Turn off MathJax
Article Contents
Cao Z Z, Wang G J, Luo B Q. Intelligent Prediction of Mechanical Properties in Metallic Materials based on Machine Learning: A Review & Perspective. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-026
Citation: Cao Z Z, Wang G J, Luo B Q. Intelligent Prediction of Mechanical Properties in Metallic Materials based on Machine Learning: A Review & Perspective. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-026

Intelligent Prediction of Mechanical Properties in Metallic Materials based on Machine Learning: A Review & Perspective

doi: 10.6052/1000-0992-25-026 cstr: 32046.14.1000-0992-25-026
More Information
  • Corresponding author: 1529899503@qq.com
  • Received Date: 2024-01-02
  • Accepted Date: 2024-03-04
  • Available Online: 2024-05-06
  • The rapid advancement of machine learning is transforming the research paradigm of mechanical properties of metallic materials from experience-driven to data-driven. This review systematically summarizes recent progress and challenges in machine learning based prediction of mechanical properties in metallic materials. We first outline commonly used ML algorithms and workflows, with an emphasis on cutting-edge methods such as explainable AI and physics-informed machine learning. We then review typical applications and predictive performance of ML models across three scales: micro/mesoscopic properties (e.g., microstructural evolution, fracture behavior), macroscopic properties (e.g., hardness, stress response, fatigue life), and cross-scale coupling properties (e.g., flow stress, yield strength, constitutive parameter inversion), highlighting their advantages in high-throughput computation and multi-scale modeling. Finally, we identify persistent challenges such as data scarcity, heterogeneity, and insufficient accuracy under wide temperature/strain-rate ranges, and propose potential solutions including transfer learning, large language models, and multi-modal fusion. Looking forward, we outline a technical pathway integrating multi-modal data and physical mechanisms for accurate prediction of mechanical behavior under extreme conditions, aiming to advance materials mechanics toward digitalization and intelligence.

     

  • loading
  • [1]
    何俊, 张彩庆, 李小珍, 等. 2020. 面向深度学习的多模态融合技术研究综述. 计算机工程, 46(5): 1-11 (He Jun, Zhang Caiqing, Li Xiaozhen, et al. 2020. A Survey on Multimodal Fusion Technology for Deep Learning. Computer Engineering, 46(5): 1-11). doi: 10.19678/j.issn.1000-3428.0057370

    He Jun, Zhang Caiqing, Li Xiaozhen, et al. 2020. A Survey on Multimodal Fusion Technology for Deep Learning. Computer Engineering, 46(5): 1-11 doi: 10.19678/j.issn.1000-3428.0057370
    [2]
    李航. 2022. 机器学习方法. 北京: 清华大学出版社 (Li Hang. 2022. Machine Learning Methods. Beijing: Tsinghua University Press).

    Li Hang. 2022. Machine Learning Methods. Beijing: Tsinghua University Press.
    [3]
    王一铮, 庄晓莹, Timon Rabczcuk, 等. 2025. AI for PDEs在固体力学领域的研究进展. 力学进展, 55(2): 231-287 (Wang Y Z, Zhuang X Y, Timon R, et al. 2025. AI for PDEs in solid mechanics: A review. Advances in Mechanics, 55(2): 231-287). doi: 10.6052/1000-0992-24-016

    Wang Y Z, Zhuang X Y, Timon R, et al. 2025. AI for PDEs in solid mechanics: A review. Advances in Mechanics, 55(2): 231-287 doi: 10.6052/1000-0992-24-016
    [4]
    谢建新, 宿彦京, 薛德祯, 等. 2021. 机器学习在材料研发中的应用. 金属学报, 57(11): 1343-1361 (Xie Jianxin, Su Yanjing, Xue Dezhen, et al. 2021. Application of Machine Learning in Materials Research and Development. *Acta Metallurgica Sinica*, 57(11): 1343-1361).

    Xie Jianxin, Su Yanjing, Xue Dezhen, et al. 2021. Application of Machine Learning in Materials Research and Development. *Acta Metallurgica Sinica*, 57(11): 1343-1361.
    [5]
    杨桂通, 熊祝华. 1984. 塑性动力学. 北京: 清华大学出版社 (Yang Guitong, Xiong Zhuhua. 1984. Plasticity Dynamics. Beijing: Tsinghua University Press).

    Yang Guitong, Xiong Zhuhua. 1984. Plasticity Dynamics. Beijing: Tsinghua University Press.
    [6]
    杨杨, 詹德川, 姜远, 等. 2021. 可靠多模态学习综述. 软件学报, 32(4): 1067-1081 (Yang Yang, Zhan Dechuan, Jiang Yuan, et al. 2021. A Survey on Trustworthy Multimodal Learning. Journal of Software, 32(4): 1067-1081). doi: 10.13328/j.cnki.jos.006167

    Yang Yang, Zhan Dechuan, Jiang Yuan, et al. 2021. A Survey on Trustworthy Multimodal Learning. Journal of Software, 32(4): 1067-1081. doi: 10.13328/j.cnki.jos.006167
    [7]
    周瑞, 熊宇凯, 储节磊, 等. 2023. 基于机器学习和遗传算法的非局部晶体塑性模型参数识别. 力学学报, 56(3): 751-762 (Zhou Rui, Xiong Yukai, Chu Jielei, et al. 2023. Parameter Identification of Nonlocal Crystal Plasticity Model Based on Machine Learning and Genetic Algorithm. Chinese Journal of Theoretical and Applied Mechanics, 56(3): 751-762). doi: 10.6052/0459-1879-23-479

    Zhou Rui, Xiong Yukai, Chu Jielei, et al. 2023. Parameter Identification of Nonlocal Crystal Plasticity Model Based on Machine Learning and Genetic Algorithm. Chinese Journal of Theoretical and Applied Mechanics, 56(3): 751-762. doi: 10.6052/0459-1879-23-479
    [8]
    周志华. 2016 机器学习. 北京: 清华大学出版社 (Zhou Zhihua. 2016. Machine Learning. Beijing: Tsinghua University Press).

