Turn off MathJax
Article Contents
Zheng Y S, Yuan H B, Qu Y G, Meng G. Advances in thin-walled metastructures for vibration and noise control and their applications in aerospace engineering. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-024
Citation: Zheng Y S, Yuan H B, Qu Y G, Meng G. Advances in thin-walled metastructures for vibration and noise control and their applications in aerospace engineering. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-024

Advances in thin-walled metastructures for vibration and noise control and their applications in aerospace engineering

doi: 10.6052/1000-0992-25-024 cstr: 32046.14.1000-0992-25-024
More Information
  • Thin-walled structures are commonly found in aircraft. As advanced aircraft evolve to meet the demands of wide speed ranges, transmedium capabilities, and large sizes, the vibro-acoustic environments of thin-walled structures have become increasingly complex. Consequently, there is a pressing need for low-frequency, wide-band, and time-varying vibro-acoustic control. The rapid advancement of metastructures/metamaterials has opened new opportunities for breakthroughs in air-vehicle technologies. Thin-walled metastructures based on the local-resonance mechanism offer significant advantages in addressing the challenges of vibro-acoustic control of aircraft. This paper reviews the progress of passive and piezoelectric thin-walled metastructures, focusing on their vibration suppression and sound insulation capabilities, and provides a comparative analysis of their evolutionary process and technical features. It offers guidelines for designing thin-walled metastructures in advanced aircraft. First, the mechanisms of local-resonance bandgaps in both passive and piezoelectric thin-walled metastructures are explained, along with their sound-insulation mechanisms, which lays the theoretical foundation for introducing research progress of this area. Additionally, the research progress of thin-walled metastructures for vibration suppression and sound insulation is reviewed, with particular attention to nonlinear thin-walled metastructures. Subsequently, the applications of thin-walled metastructures in addressing vibro-acoustic control issues of air vehicles are discussed. Finally, this paper offers future outlooks for thin-walled metastructures in air vehicles, focusing on optimal design, intelligent tuning, multifunctional integration, adaptability to extreme environments and precision manufacturing.

     

  • loading
  • [1]
    曹丰, 曾志勇, 黄建, 等. 2023. 连续纤维增强复合材料的3D打印工艺及应用进展. 中国科学: 技术科学, 53(11): 1815-1833 (Cao F, Zeng Z Y, Huang J, et al. 2023. Printing process and application progress of 3D printing continuous fiber reinforced composites. Scientia Sinica Technologica, 53(11): 1815-1833). doi: 10.1360/SST-2023-0077

    Cao F, Zeng Z Y, Huang J, et al. 2023. Printing process and application progress of 3D printing continuous fiber reinforced composites. Scientia Sinica Technologica, 53(11): 1815-1833 doi: 10.1360/SST-2023-0077
    [2]
    丁千, 张舒, 黄锐, 等. 2025. 数据驱动动力学与控制研究若干进展. 力学进展, 55(4): 747-818 (Ding Q, Zhang S, Huang R, et al. 2025. Recent advances on data-driven dynamics and control. Advances in Mechanics, 55(4): 747-818).

    Ding Q, Zhang S, Huang R, et al. 2025. Recent advances on data-driven dynamics and control. Advances in Mechanics, 55(4): 747-818
    [3]
    高鹏林, 龚凌云, 王国旭, 等. 2025. 非线性周期结构动力学与波动调控研究进展. 力学进展, 55(3): 567-641 (Gao P L, Gong L Y, Wang G X, et al. 2025. Review on the dynamics and wave control in nonlinear periodic structures. Advances in Mechanics, 55(3): 567-641). doi: 10.6052/1000-0992-24-047

    Gao P L, Gong L Y, Wang G X, et al. 2025. Review on the dynamics and wave control in nonlinear periodic structures. Advances in Mechanics, 55(3): 567-641 doi: 10.6052/1000-0992-24-047
    [4]
    顾金桃, 王晓乐, 汤又衡, 等. 2022. 提高飞机壁板低频宽带隔声的层合声学超材料. 航空学报, 43(1): 224785 (Gu J T, Wang X L, Tang Y H, et al. 2022. Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels. Acta Aeronautica et Astronautica Sinica, 43(1): 224785). doi: 10.7527/S1000-6893.2020.24785

    Gu J T, Wang X L, Tang Y H, et al. 2022. Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels. Acta Aeronautica et Astronautica Sinica, 43(1): 224785 doi: 10.7527/S1000-6893.2020.24785
    [5]
    季宏丽, 黄薇, 裘进浩, 等. 2017. 声学黑洞结构应用中的力学问题. 力学进展, 47: 201710 (Ji H L, Huang W, Qiu J H, et al. 2017. Mechanics problems in application of acoustic black hole structures. Advances in Mechanics, 47: 201710). doi: 10.6052/1000-0992-16-033

    Ji H L, Huang W, Qiu J H, et al. 2017. Mechanics problems in application of acoustic black hole structures. Advances in Mechanics, 47: 201710 doi: 10.6052/1000-0992-16-033
    [6]
    季宏丽, 裘进浩, 赵金玲. 2018. 结构半主动振动控制−压电同步开关阻尼技术. 北京: 科学出版社 (Ji H L, Qiu J H, Zhao J L. 2018. Piezoelecrtic semi-active vibration control-synchronized switch damping technology. Beijing: Science Press).

    Ji H L, Qiu J H, Zhao J L. 2018. Piezoelecrtic semi-active vibration control-synchronized switch damping technology. Beijing: Science Press
    [7]
    李政阳, 王彦正, 马天雪, 等. 2022. 智能压电声子晶体与超材料研究现状与展望. 科学通报, 67(12): 1305-1325 (Li Z Y, Wang Y Z, Ma T X, et al. 2022. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook. Chinese Science Bulletin, 67(12): 1305-1325). doi: 10.1360/TB-2021-1265

    Li Z Y, Wang Y Z, Ma T X, et al. 2022. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook. Chinese Science Bulletin, 67(12): 1305-1325 doi: 10.1360/TB-2021-1265
    [8]
    卢天健, 辛锋先. 2014. 轻质板壳结构设计的振动和声学基础. 北京: 科学出版社 (Lu T J, Xin F X. 2014. The basics of vibration and sound in designing light plates and shells. Beijing: Science Press).

