.1962711
|
| [106] |
Pelham R J, Jr. Wang Y. 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 94(25): 13661-13665. doi: 10.1073/pnas.94.25.13661
|
| [107] |
Perryman LGray S G Fibrosis in Mesothelioma: Potential Role of Lysyl Oxidases. Cancers, 2022. 14, 981.
|
| [108] |
Phang J M. 2021. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids, 53(12): 1967-1975. doi: 10.1007/s00726-021-03103-7
|
| [109] |
Piersma B, Bank R ABoersema M. 2015. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Frontiers in Medicine, 2: 59. doi: 10.3389/fmed.2015.00059
|
| [110] |
Pirri C. 2025. PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk. Diseases, 13(8): 263. doi: 10.3390/diseases13080263
|
| [111] |
Potente M, Gerhardt HCarmeliet P. 2011. Basic and therapeutic aspects of angiogenesis. Cell, 146(6): 873-887. doi: 10.1016/j.cell.2011.08.039
|
| [112] |
Randles M J, Humphries M JLennon R. 2016. Proteomic definitions of basement membrane composition in health and disease. Matrix Biology, 57: 12-28. doi: 10.1016/j.matbio.2016.08.006
|
| [113] |
Raote I, Chabanon M, Walani N, et al. 2020. A physical mechanism of TANGO1-mediated bulky cargo export. eLife, 9: e59426. doi: 10.7554/eLife.59426
|
| [114] |
Reuten R, Zendehroud S, Nicolau M, et al. 2021. Basement membrane stiffness determines metastases formation. Nature Materials, 20(6): 892-903. doi: 10.1038/s41563-020-00894-0
|
| [115] |
Revell C K, Jensen O E, Shearer T, et al. 2021. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biology Plus, 12: 100079. doi: 10.1016/j.mbplus.2021.100079
|
| [116] |
Ricard-Blum S. 2011. The collagen family. Cold Spring Harb Perspect Biol, 3(1): a004978.
|
| [117] |
Ricard‐Blum S, Vivès R R, Schaefer L, et al. 2024. A biological guide to glycosaminoglycans: current perspectives and pending questions. The FEBS Journal, 291(15): 3331-3366. doi: 10.1111/febs.17107
|
| [118] |
Richter R P, Baranova N S, Day A J, et al. 2017. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets. Current Opinion in Structural Biology, 50: 65-74. doi: 10.1016/j.sbi.2017.12.002
|
| [119] |
Roca-Cusachs P, Gauthier N C, del Rio A, et al. 2009. Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction. Proceedings of the National Academy of Sciences, 106(38): 16245-16250. doi: 10.1073/pnas.0902818106
|
| [120] |
Rom S, Heldt N A, Gajghate S, et al. 2020. Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. Scientific Reports, 10(1): 7274. doi: 10.1038/s41598-020-64349-x
|
| [121] |
Rurik J G, Tombácz I, Yadegari A, et al. 2022. CAR T cells produced in vivo to treat cardiac injury. Science, 375(6576): 91-96. doi: 10.1126/science.abm0594
|
| [122] |
Saraswathibhatla A, Indana DChaudhuri O. 2023. Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 24(7): 495-516. doi: 10.1038/s41580-023-00583-1
|
| [123] |
Schwarzbauer J EDeSimone D W. 2011. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harbor Perspectives in Biology, 3(7): a005041. doi: 10.1101/cshperspect.a005041
|
| [124] |
Setargew Y F I, Wyllie K, Grant R D, et al. 2021. Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours. Cancers, 13(3): 491. doi: 10.3390/cancers13030491
|
| [125] |
Shi M-Y, Yao Y, Wang M, et al. 2025. High-speed mapping of whole-mouse peripheral nerves at subcellular resolution. Cell, 188(14): 3897-3915. doi: 10.1016/j.cell.2025.06.011
|
| [126] |
Su B, Guo SZheng X. 2023. Transitions in Chronic Disease Mortality in China: Evidence and Implications. China CDC Wkly, 5(50): 1131-1134.
|
| [127] |
Su Y, Iacob R E, Li J, et al. 2022. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. Journal of Biological Chemistry, 298(9): 102323. doi: 10.1016/j.jbc.2022.102323
|
| [128] |
Sutherland T E, Dyer D PAllen J E. 2023. The extracellular matrix and the immune system: A mutually dependent relationship. Science, 379(6633): eabp8964. doi: 10.1126/science.abp8964
|
| [129] |
Taguchi KFukami K. 2023. RAGE signaling regulates the progression of diabetic complications. Frontiers in Pharmacology, 14: 1128872. doi: 10.3389/fphar.2023.1128872
|
| [130] |
Tani H, Sadahiro T, Yamada Y, et al. 2023. Direct Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial Infarction. Circulation, 147(3): 223-238. doi: 10.1161/CIRCULATIONAHA.121.058655
|
| [131] |
Thomas DRadhakrishnan P. 2019. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Molecular Cancer, 18(1): 14. doi: 10.1186/s12943-018-0927-5
|
| [132] |
Travers J G, Kamal F A, Robbins J, et al. 2016. Cardiac Fibrosis. Circulation Research, 118(6): 1021-1040.