    Zhou Zhihua. 2016. Machine Learning. Beijing: Tsinghua University Press.
    [9]
    Agrawal A, Choudhary A. 2016. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. Apl Materials, 4(5).
    [10]
    Ahmad W, Simon E, Chithrananda S, et al. 2022. Chemberta-2: Towards chemical foundation models. arXiv preprint arXiv: 2209.01712.
    [11]
    Al-Assaf Y, El Kadi H. 2007. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks. Composite Structures, 77(4): 561-569. doi: 10.1016/j.compstruct.2005.08.012
    [12]
    Alder B J, Wainwright T E. 1957. Phase transition for a hard sphere system. The Journal of chemical physics, 27(5): 1208. doi: 10.1063/1.1743957
    [13]
    Amodeo R J, Ghoniem N M. 1990. Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Physical Review B, 41(10): 6958. doi: 10.1103/PhysRevB.41.6958
    [14]
    Ang K, Qiu, J, Su B, et al. 2025. Deep learning-based inverse design of programmable disordered metamaterials. International Journal of Mechanical Sciences, 110712.
    [15]
    Balamurugan R, Chen J, Meng C, et al. 2024. Data-driven approaches for fatigue prediction of Ti–6Al–4V parts fabricated by laser powder bed fusion. International Journal of Fatigue, 182: 108167. doi: 10.1016/j.ijfatigue.2024.108167
    [16]
    Belianinov A, Vasudevan R, Strelcov E, et al. 2015. Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. Advanced Structural and Chemical Imaging, 1(1): 6. doi: 10.1186/s40679-015-0006-6
    [17]
    Berg J, Nyström K. 2021. Neural networks as smooth priors for inverse problems for PDEs. Journal of Computational Mathematics and Data Science, 1: 100008. doi: 10.1016/j.jcmds.2021.100008
    [18]
    Bishara D, Xie Y, Liu W K, et al. 2023. A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials. Archives of computational methods in engineering, 30(1).
    [19]
    Blaschke D N, Nguyen T, Nitol M, et al. 2023. Machine learning based approach to predict ductile damage model parameters for polycrystalline metals. Computational Materials Science, 229: 112382. doi: 10.1016/j.commatsci.2023.112382
    [20]
    Breiman L. 2001. Random forests. Machine learning, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [21]
    Bruna J, Zaremba W, Szlam A, et al. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv: 1312.6203.
    [22]
    Burov A, Fedorova E. 2021. Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys. Engineering Failure Analysis, 123: 105320. doi: 10.1016/j.engfailanal.2021.105320
    [23]
    Butler K T, Davies D W, Cartwright H, et al. 2018. Machine learning for molecular and materials science. Nature, 559(7715): 547-555. doi: 10.1038/s41586-018-0337-2
    [24]
    Caiazzo F, Caggiano A. 2018. Laser direct metal deposition of 2024 Al alloy: trace geometry prediction via machine learning. Materials, 11(3): 444. doi: 10.3390/ma11030444
    [25]
    Cecen A, Dai H, Yabansu Y C, et al. 2018. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Materialia, 146: 76-84. doi: 10.1016/j.actamat.2017.11.053
    [26]
    Chen A, Zhang X, Zhou Z. 2020. Machine learning: accelerating materials development for energy storage and conversion. InfoMat, 2(3): 553-576. doi: 10.1002/inf2.12094
    [27]
    Chen C, Ong S P. 2021. AtomSets as a hierarchical transfer learning framework for small and large materials datasets. npj Computational Materials, 7(1): 173. doi: 10.1038/s41524-021-00639-w
    [28]
    Chen C, Ye W, Zuo Y, et al. 2019. Graph networks as a universal machine learning framework for molecules and crystals. Chemistry of Materials, 31(9): 3564-3572. doi: 10.1021/acs.chemmater.9b01294
    [29]
    Chen K, Dong X, Gao P, et al. 2025. Physics-Informed Neural Networks for Topological Metamaterial Design and Mechanical Applications. International Journal of Mechanical Sciences, 110489.
    [30]
    Chen L, Zhang Z, Lou M, et al. 2023. High-temperature wear mechanisms of TiNbWN films: Role of nanocrystalline oxides formation. Friction, 11(3): 460-472. doi: 10.1007/s40544-022-0621-x
    [31]
    Chen T, Guestrin C. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.
    [32]
    Chen X W, Jeong J C. 2007. Enhanced recursive feature elimination. Proceedings of the IEEE conference on machine learning and applications.
    [33]
    Chen X, Wang S, Fu B, et al. 2019. Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning. Advances in neural information processing systems, 32.