    Lu T J, Xin F X. 2014. The basics of vibration and sound in designing light plates and shells. Beijing: Science Press
    [9]
    宋玉宝, 温激鸿, 郁殿龙, 等. 2018. 板结构振动与噪声抑制研究综述. 机械工程学报, 54(15): 60-77 (Song Y B, Wen J H, Yu D L, et al. 2018. Review of vibration and noise control of the plate structures. Journal of Mechanical Engineering, 54(15): 60-77). doi: 10.3901/JME.2018.15.060

    Song Y B, Wen J H, Yu D L, et al. 2018. Review of vibration and noise control of the plate structures. Journal of Mechanical Engineering, 54(15): 60-77 doi: 10.3901/JME.2018.15.060
    [10]
    王凯, 周加喜, 蔡昌琦, 等. 2022. 低频弹性波超材料的若干进展. 力学学报, 54(10): 2678-2694 (Wang K, Zhou J X, Cai C Q, et al. 2022. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 54(10): 2678-2694). doi: 10.6052/0459-1879-22-108

    Wang K, Zhou J X, Cai C Q, et al. 2022. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 54(10): 2678-2694 doi: 10.6052/0459-1879-22-108
    [11]
    王晓乐, 孙萍, 顾鑫, 等. 2024. 直升机声学超材料舱壁的低频多带隙降噪特性. 航空学报, 45(6): 428901 (Wang X L, Sun P, Gu X, et al. 2024. Low-frequency and multi-bandgap noise reduction characteristics of acoustic metamaterial-based helicopter sidewall. Acta Aeronautica et Astronautica Sinica, 45(6): 428901). doi: 10.7527/S1000-6893.2023.28901

    Wang X L, Sun P, Gu X, et al. 2024. Low-frequency and multi-bandgap noise reduction characteristics of acoustic metamaterial-based helicopter sidewall. Acta Aeronautica et Astronautica Sinica, 45(6): 428901 doi: 10.7527/S1000-6893.2023.28901
    [12]
    吴九汇, 马富银, 沈思文, 等. 2016. 声学超材料在低频减振降噪中的应用评述. 机械工程学报, 52(13): 68-78 (Wu J H, Ma F Y, Shen S W, et al. 2016. Application of acoustic metamaterials in low-frequency vibration and noise reduction. Journal of Mechanical Engineering, 52(13): 68-78). doi: 10.3901/JME.2016.13.068

    Wu J H, Ma F Y, Shen S W, et al. 2016. Application of acoustic metamaterials in low-frequency vibration and noise reduction. Journal of Mechanical Engineering, 52(13): 68-78 doi: 10.3901/JME.2016.13.068
    [13]
    肖勇, 王洋, 赵宏刚, 等. 2023. 面向减振降噪应用的声学超构材料研究进展. 机械工程学报, 59(19): 277-298 (Xiao Y, Wang Y, Zhao H G, et al. 2023. Research progress of acoustic metamaterials for vibration and noise reduction applications. Journal of Mechanical Engineering, 59(19): 277-298). doi: 10.3901/JME.2023.19.277

    Xiao Y, Wang Y, Zhao H G, et al. 2023. Research progress of acoustic metamaterials for vibration and noise reduction applications. Journal of Mechanical Engineering, 59(19): 277-298 doi: 10.3901/JME.2023.19.277
    [14]
    杨智春, 夏巍. 2010. 壁板颤振的分析模型、数值求解方法和研究进展. 力学进展, 40(1): 81-98 (Yang Z C, Xia W. 2010. Analytical models, numerical solutions and advances in the study of panel flutter. Advances in Mechanics, 40(1): 81-98). doi: 10.6052/1000-0992-2010-1-J2008-058

    Yang Z C, Xia W. 2010. Analytical models, numerical solutions and advances in the study of panel flutter. Advances in Mechanics, 40(1): 81-98 doi: 10.6052/1000-0992-2010-1-J2008-058
    [15]
    易凯军, 陈洋洋, 朱睿, 等. 2022. 力电耦合主动超材料及其弹性波调控. 科学通报, 67(12): 1290-1304 (Yi K J, Chen Y Y, Zhu R, et al. 2022. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 67(12): 1290-1304). doi: 10.1360/TB-2021-0573

    Yi K J, Chen Y Y, Zhu R, et al. 2022. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 67(12): 1290-1304 doi: 10.1360/TB-2021-0573
    [16]
    尹剑飞, 蔡力, 方鑫, 等. 2022. 力学超材料研究进展与减振降噪应用. 力学进展, 52(3): 508-586 (Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52(3): 508-586). doi: 10.6052/1000-0992-22-005

    Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52(3): 508-586 doi: 10.6052/1000-0992-22-005
    [17]
    苑凯华, 章卓耿, 查俊, 等. 2024. 超声速壁板气动弹性动响应抑制风洞试验研究. 北京航空航天大学学报, 1-9 (Yuan K H, Zhang Z G, Zha J, et al. 2024. Wind tunnel test for aeroelastic dynamic response supression of supersonic panel. Journal of Beijing University of Aeronautics and Astronautics, 1-9).

    Yuan K H, Zhang Z G, Zha J, et al. 2024. Wind tunnel test for aeroelastic dynamic response supression of supersonic panel. Journal of Beijing University of Aeronautics and Astronautics, 1-9.
    [18]
    袁毅, 游镇宇, 陈伟球. 2021. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 53(8): 2101-2116 (Yuan Y, You Z Y, Chen W Q. 2021. Piezoelectric metamaterials and wave control: Status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 53(8): 2101-2116). doi: 10.6052/0459-1879-21-198

    Yuan Y, You Z Y, Chen W Q. 2021. Piezoelectric metamaterials and wave control: Status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 53(8): 2101-2116 doi: 10.6052/0459-1879-21-198
    [19]
    章本本, 缪林昌, 郑海忠, 等. 2024. 机器学习在声学超材料中的应用进展. 振动与冲击, 43(23): 280-293 (Zhang B B, Liao L C, Zheng H Z, et al. 2024. Application progress of machine learning in acoustic metamaterials. Journal of Vibration and Shock, 43(23): 280-293). doi: 10.13465/j.cnki.jvs.2024.23.031

    Zhang B B, Liao L C, Zheng H Z, et al. 2024. Application progress of machine learning in acoustic metamaterials. Journal of Vibration and Shock, 43(23): 280-293 doi: 10.13465/j.cnki.jvs.2024.23.031
    [20]
    张桂玮, 刘召庆, 朱镭, 等. 2024. 地面颤振模拟试验技术研究进展. 航空学报, 45(10): 029229 (Zhang G W, Liu Z Q, Zhu L, et al. 2024. Research progress of ground flutter simulation test technology. Acta Aeronautica et Astronautica Sinica, 45(10): 029229). doi: 10.7527/S1000-6893.2024.29229

    Zhang G W, Liu Z Q, Zhu L, et al. 2024. Research progress of ground flutter simulation test technology. Acta Aeronautica et Astronautica Sinica, 45(10): 029229 doi: 10.7527/S1000-6893.2024.29229
    [21]
    郑宜生, 袁怀炳. 2025. 旋翼飞行器压电超结构涵道隔声设计与调控方法. CN120553178A (Zheng Y S, Yuang H B. 2025. Sound insulation and tuning methods of piezoelectric metastructure ducts of rotorcrafts. CN120553178A).