|
| [133] |
Trounson AMcDonald C. 2015. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 17(1): 11-22. doi: 10.1016/j.stem.2015.06.007
|
| [134] |
Tsukui T, Wolters P JSheppard D. 2024. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature, 631(8021): 627-634. doi: 10.1038/s41586-024-07660-1
|
| [135] |
Usman K, Hsieh AHackett T-L. 2021. The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells, 10(7): 1706. doi: 10.3390/cells10071706
|
| [136] |
Venugopal H, Hanna A, Humeres C, et al. 2022. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells, 11(9): 1386. doi: 10.3390/cells11091386
|
| [137] |
Vilardi A, Przyborski S, Mobbs C, et al. 2024. Current understanding of the interplay between extracellular matrix remodelling and gut permeability in health and disease. Cell Death Discovery, 10(1): 258. doi: 10.1038/s41420-024-02015-1
|
| [138] |
Vitale D L, Parnigoni A, Viola M, et al. 2024. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. International Journal of Molecular Sciences, 25(14): 7607. doi: 10.3390/ijms25147607
|
| [139] |
Wang K, Wen D, Xu X, et al. 2023. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci, 10: 1132353. doi: 10.3389/fmolb.2023.1132353
|
| [140] |
Wang L L, Chung J J, Li E C, et al. 2018. Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. J Control Release, 285: 152-161. doi: 10.1016/j.jconrel.2018.07.004
|
| [141] |
Wang M, Hong Y, Fu X, et al. 2024. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioactive Materials, 39: 492-520. doi: 10.1016/j.bioactmat.2024.04.011
|
| [142] |
Wang N. 2017. Cellular adhesion: Instant integrin mechanosensing. Nature Materials, 16(12): 1173-1174. doi: 10.1038/nmat5041
|
| [143] |
Wang T, Hamilla S, Cam M, et al. 2017. Extracellular matrix stiffness and cell contractility control RNA localization to promote cell migration. Nature Communications, 8(1): 896. doi: 10.1038/s41467-017-00884-y
|
| [144] |
Wang Y-D, Tan X-YZhang K. 2009. Correlation of plasma MMP-1 and TIMP-1 levels and the colonic mucosa expressions in patients with ulcerative colitis. Mediators of Inflammation, 2009(1): 275072. doi: 10.1155/2009/275072
|
| [145] |
Wells J MWatt F M. 2018. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature, 557(7705): 322-328. doi: 10.1038/s41586-018-0073-7
|
| [146] |
Whiteside E J, Jackson M M, Herington A C, et al. 2001. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 are key regulators of extracellular matrix degradation by mouse embryos. Biology of Reproduction, 64(5): 1331-1337. doi: 10.1095/biolreprod64.5.1331
|
| [147] |
Wu J, Deng J, Theocharidis G, et al. 2024. Adhesive anti-fibrotic interfaces on diverse organs. Nature, 630(8016): 360-367. doi: 10.1038/s41586-024-07426-9
|
| [148] |
Wu Y, Shi Y, Luo Z, et al. 2025. Spatial multi-omics analysis of tumor-stroma boundary cell features for predicting breast cancer progression and therapy response. Front Cell Dev Biol, 13: 1570696. doi: 10.3389/fcell.2025.1570696
|
| [149] |
Xia H, Li X, Gao W, et al. 2018. Tissue repair and regeneration with endogenous stem cells. Nature Reviews Materials, 3(7): 174-193. doi: 10.1038/s41578-018-0027-6
|
| [150] |
Xie X, Wang Y, Deng B, et al. 2024. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomaterialia, 186: 354-368. doi: 10.1016/j.actbio.2024.07.054
|
| [151] |
Xiong G, Stewart R L, Chen J, et al. 2018. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nature Communications, 9(1): 4456. doi: 10.1038/s41467-018-06893-9
|
| [152] |
Yang S, Liu H, Chen B, et al. 2025. Mechanical signal-chromatin interactions: molecular networks from nuclear membrane force transmission to epigenetic regulation. Frontiers in Medicine, 12: 1631645. doi: 10.3389/fmed.2025.1631645
|
| [153] |
Yurchenco P D. 2011. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harbor Perspectives in Biology, 3(2): a004911. doi: 10.1101/cshperspect.a004911
|
| [154] |
Zallocchi M, Johnson B M, Meehan D T, et al. 2013. α1β1 Integrin/Rac1-Dependent Mesangial Invasion of Glomerular Capillaries in Alport Syndrome. The American Journal of Pathology, 183(4): 1269-1280. doi: 10.1016/j.ajpath.2013.06.015
|
| [155] |
Zanconato F, Cordenonsi MPiccolo S. 2016. YAP/TAZ at the Roots of Cancer. Cancer Cell, 29(6): 783-803. doi: 10.1016/j.ccell.2016.05.005
|
| [156] |
Zapp C, Mundinger PBoehm H. 2023. Natural Presentation of Glycosaminoglycans in Synthetic Matrices for 3D Angiogenesis Models. Frontiers in Cell and Developmental Biology, 9: 729670. doi: 10.3389/fcell.2021.729670
|
| [157] |
Zhang L, Zhou JKong W. 2025. Extracellular matrix in vascular homeostasis and disease. Nature Reviews Cardiology, 22(5): 333-353. doi: 10.1038/s41569-024-01103-0
|
| [158] |
Zhao Z, Li Q, Qu C, et al. 2025. A collagenase nanogel backpack improves CAR-T cell therapy outcomes in pancreatic cancer. Nature Nanotechnology, 20(8): 1131-1141. doi: 10.1038/s41565-025-01924-1
|
| [159] |
Zhou M, Wang H, Zeng X, et al. 2019. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 394(10204): 1145-1158. doi: 10.1016/S0140-6736(19)30427-1
|
| [160] |
Zhu P, Ren M, Yang C, et al. 2012. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Experimental Dermatology, 21(2): 123-9.
|
| [161] |
Zhu W, Cui Y, Qiu J, et al. 2025. Exploring the Therapeutic Potential of TGF-β Inhibitors for Liver Fibrosis: Targeting Multiple Signaling Pathways. Journal of Clinical and Translational Hepatology, 13(7): 588-598. doi: 10.14218/jcth.2025.00029
|