    [34]
    Ciampaglia A, Tridello A, Paolino D S, et al. 2023. Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts. International journal of fatigue, 170: 107500. doi: 10.1016/j.ijfatigue.2023.107500
    [35]
    Comanici G, Bieber E, Schaekermann M, et al. 2025. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint arXiv: 2507.06261.
    [36]
    Cortes C, Vapnik V. 1995. Support-vector networks. Machine learning, 20(3): 273-297. doi: 10.1023/A:1022627411411
    [37]
    Cover T, Hart P. 1967. Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1): 21-27. doi: 10.1109/TIT.1967.1053964
    [38]
    Das K, Goyal P, Lee S C, et al. 2023. Crysmmnet: multimodal representation for crystal property prediction. In Uncertainty in Artificial Intelligence.
    [39]
    De Cao N, Kipf T. 2018. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv: 1805.11973.
    [40]
    Dhuliawala S, Komeili M, Xu J, et al. 2023. Chain-of-verification reduces hallucination in large language models. arXiv preprint arXiv: 2309.11495.
    [41]
    Dong S, Wang Y, Li J, et al. 2024. Machine learning aided prediction and design for the mechanical properties of magnesium alloys. Metals and Materials International, 30(3): 593-606. doi: 10.1007/s12540-023-01531-6
    [42]
    Dung C V, Sekiya H, Hirano S, et al. 2019. A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks. Automation in Construction, 102: 217-229. doi: 10.1016/j.autcon.2019.02.013
    [43]
    Eswarappa Prameela S, Pollock T M, Raabe D, et al. 2023. Materials for extreme environments. Nature Reviews Materials, 8(2): 81-88.
    [44]
    Fang S F, Wang M P, Song M. 2009. An approach for the aging process optimization of Al–Zn–Mg–Cu series alloys. Materials & Design, 30(7): 2460-2467.
    [45]
    Feng F, Zhu T, Yang B, et al. 2025. Probabilistic fatigue life prediction in additive manufacturing materials with a physics-informed neural network framework. Expert Systems with Applications, 275: 127098. doi: 10.1016/j.eswa.2025.127098
    [46]
    Fernández-Godino M G, Panda N, O’Malley D, et al. 2021. Accelerating high-strain continuum-scale brittle fracture simulations with machine learning. Computational Materials Science, 186: 109959. doi: 10.1016/j.commatsci.2020.109959
    [47]
    Fida M A F A, Ahmad T, Ntahobari M. 2021. Variance threshold as early screening to Boruta feature selection for intrusion detection system. Proceedings of the IEEE Conference on Information & Communication Technology and System.
    [48]
    Frey N C, Akinwande D, Jariwala D, et al. 2020. Machine learning-enabled design of point defects in 2D materials for quantum and neuromorphic information processing. ACS nano, 14(10): 13406-13417. doi: 10.1021/acsnano.0c05267
    [49]
    Fukushima K. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4): 193-202. doi: 10.1007/BF00344251
    [50]
    Fung V, Zhang J, Juarez E, et al. 2021. Benchmarking graph neural networks for materials chemistry. npj Computational Materials, 7(1): 84. doi: 10.1038/s41524-021-00554-0
    [51]
    Georgiou G P. 2025. Capabilities of GPT-5 across critical domains: Is it the next breakthrough?. arXiv preprint arXiv: 2508.19259.
    [52]
    Ghiringhelli L M, Vybiral J, Ahmetcik E, et al. 2017. Learning physical descriptors for materials science by compressed sensing. New Journal of Physics, 19(2): 023017. doi: 10.1088/1367-2630/aa57bf
    [53]
    Golovneva O, Allen-Zhu Z, Weston J, et al. 2024. Reverse training to nurse the reversal curse. arXiv preprint arXiv: 2403.13799.
    [54]
    Goodfellow I, Bengio Y, Courville A, et al. 2016. Deep learning. Cambridge, MA, USA: MIT press.
    [55]
    Gu Y, Stiles C D, El-Awady J A. 2024. A statistical perspective for predicting the strength of metals: Revisiting the Hall–Petch relationship using machine learning. Acta Materialia, 266: 119631. doi: 10.1016/j.actamat.2023.119631
    [56]
    Haghighat E, Abouali S, Vaziri R. 2023. Constitutive model characterization and discovery using physics-informed deep learning. Engineering Applications of Artificial Intelligence, 120: 105828. doi: 10.1016/j.engappai.2023.105828
    [57]
    Haghighat E, Raissi M, Moure A, et al. 2021. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379: 113741. doi: 10.1016/j.cma.2021.113741
    [58]
    Herriott C, Spear A D. 2020. Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine-and deep-learning methods. Computational Materials Science, 175: 109599. doi: 10.1016/j.commatsci.2020.109599
    [59]
    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural computation, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [60]
    Holzinger A. 2016. Interactive machine learning for health informatics: when do we need the human-in-the-loop. Brain informatics, 3(2): 119-131. doi: 10.1007/s40708-016-0042-6
    [61]
    Hsu Y C, Yu C H, Buehler M J. 2020. Using deep learning to predict fracture patterns in crystalline solids. Matter, 3(1): 197-211. doi: 10.1016/j.matt.2020.04.019
    [62]
    Hu Y, Zhou G, Knezevic M, et al. 2025. Multiscale modelling with neural network-based crystal plasticity model from meso-to macroscale. Acta Materialia, 121075.