    Zheng Y S, Yuang H B. 2025. Sound insulation and tuning methods of piezoelectric metastructure ducts of rotorcrafts. CN120553178A
    [22]
    郑宜生, 陈逸涵, 瞿叶高, 等. 2024. 双稳态压电超结构的超传输滞回效应与非互易编码特性. 力学学报, 56(7): 2103-2113 (Zheng Y S, Chen Y H, Qu Y G, et al. 2024. Supratransmission hysteresis and nonreciprocal codes in a piezoelectric metastructure with bistable-circuit shunts. Chinese Journal of Theoretical and Applied Mechanics, 56(7): 2103-2113). doi: 10.6052/0459-1879-23-612

    Zheng Y S, Chen Y H, Qu Y G, et al. 2024. Supratransmission hysteresis and nonreciprocal codes in a piezoelectric metastructure with bistable-circuit shunts. Chinese Journal of Theoretical and Applied Mechanics, 56(7): 2103-2113 doi: 10.6052/0459-1879-23-612
    [23]
    Aghakhani A, Gozum M M, Basdogan I. 2020. Modal analysis of finite-size piezoelectric metamaterial plates. Journal of Physics D: Applied Physics, 53(50): 505304. doi: 10.1088/1361-6463/abb5d5
    [24]
    Airoldi L, Ruzzene M. 2011a. Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New Journal of Physics, 13(11): 113010. doi: 10.1088/1367-2630/13/11/113010
    [25]
    Airoldi L, Ruzzene M. 2011b. Wave propagation control in beams through periodic multi-branch shunts. Journal of Intelligent Material Systems and Structures, 22(14): 1567-1579. doi: 10.1177/1045389X11408372
    [26]
    Ajith A, Balakrishnan B, Raja S, et al. 2025. Sound transmission performance of plate-type acoustic metamaterials for quieter aircraft cabins. Applied Acoustics, 238: 110806. doi: 10.1016/j.apacoust.2025.110806
    [27]
    Alfahmi O, Erturk A. 2024. Programmable hardening and softening cubic inductive shunts for piezoelectric structures: Harmonic balance analysis and experiments. Journal of Sound and Vibration, 571: 118029. doi: 10.1016/j.jsv.2023.118029
    [28]
    Alfahmi O, Sugino C, Erturk A. 2022. Duffing-type digitally programmable nonlinear synthetic inductance for piezoelectric structures. Smart Materials and Structures, 31(9): 095044. doi: 10.1088/1361-665X/ac858b
    [29]
    Alshaqaq M, Erturk A. 2020. Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting. Smart Materials and Structures, 30(1): 015029. doi: 10.1088/1361-665x/abc7fa
    [30]
    Amaral D R, Ichchou M N, Kołakowski P, et al. 2023. Lightweight gearbox housing with enhanced vibro-acoustic behavior through the use of locally resonant metamaterials. Applied Acoustics, 210: 109435. doi: 10.1016/j.apacoust.2023.109435
    [31]
    Bai L, Yao H, Han C, et al. 2025. Recent advances in nonlinear vibration metamaterials. Mechanical Systems and Signal Processing, 236: 113046. doi: 10.1016/j.ymssp.2025.113046
    [32]
    Balakrishnan B, Raja S, Chandra N. 2024. Numerical investigation and optimization of plate-type acoustic metamaterials for noise reduction in segmented aircraft fuselage cabin structure. Asian Conf. Mech. Funct. Mater. Struct., pp. 407-420. Springer Nature Singapore.
    [33]
    Bao B, Guyomar D, Lallart M. 2016. Electron−phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control. Smart Materials and Structures, 25(9): 095010. doi: 10.1088/0964-1726/25/9/095010
    [34]
    Bao B, Guyomar D, Lallart M. 2017a. Piezoelectric metacomposite structure carrying nonlinear multilevel interleaved-interconnected switched electronic networks. Composite Structures, 161: 308-329. doi: 10.1016/j.compstruct.2016.11.031
    [35]
    Bao B, Guyomar D, Lallart M. 2017b. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks. Mechanical Systems and Signal Processing, 82: 230-259. doi: 10.1016/j.ymssp.2016.05.021
    [36]
    Bao B, Lallart M, Guyomar D. 2020. Structural design of a piezoelectric meta-structure with nonlinear electrical Bi-link networks for elastic wave control. International Journal of Mechanical Sciences, 181: 105730. doi: 10.1016/j.ijmecsci.2020.105730
    [37]
    Bao B, Wang Q. 2019. Elastic wave manipulation in piezoelectric beam meta-structure using electronic negative capacitance dual-adjacent/staggered connections. Composite Structures, 210: 567-580. doi: 10.1016/j.compstruct.2018.11.053
    [38]
    Bao B, Zhou S. 2025. Piezoelectric thin-walled meta-plates via nonlinear semi-active electrical interface for low-frequency distributed broadband vibration control. Journal of Sound and Vibration, 602: 118948. doi: 10.1016/j.jsv.2025.118948
    [39]
    Bergamini A E, Zündel M, Parra E A F, et al. 2015. Hybrid dispersive media with controllable wave propagation: A new take on smart materials. Journal of Applied Physics, 118(15): 154310. doi: 10.1063/1.4934202
    [40]
    Cai C, Guo X, Yan B, et al. 2024. Modelling and analysis of the quasi-zero-stiffness metamaterial cylindrical shell for low-frequency band gap. Applied Mathematical Modelling, 135: 90-108. doi: 10.1016/j.apm.2024.06.031
    [41]
    Cai C, Zhou J, Wang K, et al. 2022. Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators. Mechanical Systems and Signal Processing, 174: 109119. doi: 10.1016/j.ymssp.2022.109119
    [42]
    Cardella D, Celli P, Gonella S. 2016. Manipulating waves by distilling frequencies: A tunable shunt-enabled rainbow trap. Smart Materials and Structures, 25(8): 085017. doi: 10.1088/0964-1726/25/8/085017
    [43]
    Casadei F, Dozio L, Ruzzene M, et al. 2010a. Periodic shunted arrays for the control of noise radiation in an enclosure. Journal of Sound and Vibration, 329(18): 3632-3646. doi: 10.1016/j.jsv.2010.04.003
    [44]
    Casadei F, Ruzzene M, Dozio L, et al. 2010b. Broadband vibration control through periodic arrays of resonant shunts: Experimental investigation on plates. Smart Materials and Structures, 19: 015002. doi: 10.1088/0964-1726/19/1/015002
    [45]
    Casalotti A, El-borgi S, Lacarbonara W. 2018. Metamaterial beam with embedded nonlinear vibration absorbers. International Journal of Non-Linear Mechanics, 98: 32-42. doi: 10.1016/j.ijnonlinmec.2017.10.002
    [46]
    Celli P, Yousefzadeh B, Daraio C, et al. 2019. Bandgap widening by disorder in rainbow metamaterials. Applied Physics Letters, 114(9): 091903. doi: 10.1063/1.5081916
    [47]
    Chai Y, Gao W, Ankay B, et al. 2021. Aeroelastic analysis and flutter control of wings and panels: A review. International Journal of Mechanical System Dynamics, 1(1): 5-34. doi: 10.1002/msd2.12015
    [48]
    Chang K J, Jung J, Kim H G, et al. 2018. An application of acoustic metamaterial for reducing noise transfer through car body panels. SAE Technical Papers, 2018-01-1566.
    [49]
    Chen B, Zheng Y, Dai S, et al. 2024a. Bandgap enhancement of a piezoelectric metamaterial beam shunted with circuits incorporating fractional and cubic nonlinearities. Mechanical Systems and Signal Processing, 212: 111262. doi: 10.1016/j.ymssp.2024.111262
    [50]
    Chen J, Huang J, An M, et al. 2024b. Application of machine learning on the design of acoustic metamaterials and phonon crystals: A review. Smart Materials and Structures, 33(7): 073001. doi: 10.1088/1361-665X/ad51bc
    [51]
    Chen K, Dong X, Gao P, et al. 2025. Physics-informed neural networks for topological metamaterial design and mechanical applications. International Journal of Mechanical Sciences, 301: 110489. doi: 10.1016/j.ijmecsci.2025.110489
    [52]
    Chen S, Wang G, Wen J, et al. 2013. Wave propagation and attenuation in plates with periodic arrays of shunted piezo-patches. Journal of Sound and Vibration, 332(6): 1520-1532. doi: 10.1016/j.jsv.2012.11.005
    [53]
    Chen S, Wen J, Yu D, et al. 2011. Band gap control of phononic beam with negative capacitance piezoelectric shunt. Chinese Physics B, 20(1): 014301. doi: 10.1088/1674-1056/20/1/014301
    [54]
    Chen Y Y, Hu G K, Huang G L. 2016. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves. Smart Materials and Structures, 25(10): 105036. doi: 10.1088/0964-1726/25/10/105036
    [55]
    Chen Y Y, Huang G L, Sun C T. 2014. Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. Journal of Vibration and Acoustics, 136(6): 061008. doi: 10.1115/1.4028378
    [56]
    Dai S, Zheng Y, Mao J, et al. 2023a. Vibro-acoustic control of a programmable meta-shell with digital piezoelectric shunting. International Journal of Mechanical Sciences, 255: 108475. doi: 10.1016/j.ijmecsci.2023.108475
    [57]
    Dai S, Zheng Y, Qu Y. 2023b. Programmable piezoelectric meta-rings with high-order digital circuits for suppressing structural and acoustic responses. Mechanical Systems and Signal Processing, 200(800): 110517. doi: 10.1016/j.ymssp.2023.110517
    [58]
    Daqaq M F, Masana R, Erturk A, et al. 2014. On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion. Applied Mechanics Reviews, 66(4): 040801. doi: 10.1115/1.4026278
    [59]
    Dekemele K, Giraud-Audine C, Thomas O. 2024. A piezoelectric nonlinear energy sink shunt for vibration damping. Mechanical Systems and Signal Processing, 220: 111615. doi: 10.1016/j.ymssp.2024.111615
    [60]
    Dong W, Huang Z, Wang T, et al. 2024. Low-frequency vibration reduction of an underwater metamaterial plate excited by a turbulent boundary layer. Journal of Fluids and Structures, 126: 104103. doi: 10.1016/j.jfluidstructs.2024.104103
    [61]
    Droste M, Manushyna D, Rieß S, et al. 2022. Application of vibroacoustic metamaterials in a vehicle door. DAGA 2022 Stuttgart, 233-235.
    [62]
    Droz C, Robin O, Ichchou M, et al. 2019. Improving sound transmission loss at ring frequency of a curved panel using tunable 3D-printed small-scale resonators. The Journal of the Acoustical Society of America, 145(1): EL72-EL78. doi: 10.1121/1.5088036
    [63]
    Envia E. 2001. Fan noise reduction: An overview. 39th Aerosp. Sci. Meet. Exhib, 1(1): 43-64. doi: 10.2514/6.2001-661
    [64]
    Errico F, Franco F, De Rosa S, et al. 2020. Aeroelastic effects on wave propagation and sound transmission of plates and shells. AIAA Journal, 58(5): 2269-2275. doi: 10.2514/1.J058722
    [65]
    Ewins D J. 2010. Control of vibration and resonance in aero engines and rotating machinery—An overview. International Journal of Pressure Vessels and Piping, 87(9): 504-510. doi: 10.1016/j.ijpvp.2010.07.001
    [66]
    Fan L, He Y, Chen X A, et al. 2021. A frequency response function-based optimization for metamaterial beams considering both location and mass distributions of local resonators. Journal of Applied Physics, 130(11): 115101. doi: 10.1063/5.0059025
    [67]
    Fang N, Xi D, Xu J, et al. 2006. Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6): 452-456. doi: 10.1038/nmat1644
    [68]
    Fang X, Lacarbonara W, Cheng L. 2025. Advances in nonlinear acoustic/elastic metamaterials and metastructures. Nonlinear Dynamics, 113: 23787-23814. doi: 10.1007/s11071-024-10219-4
    [69]
    Fang X, Li T, Hu B, et al. 2023. Breaking the mass law for broadband sound insulation through strongly nonlinear interactions. New Journal of Physics, 25: 093010. doi: 10.1088/1367-2630/acf394
    [70]
    Fang X, Sheng P, Wen J, et al. 2022. A nonlinear metamaterial plate for suppressing vibration and sound radiation. International Journal of Mechanical Sciences, 228: 107473. doi: 10.1016/j.ijmecsci.2022.107473
    [71]
    Fang X, Wen J, Bonello B, et al. 2017a. Wave propagation in one-dimensional nonlinear acoustic metamaterials. New Journal of Physics, 19(5): 053007. doi: 10.1088/1367-2630/aa6d49
    [72]
    Fang X, Wen J, Bonello B, et al. 2017b. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 8: 1288. doi: 10.1038/s41467-017-00671-9
    [73]
    Fronk M D, Fang L, Packo P, et al. 2023. Elastic wave propagation in weakly nonlinear media and metamaterials: A review of recent developments. Nonlinear Dynamics, 111(12): 10709-10741. doi: 10.1007/s11071-023-08399-6
    [74]
    Gao L, Mak C M, Ma K W, et al. 2024. Mechanisms of multi-bandgap inertial amplification applied in metamaterial sandwich plates. International Journal of Mechanical Sciences, 277: 109424. doi: 10.1016/j.ijmecsci.2024.109424
    [75]
    Gao N, Zhang Z, Deng J, et al. 2022. Acoustic metamaterials for noise reduction: A review. Advanced Materials Technologies, 7(6): 2100698. doi: 10.1002/admt.202100698