    [63]
    Huang J, Chen X, Mishra S, et al. 2023. Large language models cannot self-correct reasoning yet. arXiv preprint arXiv: 2310.01798.
    [64]
    Huang L, Yu W, Ma W, et al. 2025. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information Systems, 43(2): 1-55.
    [65]
    Huang W, Martin P, Zhuang H L. 2019. Machine-learning phase prediction of high-entropy alloys. Acta Materialia, 169: 225-236. doi: 10.1016/j.actamat.2019.03.012
    [66]
    Hutchinson M L, Antono E, Gibbons B M, et al. 2017. Overcoming data scarcity with transfer learning. arXiv preprint arXiv: 1711.05099.
    [67]
    Ihuaenyi R C, Li W, Bazant M Z, et al. 2025. Mechanics Informatics: A paradigm for efficiently learning constitutive models. Journal of the Mechanics and Physics of Solids, 106239.
    [68]
    Indeck J, Cereceda D, Mayeur J R, et al. 2022. Understanding slip activity and void initiation in metals using machine learning-based microscopy analysis. Materials Science and Engineering: A, 838: 142738. doi: 10.1016/j.msea.2022.142738
    [69]
    Jablonka K M, Ai Q, Al-Feghali, et al. 2023. 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon. Digital discovery, 2(5): 1233-1250. doi: 10.1039/D3DD00113J
    [70]
    Jebli I, Belouadha F Z, Kabbaj M I, et al. 2021. Prediction of solar energy guided by pearson correlation using machine learning. Energy, 224: 120109. doi: 10.1016/j.energy.2021.120109
    [71]
    Jeong I, Cho M, Chung H, et al. 2024. Data-driven nonparametric identification of material behavior based on physics-informed neural network with full-field data. Computer Methods in Applied Mechanics and Engineering, 418: 116569. doi: 10.1016/j.cma.2023.116569
    [72]
    Ji Z, Lee N, Frieske R, et al. 2023. Survey of hallucination in natural language generation. ACM computing surveys, 55(12): 1-38.
    [73]
    Jia X, Li W, Lu Q, et al. 2021. Towards accurate prediction for ultra-low carbon tempered martensite property through the cross-correlated substructures. Materials & Design, 211: 110126.
    [74]
    Jiang L, Fu H, Zhang H, et al. 2022. Physical mechanism interpretation of polycrystalline metals’ yield strength via a data-driven method: A novel Hall–Petch relationship. Acta Materialia, 231: 117868. doi: 10.1016/j.actamat.2022.117868
    [75]
    Jolliffe I. 2011. Principal component analysis. In International encyclopedia of statistical science. Springer, Berlin, Heidelberg.
    [76]
    Julianto I T, Kurniadi D, Fauziah F A, et al. 2023. Improvement of data mining models using forward selection and backward elimination with cryptocurrency datasets. Journal of Applied Intelligent System, 8(1): 100-109. doi: 10.33633/jais.v8i1.7568
    [77]
    Kabliman E, Kolody A H, Kommenda M, et al. 2019. Prediction of stress-strain curves for aluminium alloys using symbolic regression. AIP Conference Proceedings. AIP Publishing LLC, 2113(1): 180009.
    [78]
    Kabliman E, Kolody A H, Kronsteiner J, et al. 2021. Application of symbolic regression for constitutive modeling of plastic deformation. Applications in Engineering Science, 6: 100052. doi: 10.1016/j.apples.2021.100052
    [79]
    Kalidindi S R, De Graef M. 2015. Materials data science: current status and future outlook. Annual Review of Materials Research, 45(1): 171-193. doi: 10.1146/annurev-matsci-070214-020844
    [80]
    Kateb M, Safarian S. 2025. Machine learning-driven predictive modeling of mechanical properties in diverse steels. Machine Learning with Applications, 20: 100634. doi: 10.1016/j.mlwa.2025.100634
    [81]
    Khoei A R, Seddighian M R, Sameti A R. 2024. Machine learning-based multiscale framework for mechanical behavior of nano-crystalline structures. International Journal of Mechanical Sciences, 265: 108897. doi: 10.1016/j.ijmecsci.2023.108897
    [82]
    Kingma D, Adam B J. 2014. A Method for Stochastic Optimization. Computer. Science.
    [83]
    Kipf T N, Welling M. 2016. Variational graph auto-encoders. arXiv preprint arXiv: 1611.07308.