    [76]
    Giannini D, Schevenels M, Reynders E P B. 2025. Topology optimization design of multi-modal resonators for metamaterial panels with maximized broadband vibroacoustic attenuation. Journal of Sound and Vibration, 595: 118691. doi: 10.1016/j.jsv.2024.118691
    [77]
    Gong L, Zhang G, Gao P, et al. 2025. Tunable nonlinear piezoelectric metabeams for multimode vibration suppression. International Journal of Mechanical Sciences, 295(800): 110238. doi: 10.1016/j.ijmecsci.2025.110238
    [78]
    Greenwood E, Brentner K S, Rau R F, et al. 2022. Challenges and opportunities for low noise electric aircraft. International Journal of Aeroacoustics, 21(5-7): 315-381. doi: 10.1177/1475472X221107377
    [79]
    Gu J, Tang Y, Wang X, et al. 2022. Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation. Composite Structures, 292: 115689. doi: 10.1016/j.compstruct.2022.115689
    [80]
    Guo X, Gusev V E, Bertoldi K, et al. 2018. Manipulating acoustic wave reflection by a nonlinear elastic metasurface. Journal of Applied Physics, 123(12): 124901. doi: 10.1063/1.5015952
    [81]
    Guo X, Gusev V E, Tournat V. 2019. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface. Physical Review E, 99: 052209. doi: 10.1103/PhysRevE.99.052209
    [82]
    Gurbuz C, Kronowetter F, Dietz C, et al. 2021. Generative adversarial networks for the design of acoustic metamaterials. The Journal of the Acoustical Society of America, 149(2): 1162-1174. doi: 10.1121/10.0003501
    [83]
    Hagood N W, von Flotow A. 1991. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2): 243-268. doi: 10.1016/0022-460X(91)90762-9
    [84]
    He C, Wang B, Song Q, et al. 2024. Research progress on analysis and test methods of aircraft panel flutter. Advances in Aeronautical Science and Engineering, 15(6): 66-76. doi: 10.16615/j.cnki.1674-8190.2024.06.06
    [85]
    Hernan J, Torre V, Brunskog J, et al. 2021. Hybrid analytical-numerical optimization design methodology of acoustic metamaterials for sound insulation. The Journal of the Acoustic Society of America, 149: 4398-4409. doi: 10.1121/10.0005316
    [86]
    Hu B, Fang X, Wen J, et al. 2024. Effectively reduce transient vibration of 2D wing with bi-stable metamaterial. International Journal of Mechanical Sciences, 272: 109172. doi: 10.1016/j.ijmecsci.2024.109172
    [87]
    Hu G, Austin A C M, Sorokin V, et al. 2021. Metamaterial beam with graded local resonators for broadband vibration suppression. Mechanical Systems and Signal Processing, 146: 106982. doi: 10.1016/j.ymssp.2020.106982
    [88]
    Huang W, Tang W, Chen Z, et al. 2025. Reinforcement-learning empowered adaptive piezoelectric metamaterial for variable-frequency vibration attenuation. Engineering Structures, 332: 120013. doi: 10.1016/j.engstruct.2025.120013
    [89]
    Jang J Y, Song K. 2023. Synergistic acoustic metamaterial for soundproofing: Combining membrane and locally resonant structure. International Journal of Mechanical Sciences, 256: 108500. doi: 10.1016/j.ijmecsci.2023.108500
    [90]
    Janssen S, Van Belle L, de Melo Filho N G R, et al. 2023. Improving the noise insulation performance of vibro-acoustic metamaterial panels through multi-resonant design. Applied Acoustics, 213: 109622. doi: 10.1016/j.apacoust.2023.109622
    [91]
    Ji G, Huber J. 2024. Planar piezoelectric metamaterials: Sound transmission and applicable frequency range in oblique incidence. International Journal of Solids and Structures, 289: 112640. doi: 10.1016/j.ijsolstr.2023.112640
    [92]
    Ji G, Zhou J, Huber J. 2023. The evaluation of electrical circuits for adjusting sound transmission properties of piezoelectric metamaterials. Mechanical Systems and Signal Processing, 200: 110549. doi: 10.1016/j.ymssp.2023.110549
    [93]
    Jian Y, Hu G, Tang L, et al. 2023. Adaptive piezoelectric metamaterial beam: Autonomous attenuation zone adjustment in complex vibration environments. Smart Materials and Structures, 32(10): 105023. doi: 10.1088/1361-665X/acf62f
    [94]
    Jian Y, Tang L, Hu G, et al. 2022. Design of graded piezoelectric metamaterial beam with spatial variation of electrodes. International Journal of Mechanical Sciences, 218: 107068. doi: 10.1016/j.ijmecsci.2022.107068
    [95]
    Jin Y, Jia X Y, Wu Q Q, et al. 2022a. Design of cylindrical honeycomb sandwich meta-structures for vibration suppression. Mechanical Systems and Signal Processing, 163: 108075. doi: 10.1016/j.ymssp.2021.108075
    [96]
    Jin Y, Wang Y-Z, Li X-Y, et al. 2023. Sound transmission across locally resonant honeycomb sandwich meta-structures with large spatial periodicity. The Journal of the Acoustical Society of America, 154(4): 2609-2624. doi: 10.1121/10.0021869
    [97]
    Jin Y, Zeng S, Wen Z, et al. 2022b. Deep-subwavelength lightweight metastructures for low-frequency vibration isolation. Materials and Design, 215: 110499. doi: 10.1016/j.matdes.2022.110499
    [98]
    Jung J, Goo S, Kook J. 2020. Design of a local resonator using topology optimization to tailor bandgaps in plate structures. Materials and Design, 191: 108627. doi: 10.1016/j.matdes.2020.108627
    [99]
    Jung J, Kim H G, Goo S, et al. 2019. Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mechanical Systems and Signal Processing, 122: 206-231. doi: 10.1016/j.ymssp.2018.11.050
    [100]
    Ke Y, Yin J, He Y, et al. 2025. A novel approach for lightweight vibro-acoustic control by optimizing meta-shells into discrete resonator shells. Mechanical Systems and Signal Processing, 232: 112687. doi: 10.1016/j.ymssp.2025.112687
    [101]
    Kianfar A, Hussein M I. 2023. Phononic-subsurface flow stabilization by subwavelength locally resonant metamaterials. New Journal of Physics, 25(5): 053021. doi: 10.1088/1367-2630/accbe5
    [102]
    Langfeldt F. 2018. Membrane-type acoustic metamaterials for aircraft noise shields. Hamburg University of Technology.
    [103]
    Langfeldt F, Gleine W. 2019. Membrane- and plate-type acoustic metamaterials with elastic unit cell edges. Journal of Sound and Vibration, 453: 65-86. doi: 10.1016/j.jsv.2019.04.018
    [104]
    Langfeldt F, Gleine W. 2020. Optimizing the bandwidth of plate-type acoustic metamaterials. The Journal of the Acoustical Society of America, 148(3): 1304-1314. doi: 10.1121/10.0001925
    [105]
    Langfeldt F, Riecken J, Gleine W, et al. 2016. A membrane-type acoustic metamaterial with adjustable acoustic properties. Journal of Sound and Vibration, 373: 1-18. doi: 10.1016/j.jsv.2016.03.025
    [106]
    Lazarov B S, Jensen J S. 2007. Low-frequency band gaps in chains with attached non-linear oscillators. International Journal of Non-Linear Mechanics, 42(10): 1186-1193. doi: 10.1016/j.ijnonlinmec.2007.09.007
    [107]
    Li H, Tang Z, Zuo G, et al. 2024a. Laminated acoustic metamaterials for low-frequency broadband ultra-strong sound insulation. Thin-Walled Structures, 202: 112151. doi: 10.1016/j.tws.2024.112151
    [108]
    Li H, Yang J, Liu Q, et al. 2024b. A novel sandwich structure for integrated sound insulation and absorption. International Journal of Mechanical Sciences, 279: 109526. doi: 10.1016/j.ijmecsci.2024.109526
    [109]
    Li T, Fang X, Wen J. 2025. Significantly broaden sound insulation of metamaterial plate via strongly nonlinear interaction. Nonlinear Dynamics, 113: 24061-24076. doi: 10.1007/s11071-025-11074-7
    [110]
    Liao Y, Chen Y, Huang G, et al. 2018. Broadband low-frequency sound isolation by lightweight adaptive metamaterials. Journal of Applied Physics, 123(9): 091705. doi: 10.1063/1.5011251
    [111]
    Liu B, Chen P, Zhu T, et al. 2024a. Tunable bandgaps in an elastic meta-plate with shape memory alloy springs. Extreme Mechanics Letters, 72: 102240. doi: 10.1016/j.eml.2024.102240
    [112]
    Liu C, Zhang W, Yu K, et al. 2024b. Quasi-zero-stiffness vibration isolation: Designs, improvements and applications. Engineering Structures, 301: 117282. doi: 10.1016/j.engstruct.2023.117282
    [113]
    Liu F, Xu Y, Peng P, et al. 2024c. A meta-plate with radial rainbow reflection effect for broadband suppression of vibration and sound radiation. Journal of Sound and Vibration, 585: 118428. doi: 10.1016/j.jsv.2024.118428
    [114]
    Liu S, Mao J, Liu H, et al. 2025. Nonlinear flapping and symmetry-breaking bifurcation modulation of a piezoelectric metamaterial beam in viscous flow. Journal of Fluid Mechanics, 1019: A2. doi: 10.1017/jfm.2025.10556
    [115]
    Liu Y, Jin Y, Yang Y, et al. 2026. Lightweight continuous carbon fiber reinforced composite truss beam metastructure with cruciform resonators for vibration attenuation. Composites Part A, 201: 109408. doi: 10.1016/j.compositesa.2025.109408
    [116]
    Liu Z, Rumpler R, Feng L. 2019. Investigation of the sound transmission through a locally resonant metamaterial cylindrical shell in the ring frequency region. Journal of Applied Physics, 125(11): 115105. doi: 10.1063/1.5081134
    [117]
    Liu Z, Rumpler R, Feng L. 2021. Locally resonant metamaterial curved double wall to improve sound insulation at the ring frequency and mass-spring-mass resonance. Mechanical Systems and Signal Processing, 149: 107179. doi: 10.1016/j.ymssp.2020.107179
    [118]
    Liu Z, Rumpler R, Sun H, et al. 2022. Improving sound insulation near ring and coincidence frequencies of cylindrical sandwich shells. International Journal of Mechanical Sciences, 235: 107661. doi: 10.1016/j.ijmecsci.2022.107661
    [119]
    Liu Z, Zhang X, Mao Y, et al. 2000. Locally resonant sonic materials. Science, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [120]
    Lossouarn B, Aucejo M, Deü J-F. 2015. Multimodal coupling of periodic lattices and application to rod vibration damping with a piezoelectric network. Smart Materials and Structures, 24(4): 045018. doi: 10.1088/0964-1726/24/4/045018
    [121]
    Lossouarn B, Aucejo M, Deü J F. 2018a. Electromechanical wave finite element method for interconnected piezoelectric waveguides. Computers and Structures, 199: 46-56. doi: 10.1016/j.compstruc.2018.01.009
    [122]
    Lossouarn B, Deü J F, Kerschen G. 2018b. A fully passive nonlinear piezoelectric vibration absorber. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2127): 20170142. doi: 10.1098/rsta.2017.0142
    [123]
    Luo A, Lossouarn B, Erturk A. 2023. Multimodal vibration damping of a thin circular ring coupled to an analogous piezoelectric network: Numerical analysis. Journal of Sound and Vibration, 581: 203-213. doi: 10.7712/150123.9778.444165
    [124]
    Luo A, Lossouarn B, Erturk A. 2024. Multimodal vibration damping of a three-dimensional circular ring coupled to analogous piezoelectric networks. Journal of Sound and Vibration, 581: 118385. doi: 10.1016/j.jsv.2024.118385
    [125]
    Ma F, Wang C, Liu C, et al. 2021. Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. Journal of Applied Physics, 129: 231103. doi: 10.1063/5.0042132
    [126]
    Ma H, Yan B. 2021. Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mechanical Systems and Signal Processing, 146: 107010. doi: 10.1016/j.ymssp.2020.107010
    [127]
    Mace B R, Manconi E. 2008. Modelling wave propagation in two-dimensional structures using finite element analysis. Journal of Sound and Vibration, 318(4-5): 884-902. doi: 10.1016/j.jsv.2008.04.039
    [128]
    Manktelow K, Leamy M J, Ruzzene M. 2011. Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dynamics, 63(1-2): 193-203. doi: 10.1007/s11071-010-9796-1
    [129]
    Manktelow K L, Leamy M J, Ruzzene M. 2014. Weakly nonlinear wave interactions in multi-degree of freedom periodic structures. Wave Motion, 51(6): 886-904. doi: 10.1016/j.wavemoti.2014.03.003
    [130]
    Mao J, Liu S, Dai S, et al. 2026. A piezoelectric meta-beam with non-Hermitian skin effect for controlling broadband structural–acoustic responses. Applied Acoustics, 241: 111020. doi: 10.1016/j.apacoust.2025.111020
    [131]
    Marinelli T, Silva P, Clementino M A, et al. 2020. An experimental study of a piezoelectric metastructure with adaptive resonant shunt circuits. IEEE/ASME Transactions on Mechatronics, 25(2): 1076-1083. doi: 10.1109/TMECH.2020.2966463