    [84]
    Kirkpatrick J, Pascanu R, Rabinowitz N, et al. 2017. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13): 3521-3526. doi: 10.1073/pnas.1611835114
    [85]
    Kohn W, Sham L J. 1965. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A): A1133. doi: 10.1103/PhysRev.140.A1133
    [86]
    Kong C S, Luo W, Arapan S, et al. 2012. Information-theoretic approach for the discovery of design rules for crystal chemistry. Journal of chemical information and modeling, 52(7): 1812-1820. doi: 10.1021/ci200628z
    [87]
    Kumar A, Dawson P R. 1998. Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces. Computer methods in applied mechanics and engineering, 153(3-4): 259-302. doi: 10.1016/S0045-7825(97)00072-8
    [88]
    Lee J A, Figueiredo R B, Park H, et al. 2024. Unveiling yield strength of metallic materials using physics-enhanced machine learning under diverse experimental conditions. Acta Materialia, 275: 120046. doi: 10.1016/j.actamat.2024.120046
    [89]
    Lei G, Docherty R, Cooper S J. 2024. Materials science in the era of large language models: a perspective. Digital Discovery, 3(7): 1257-1272. doi: 10.1039/D4DD00074A
    [90]
    Lew A J, Buehler M J. 2022. DeepBuckle: Extracting physical behavior directly from empirical observation for a material agnostic approach to analyze and predict buckling. Journal of the Mechanics and Physics of Solids, 164: 104909. doi: 10.1016/j.jmps.2022.104909
    [91]
    Li C, Xu K, Lou M, et al. 2024. Machine learning-enabled prediction of high-temperature oxidation resistance for Ni-based alloys. Corrosion Science, 234: 112152. doi: 10.1016/j.corsci.2024.112152
    [92]
    Li C, Yang S, Zheng H, et al. 2025. Integration of machine learning with finite element analysis in materials science: a review. Journal of Materials Science, 1-23.
    [93]
    Li H, Miao Y, Khodaei Z S, et al. 2025. Finite-PINN: A physics-informed neural network with finite geometric encoding for solid mechanics. Journal of the Mechanics and Physics of Solids, 106222.
    [94]
    Li N, Zhao S, Zhang Z. 2021. Property prediction of medical magnesium alloy based on machine learning. Proceedings of the IEEE Conference on Big Data Analytics.
    [95]
    Li X, Chen Z, Xie T, et al. 2025. Enhancing sonologist examination performance with large language models: an analytical study of ChatGPT-4 and Claude 3. Medical Ultrasonography.
    [96]
    Li X, Yan Z, Du Y, et al. 2024. HomoGenius: A foundation model of homogenization for rapid prediction of effective mechanical properties using neural operators.
    [97]
    Li Y, Liu Y, Luo S, et al. 2020. Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys. Journal of Materials Research and Technology, 9(6): 14467-14477. doi: 10.1016/j.jmrt.2020.10.042
    [98]
    Li Y, Tarlow D, Brockschmidt M, et al. 2015. Gated graph sequence neural networks. arXiv preprint arXiv: 1511.05493.
    [99]
    Li Z, Long Z, Lei S, et al. 2023. A simple, quantitative expression for understanding and evaluating the yield strength of amorphous alloys based on symbolic regression and dimensional calculation. Journal of Non-Crystalline Solids, 614: 122409. doi: 10.1016/j.jnoncrysol.2023.122409
    [100]
    Liang R, Khan A S. 1999. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, 15(9): 963-980. doi: 10.1016/S0749-6419(99)00021-2
    [101]
    Liu Y C, Wu H, Mayeshiba T, et al. 2022. Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels. npj Computational Materials, 8(1): 85. doi: 10.1038/s41524-022-00760-4
    [102]
    Lu L, Pestourie R, Yao W, et al. 2021. Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on Scientific Computing, 43(6): B1105-B1132. doi: 10.1137/21M1397908
    [103]
    Mao Y, Keshavarz S, Kilic M N T, et al. 2025. A deep learning-based crystal plasticity finite element model. Scripta Materialia, 254: 116315. doi: 10.1016/j.scriptamat.2024.116315
    [104]
    McCulloch W S, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4): 115-133. doi: 10.1007/BF02478259
    [105]
    Morgan D, Jacobs R. 2020. Opportunities and challenges for machine learning in materials science. Annual Review of Materials Research, 50(1): 71-103. doi: 10.1146/annurev-matsci-070218-010015
    [106]
    Murr L E, Meyers M A, Niou C S, et al. 1997. Shock-induced deformation twinning in tantalum. Acta materialia, 45(1): 157-175. doi: 10.1016/S1359-6454(96)00145-0
    [107]
    Nath D, Neog D R, Gautam S S. 2024. Application of Machine Learning and Deep Learning in Finite Element Analysis: A Comprehensive Review. Archives of computational methods in engineering, 31(5).
    [108]
    Niu S, Zhang E, Bazilevs Y, et al. 2023. Modeling finite-strain plasticity using physics-informed neural network and assessment of the network performance. Journal of the Mechanics and Physics of Solids, 172: 105177. doi: 10.1016/j.jmps.2022.105177
    [109]
    Nocedal J. 1980. Updating quasi-Newton matrices with limited storage. Mathematics of computation, 35(151): 773-782. doi: 10.1090/S0025-5718-1980-0572855-7
    [110]
    Olson G B. 1997. Computational design of hierarchically structured materials. Science, 277(5330): 1237-1242. doi: 10.1126/science.277.5330.1237
    [111]
    Ouyang R, Curtarolo S, Ahmetcik E, et al. 2018. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Physical Review Materials, 2(8): 083802. doi: 10.1103/PhysRevMaterials.2.083802
    [112]
    Park C W, Kornbluth M, Vandermause J, et al. 2021. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture. npj Computational Materials, 7(1): 73. doi: 10.1038/s41524-021-00543-3
    [113]
    Peng J, Yamamoto Y, Hawk J A, et al. 2020. Coupling physics in machine learning to predict properties of high-temperatures alloys. npj Computational Materials, 6(1): 141. doi: 10.1038/s41524-020-00407-2
    [114]
    Peng X, Wu S, Qian W, et al. 2022. The potency of defects on fatigue of additively manufactured metals. International Journal of Mechanical Sciences, 221: 107185. doi: 10.1016/j.ijmecsci.2022.107185
    [115]
    Penwarden M, Jagtap A D, Zhe S, et al. 2023. A unified scalable framework for causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompositions. Journal of Computational Physics, 493: 112464. doi: 10.1016/j.jcp.2023.112464
    [116]
    Penwarden M, Owhadi H, Kirby R M. 2024. Kolmogorov n-widths for multitask physics-informed machine learning (PIML) methods: Towards robust metrics. Neural Networks, 180: 106703. doi: 10.1016/j.neunet.2024.106703
    [117]
    Perry B J, Guo Y, Mahmoud H N. 2022. Automated site-specific assessment of steel structures through integrating machine learning and fracture mechanics. Automation in Construction, 133: 104022. doi: 10.1016/j.autcon.2021.104022
    [118]
    Picard R R, Cook R D. 1984. Cross-validation of regression models. Journal of the American Statistical Association, 79(387): 575-583. doi: 10.1080/01621459.1984.10478083
    [119]
    Polak M P, Morgan D. 2024. Extracting accurate materials data from research papers with conversational language models and prompt engineering. Nature Communications, 15(1): 1569. doi: 10.1038/s41467-024-45914-8
    [120]
    Ponciroli R, Shriwise P, Mei Z G, et al. 2022. Simulation-based methodology to assess the lattice defects creation as energy storing process. Annals of Nuclear Energy, 165: 108691. doi: 10.1016/j.anucene.2021.108691
    [121]
    Qayyum F, Kim D H, Bong S J, et al. 2022. A survey of datasets, preprocessing, modeling mechanisms, and simulation tools based on AI for material analysis and discovery. Materials, 15(4): 1428. doi: 10.3390/ma15041428
    [122]
    Quinlan J R. 1986. Induction of decision trees. Machine learning, 1(1): 81-106. doi: 10.1023/A:1022643204877
    [123]
    Raccuglia P, Elbert K C, Adler P D, et al. 2016. Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601): 73-76. doi: 10.1038/nature17439
    [124]
    Rainio O, Teuho J, Klén R. 2024. Evaluation metrics and statistical tests for machine learning. Scientific Reports, 14(1): 6086. doi: 10.1038/s41598-024-56706-x
    [125]
    Raissi M, Perdikaris P, Karniadakis G E. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [126]
    Ramprasad R, Batra R, Pilania G, et al. 2017. Machine learning in materials informatics: recent applications and prospects. npj Computational Materials, 3(1): 54. doi: 10.1038/s41524-017-0056-5
    [127]
    Ras G, Xie N, Van Gerven M, et al. 2022. Explainable deep learning: A field guide for the uninitiated. Journal of Artificial Intelligence Research, 73: 329-396. doi: 10.1613/jair.1.13200
    [128]
    Rasiwasia N, Costa Pereira J, Coviello E, et al. 2010. A new approach to cross-modal multimedia retrieval. In Proceedings of the 18th ACM international conference on Multimedia.
    [129]
    Reiser P, Neubert M, Eberhard A, et al. 2022. Graph neural networks for materials science and chemistry. Communications Materials, 3(1): 93. doi: 10.1038/s43246-022-00315-6
    [130]
    Ren D, Wang C, Wei X, et al. 2023. Building a quantitative composition-microstructure-property relationship of dual-phase steels via multimodal data mining. Acta materialia, 252: 118954. doi: 10.1016/j.actamat.2023.118954
    [131]
    Rezaei S, Taghikhani K, Viardin A, et al. 2025. Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning. npj Computational Materials, 11(1): 262. doi: 10.1038/s41524-025-01718-y
    [132]
    Rodrigues J F, Lopes Cardoso H, Teixeira Lopes C. 2025. Evaluating llama 3 for text simplification: a study on Wikipedia lead sections. In Companion Proceedings of the ACM on Web Conference 2025 .
    [133]
    Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6): 386. doi: 10.1037/h0042519
    [134]
    Roy A M, Guha S, Sundararaghavan V, et al. 2024. Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model. Journal of the Mechanics and Physics of Solids, 185: 105570. doi: 10.1016/j.jmps.2024.105570
    [135]
    S Schweizer P, Sharma A, Pethö L, et al. 2023. Atomic scale volume and grain boundary diffusion elucidated by in situ STEM. Nature Communications, 14(1): 7601. doi: 10.1038/s41467-023-43103-7
    [136]
    Saidi P, Pirgazi H, Sanjari M, et al. 2022. Deep learning and crystal plasticity: a preconditioning approach for accurate orientation evolution prediction. Computer Methods in Applied Mechanics and Engineering, 389: 114392. doi: 10.1016/j.cma.2021.114392
    [137]
    Salvado F C, Teixeira-Dias F, Walley S M, et al. 2017. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals. Progress in Materials Science, 88: 186-231. doi: 10.1016/j.pmatsci.2017.04.004
    [138]
    Sasidhar K N, Siboni N H, Mianroodi J R, et al. 2023. Enhancing corrosion-resistant alloy design through natural language processing and deep learning. Science Advances, 9(32): 7992. doi: 10.1126/sciadv.adg7992
    [139]
    Scarselli F, Gori M, Tsoi A C, et al. 2008. The graph neural network model. IEEE transactions on neural networks, 20(1): 61-80.