    [132]
    Meng H, Chronopoulos D, Fabro A T, et al. 2020a. Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation. Journal of Sound and Vibration, 465: 115005. doi: 10.1016/j.jsv.2019.115005
    [133]
    Meng H, Chronopoulos D, Fabro A T, et al. 2020b. Optimal design of rainbow elastic metamaterials. International Journal of Mechanical Sciences, 165: 105185. doi: 10.1016/j.ijmecsci.2019.105185
    [134]
    Mi Y, Yu X. 2021. Sound transmission of acoustic metamaterial beams with periodic inertial amplification mechanisms. Journal of Sound and Vibration, 499: 116009. doi: 10.1016/j.jsv.2021.116009
    [135]
    Moruzzi M C, Cinefra M, Bagassi S, et al. 2021. Attenuation of noise in the cabin of a regional aircraft by metamaterial trim panels. 32nd Congr. Int. Counc. Aeronaut. Sci. ICAS 2021, pp. 1–11.
    [136]
    Mosquera-Sánchez J A, De Marqui C. 2021. Dynamics and wave propagation in nonlinear piezoelectric metastructures. Nonlinear Dynamics, 105(4): 2995-3023. doi: 10.1007/s11071-021-06785-6
    [137]
    Mosquera-Sánchez J A, De Marqui C. 2024. Broadband and multimode attenuation in Duffing- and NES-type piezoelectric metastructures. International Journal of Mechanical Sciences, 270: 109084. doi: 10.1016/j.ijmecsci.2024.109084
    [138]
    Mosquera-Sánchez J A, Ootani N K, De Marqui C. 2022. Effects of negative capacitance circuits on the vibration attenuation performance of a nonlinear piezoelectric metastructure. Act. Passiv. Smart Struct. Integr. Syst. XVI, 12043: 1204318. doi: 10.1117/12.2612553
    [139]
    Naify C J, Chang C M, McKnight G, et al. 2011. Membrane-type metamaterials: Transmission loss of multi-celled arrays. Journal of Applied Physics, 109(10): 104902. doi: 10.1063/1.3583656
    [140]
    Nakayama M, Matsuoka T, Saito Y, et al. 2021. A practically designed acoustic metamaterial sheet with two-dimensional connection of local resonators for sound insulation applications. Journal of Applied Physics, 129(10): 105106. doi: 10.1063/5.0041738
    [141]
    Narisetti R K, Leamy M J, Ruzzene M. 2010. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. Journal of Vibration and Acoustics, 132(3): 031001. doi: 10.1115/1.4000775
    [142]
    Nateghi A, Sangiuliano L, Claeys C, et al. 2019. Design and experimental validation of a metamaterial solution for improved noise and vibration behavior of pipes. Journal of Sound and Vibration, 455: 96-117. doi: 10.1016/j.jsv.2019.05.009
    [143]
    Nateghi A, Van Belle L, Claeys C, et al. 2017. Wave propagation in locally resonant cylindrically curved metamaterial panels. International Journal of Mechanical Sciences, 127: 73-90. doi: 10.1016/j.ijmecsci.2016.07.003
    [144]
    Nečásek J, Václavík J, Marton P. 2016. Digital synthetic impedance for application in vibration damping. Review of Scientific Instruments, 87(2): 024704. doi: 10.1063/1.4942085
    [145]
    Nguyen H, Wu Q, Chen J, et al. 2021. A broadband acoustic panel based on double-layer membrane-type metamaterials. Applied Physics Letters, 118: 184101. doi: 10.1063/5.0042584
    [146]
    Oliazadeh P, Farshidianfar A. 2017. Analysis of different techniques to improve sound transmission loss in cylindrical shells. Journal of Sound and Vibration, 389: 276-291. doi: 10.1016/j.jsv.2016.11.016
    [147]
    Oudich M, Li Y, Assouar B M, et al. 2010. A sonic band gap based on the locally resonant phononic plates with stubs. New Journal of Physics, 12: 083049. doi: 10.1088/1367-2630/12/8/083049
    [148]
    Parra E A F, Bergamini A, Kamm L, et al. 2017a. Implementation of integrated 1D hybrid phononic crystal through miniaturized programmable virtual inductances. Smart Materials and Structures, 26(6): 067001. doi: 10.1088/1361-665X/aa6cf7
    [149]
    Parra E A F, Bergamini A, Van Damme B, et al. 2017b. Controllable wave propagation of hybrid dispersive media with LC high-pass and band-pass networks. Applied Physics Letters, 110(18): 184103. doi: 10.1063/1.4983088
    [150]
    Patil G U, Matlack K H. 2022. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 233: 1-46. doi: 10.1007/s00707-021-03089-z
    [151]
    Peiffer A, Grünewald M, Lempereur P. 2015. Comment on “a lightweight yet sound-proof honeycomb acoustic metamaterial” [Appl. Phys. Lett. 106, 171905 (2015)]. Applied Physics Letters, 107: 216101. doi: 10.1063/1.4936237
    [152]
    Pires F A, Sangiuliano L, Denayer H, et al. 2022a. The use of locally resonant metamaterials to reduce flow-induced noise and vibration. Journal of Sound and Vibration, 535: 117106. doi: 10.1016/j.jsv.2022.117106
    [153]
    Pires F A, Wandel M, Thomas C, et al. 2022b. Improve sound transmission loss of an aircraft’s lining panel by the use of locally resonant metamaterials. Proc. ISMA 2022-Int. Conf. Noise Vib. Eng. USD 2022-Int. Conf. Uncertain. Struct. Dyn., pp. 3108-3118.
    [154]
    Poggetto V F D, Serpa A L. 2020. Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. International Journal of Mechanical Sciences, 184: 105841. doi: 10.1016/j.ijmecsci.2020.105841
    [155]
    Priester J D, Aulitto A, Arteaga I L. 2022. Frequency stop-band optimization in micro-slit resonant metamaterials. Applied Acoustics, 188: 108552. doi: 10.1016/j.apacoust.2021.108552
    [156]
    Raze G, Jadoul A, Guichaux S, et al. 2020. A digital nonlinear piezoelectric tuned vibration absorber. Smart Materials and Structures, 29(1): 015007. doi: 10.1088/1361-665X/ab5176
    [157]
    Ren H, Liang G, Liu Q, et al. 2025. High load-bearing plate-type metastructure for ultrabroadband sound insulation. Mechanical Systems and Signal Processing, 228: 112453. doi: 10.1016/j.ymssp.2025.112453
    [158]
    Ren H, Xiao Y, Chen H, et al. 2024. Plate-type metastructure with low-frequency sound insulation and high stiffness properties. Thin-Walled Structures, 202: 112123. doi: 10.1016/j.tws.2024.112123
    [159]
    Richardt J D, Lossouarn B, Høgsberg J, et al. 2025. Sensorless calibration of piezoelectric shunts using capacitance measurements. Smart Materials and Structures, 34(3): 035043. doi: 10.1088/1361-665X/adbac8