    [140]
    Schmitt J H, Iung T. 2018. New developments of advanced high-strength steels for automotive applications. Comptes Rendus. Physique, 19(8): 641-656. doi: 10.1016/j.crhy.2018.11.004
    [141]
    Schütt K T, Sauceda H E, Kindermans P J, et al. 2018. Schnet–a deep learning architecture for molecules and materials. The Journal of chemical physics, 148(24).
    [142]
    Sen P C, Hajra M, Ghosh M. 2019. Supervised classification algorithms in machine learning: A survey and review. In Emerging technology in modelling and graphics: Proceedings of IEM graph 2018.
    [143]
    Song L, Meng S, Zhao J, et al. 2025. Exploration of machine learning approach to predict ultra-high temperature mechanical properties of carbon/carbon composites from multi-scale microstructure parameters. Diamond and Related Materials, 112647.
    [144]
    Su T H, Huang S J, Jean J G, et al. 2022. Multiscale computational solid mechanics: data and machine learning. Journal of Mechanics, 38: 568-585. doi: 10.1093/jom/ufac037
    [145]
    Tan Z, Luo L, Zhong J. 2023. Knowledge transfer in evolutionary multi-task optimization: A survey. Applied Soft Computing, 138: 110182. doi: 10.1016/j.asoc.2023.110182
    [146]
    Tansley S, Tolle K M. 2009. The fourth paradigm: data-intensive scientific discovery. Redmond, WA: Microsoft research.
    [147]
    Tjoa E, Guan C. 2020. A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE transactions on neural networks and learning systems, 32(11): 4793-4813.
    [148]
    Tripathi M K, Kumar R, Tripathi R. 2020. Big-data driven approaches in materials science: A survey. Materials Today: Proceedings, 26: 1245-1249. doi: 10.1016/j.matpr.2020.02.249
    [149]
    Unke O T, Meuwly M. 2019. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges. Journal of chemical theory and computation, 15(6): 3678-3693. doi: 10.1021/acs.jctc.9b00181
    [150]
    Unocic R R, Viswanathan G B, Sarosi P M, et al. 2008. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys. Materials Science and Engineering: A, 483: 25-32.
    [151]
    Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. Advances in neural information processing systems, 30.
    [152]
    Versino D, Tonda A, Bronkhorst C A. 2017. Data driven modeling of plastic deformation. Computer Methods in Applied Mechanics and Engineering, 318: 981-1004. doi: 10.1016/j.cma.2017.02.016
    [153]
    Voyiadjis G Z, Almasri A H. 2008. A physically based constitutive model for fcc metals with applications to dynamic hardness. Mechanics of Materials, 40(6): 549-563. doi: 10.1016/j.mechmat.2007.11.008
    [154]
    Wang C, Shen C, Cui Q, et al. 2020. Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels. Journal of Nuclear Materials, 529: 151823. doi: 10.1016/j.jnucmat.2019.151823
    [155]
    Wang C, Zhang C, Yang Z, et al. 2016. Microstructure analysis and yield strength simulation in high Co–Ni secondary hardening steel. Materials Science and Engineering: A, 669: 312-317. doi: 10.1016/j.msea.2016.05.069
    [156]
    Wang G, Hu J, Zhou J, et al. 2025. Knowledge-guided large language model for material science. Review of Materials Research, 100007.
    [157]
    Wang H, Li B, Xuan F Z. 2022. Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)-informed machine learning with sensitive features. International Journal of Fatigue, 164: 107147. doi: 10.1016/j.ijfatigue.2022.107147
    [158]
    Wang H, Li B, Gong J, et al. 2023. Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-informed and data-driven hybrid methods. Engineering Fracture Mechanics, 284: 109242. doi: 10.1016/j.engfracmech.2023.109242
    [159]
    Wang J, Guo W G, Gao X, et al. 2015. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates. International Journal of Plasticity, 65: 85-107. doi: 10.1016/j.ijplas.2014.08.017
    [160]
    Wang J, Li Y, Zhao R, et al. 2020. Physics guided neural network for machining tool wear prediction. Journal of Manufacturing Systems, 57: 298-310. doi: 10.1016/j.jmsy.2020.09.005
    [161]
    Wang L, Zhu S P, Luo C, et al. 2023. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. International Journal of Fatigue, 172: 107658. doi: 10.1016/j.ijfatigue.2023.107658
    [162]
    Wang P, Jiang Y, Liao W, et al. 2025. Generalizable descriptors for automatic titanium alloys design by learning from texts via large language model. Acta Materialia, 121275.
    [163]
    Wang Q, Ma Y, Zhao K, et al. 2022. A comprehensive survey of loss functions in machine learning. Annals of Data Science, 9(2): 187-212. doi: 10.1007/s40745-020-00253-5
    [164]
    Wang Z, Cudmani R, Olarte A A P. 2025. Connecting and distinguishing conventional and data-driven constitutive models: the role of state boundary surfaces. Journal of the Mechanics and Physics of Solids, 200: 106122. doi: 10.1016/j.jmps.2025.106122
    [165]
    Wang Z, Dai Z, Póczos B, et al. 2019. Characterizing and avoiding negative transfer. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
    [166]
    Wang Z, Wang K, Wang Q, et al. 2025. Ragen: Understanding self-evolution in llm agents via multi-turn reinforcement learning. arXiv preprint arXiv: 2504.20073.
    [167]
    Wei Y, Serra Q, Lubineau G, et al. 2023. Coupling physics-informed neural networks and constitutive relation error concept to solve a parameter identification problem. Computers & Structures, 283: 107054.
    [168]
    Weiss K, Khoshgoftaar T M, Wang D. 2016. A survey of transfer learning. Journal of Big data, 3(1): 9. doi: 10.1186/s40537-016-0043-6
    [169]
    Whitman S E, Latypov M I. 2025. Machine learning of microstructure–property relationships in materials leveraging microstructure representation from foundational vision transformers. Acta Materialia, 121217.
    [170]
    Wolpert D H, Macready W G. 2002. No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1): 67-82.
    [171]
    Wu J, Yin X, Xiao H. 2018. Seeing permeability from images: fast prediction with convolutional neural networks. Science bulletin, 63(18): 1215-1222. doi: 10.1016/j.scib.2018.08.006
    [172]
    Xiao S, Hu R, Li Z, et al. 2020. A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Computing and Applications, 32(18): 14359-14373. doi: 10.1007/s00521-019-04480-7
    [173]
    Xie Q, Suvarna M, Li J, et al. 2021. Online prediction of mechanical properties of hot rolled steel plate using machine learning. Materials & Design, 197: 109201.
    [174]
    Xiong J, Shi S Q, Zhang T Y. 2021. Machine learning of phases and mechanical properties in complex concentrated alloys. Journal of Materials Science & Technology, 87: 133-142.
    [175]
    Xiong J, Zhang T, Shi S. 2020. Machine learning of mechanical properties of steels. Science China Technological Sciences, 63(7): 1247-1255. doi: 10.1007/s11431-020-1599-5
    [176]
    Xu C, Cao B T, Yuan Y, et al. 2023. Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering, 405: 115852. doi: 10.1016/j.cma.2022.115852
    [177]
    Xu C, Wang Y, Barati Farimani A. 2023. TransPolymer: a Transformer-based language model for polymer property predictions. npj Computational Materials, 9(1): 64. doi: 10.1038/s41524-023-01016-5
    [178]
    Xu X, Wang L, Zhu G, et al. 2020. Predicting tensile properties of AZ31 magnesium alloys by machine learning. Jom, 72(11): 3935-3942. doi: 10.1007/s11837-020-04343-w
    [179]
    Yang F, Li Z, Wang Q, et al. 2020. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus. npj Computational Materials, 6(1): 101. doi: 10.1038/s41524-020-00372-w
    [180]
    Yang J, Kang G, Liu Y, et al. 2021. A novel method of multiaxial fatigue life prediction based on deep learning. International Journal of Fatigue, 151: 106356. doi: 10.1016/j.ijfatigue.2021.106356
    [181]
    Yang L, Meng X, Karniadakis G E. 2021. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 425: 109913. doi: 10.1016/j.jcp.2020.109913
    [182]
    Yasnii О P, Pastukh O А, Pyndus Y І, et al. 2018. Prediction of the diagrams of fatigue fracture of D16T aluminum alloy by the methods of machine learning. Materials Science, 54(3): 333-338. doi: 10.1007/s11003-018-0189-9
    [183]
    Yu A, Pan Y, Yue L, et al. 2024. Explainable machine learning for hardness prediction of laser powder bed fused Ti-6Al-4V and assisting in understanding effects of process parameters. Journal of Alloys and Compounds, 1008: 176566. doi: 10.1016/j.jallcom.2024.176566
    [184]
    Zeni C, Pinsler R, Zügner D, et al. 2025. A generative model for inorganic materials design. Nature, 639(8055): 624-632. doi: 10.1038/s41586-025-08628-5
    [185]
    Zhan Z, Ao N, Hu Y, et al. 2022. Defect‐induced fatigue scattering and assessment of additively manufactured 300M-AerMet100 steel: An investigation based on experiments and machine learning. Engineering Fracture Mechanics, 264: 108352. doi: 10.1016/j.engfracmech.2022.108352
    [186]
    Zhang T, Yang D B. 2025. Multimodal machine learning with large language embedding model for polymer property prediction. Chemistry of Materials, 37(18): 7002-7013. doi: 10.1021/acs.chemmater.5c00940
    [187]
    Zhang Y, Khan S A, Mahmud A, et al. 2025. Exploring the role of large language models in the scientific method: from hypothesis to discovery. npj Artificial Intelligence, 1(1): 14. doi: 10.1038/s44387-025-00019-5
    [188]
    Zhang Z, Sun C. 2021. Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating. Structural Health Monitoring, 20(4): 1675-1688. doi: 10.1177/1475921720927488
    [189]
    Zhao P, Wang Y, Jiang B, et al. 2023. Neural network modeling of titanium alloy composition-microstructure-property relationships based on multimodal data. Materials Science and Engineering: A, 879: 145202. doi: 10.1016/j.msea.2023.145202
    [190]
    Zhou T, Jiang S, Han T, et al. 2023. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network. International Journal of Fatigue, 166: 107234. doi: 10.1016/j.ijfatigue.2022.107234
    [191]
    Zhou W, Xu Y F. 2024. Damage identification for plate structures using physics-informed neural networks. Mechanical Systems and Signal Processing, 209: 111111 doi: 10.1016/j.ymssp.2024.111111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (128) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return