    [160]
    Russillo A F, Failla G, Alotta G. 2022. Ultra-wide low-frequency band gap in locally-resonant plates with tunable inerter-based resonators. Applied Mathematical Modelling, 106: 682-695. doi: 10.1016/j.apm.2022.02.015
    [161]
    Sachdeva R, Ghosh D. 2024. Aperiodicity induced robust design of metabeams: Numerical and experimental studies. International Journal of Mechanical Sciences, 283: 109650. doi: 10.1016/j.ijmecsci.2024.109650
    [162]
    Sangiuliano L, Reff B, Palandri J, et al. 2022. Low frequency tyre noise mitigation in a vehicle using metal 3D printed resonant metamaterials. Mechanical Systems and Signal Processing, 179: 109335. doi: 10.1016/j.ymssp.2022.109335
    [163]
    Schimidt C S, de Oliveira L P R, De Marqui C. 2024. Reconfigurable piezoelectric metamaterial for selective noise directivity. Journal of Sound and Vibration, 585: 118472. doi: 10.1016/j.jsv.2024.118472
    [164]
    Shami Z A, Giraud-Audine C, Thomas O. 2022. A nonlinear piezoelectric shunt absorber with 2:1 internal resonance: Experimental proof of concept. Smart Materials and Structures, 31(3): 035006. doi: 10.1088/1361-665X/ac4ab5
    [165]
    Sharma B, Sun C T. 2016. Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators. Journal of Sound and Vibration, 364: 133-146. doi: 10.1016/j.jsv.2015.11.019
    [166]
    Shen Y, Lacarbonara W. 2023. Nonlinear dispersion properties of metamaterial beams hosting nonlinear resonators and stop band optimization. Mechanical Systems and Signal Processing, 187: 109920. doi: 10.1016/j.ymssp.2022.109920
    [167]
    Sheng P, Fang X, Yu D, et al. 2024. Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate. Applied Mathematics and Mechanics, 45(10): 1749-1772. doi: 10.1007/s10483-024-3165-7
    [168]
    Sheng P, Fang X, Wen J, et al. 2021. Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. Journal of Sound and Vibration, 492: 115739. doi: 10.1016/j.jsv.2020.115739
    [169]
    Sheng P, Hu B, Fang X, et al. 2025. Random aeroelastic vibration of nonlinear metamaterial supersonic plates. International Journal of Mechanical Sciences, 297-298: 110371. doi: 10.1016/j.ijmecsci.2025.110371
    [170]
    Shi P, Chen Z, Xu Y, et al. 2024. Dynamic stability of a lossy locally resonant metamaterial panel in supersonic flow. Thin-Walled Structures, 197: 111614. doi: 10.1016/j.tws.2024.111614
    [171]
    Shi P, Liu F, Jiang P, et al. 2025. Non-Hermiticity of metamaterial panel subjected to supersonic aerodynamic force and its asymmetric vibration transmittance. Chinese Journal of Aeronautics, 38: 103694. doi: 10.1016/j.cja.2025.103694
    [172]
    Silva P B, Leamy M J, Geers M G D, et al. 2019. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Physical Review E, 99(6): 063003. doi: 10.1103/PhysRevE.99.063003
    [173]
    Soltani P S, Kerschen G. 2015. The nonlinear piezoelectric tuned vibration absorber. Smart Materials and Structures, 24(7): 075015. doi: 10.1088/0964-1726/24/7/075015
    [174]
    Song C, Wang X, Xu S, et al. 2024. Inverse design of laminated plate-type acoustic metamaterials for sound insulation based on deep learning. Applied Acoustics, 218: 109906. doi: 10.1016/j.apacoust.2024.109906
    [175]
    Sugino C, Leadenham S, Ruzzene M, et al. 2016. On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. Journal of Applied Physics, 120(13): 134501. doi: 10.1063/1.4963648
    [176]
    Sugino C, Leadenham S, Ruzzene M, et al. 2017a. An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Materials and Structures, 26(5): 055029. doi: 10.1088/1361-665X/aa6671
    [177]
    Sugino C, Ruzzene M, Erturk A. 2018. Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures. Journal of the Mechanics and Physics of Solids, 116: 323-333. doi: 10.1016/j.jmps.2018.04.005
    [178]
    Sugino C, Ruzzene M, Erturk A. 2020a. An analytical framework for locally resonant piezoelectric metamaterial plates. International Journal of Solids and Structures, 182-183: 281-294. doi: 10.1016/j.ijsolstr.2019.08.011
    [179]
    Sugino C, Ruzzene M, Erturk A. 2020b. Digitally programmable resonant elastic metamaterials. Physical Review Applied, 13(6): 061001. doi: 10.1103/PhysRevApplied.13.061001
    [180]
    Sugino C, Xia Y, Leadenham S, et al. 2017b. A general theory for bandgap estimation in locally resonant metastructures. Journal of Sound and Vibration, 406: 104-123. doi: 10.1016/j.jsv.2017.06.004
    [181]
    Sun J, Ma Y, He Y, et al. 2025. Low-frequency vibration attenuation and ensemble learning-based inverse design of vibro-acoustic metamaterials. Mechanical Systems and Signal Processing, 239: 113320. doi: 10.1016/j.ymssp.2025.113320
    [182]
    Sun Y, Dong J, Lee H P, et al. 2024. Sound transmission characteristics of X-shape inertial amplification acoustic metamaterial. Applied Acoustics, 218: 109908. doi: 10.1016/j.apacoust.2024.109908
    [183]
    Tang J, Wang K W. 2001. Active-passive hybrid piezoelectric networks for vibration control: Comparisons and improvement. Smart Materials and Structures, 10(4): 794-806. doi: 10.1088/0964-1726/10/4/325
    [184]
    Tang Z, Wang X, Li S, et al. 2025. A transparent multifunctional integrated meta-window with excellent sound insulation and vibration reduction performance. Composite Structures, 353: 118719. doi: 10.1016/j.compstruct.2024.118719
    [185]
    Thorp O, Ruzzene M, Baz A. 2001. Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Materials and Structures, 10(5): 979-989. doi: 10.1088/0964-1726/10/5/314
    [186]
    Tian W, Yang Z, Li M, et al. 2025. Theoretical modeling and mechanism analysis of nonlinear metastructure for supersonic aeroelastic suppression. Mechanical Systems and Signal Processing, 224: 111931. doi: 10.1016/j.ymssp.2024.111931
    [187]
    Tian W, Zhao T, Gu Y, et al. 2021. Supersonic flutter control and optimization of metamaterial plate. Chinese Journal of Aeronautics, 34(11): 15-20. doi: 10.1016/j.cja.2021.05.007
    [188]
    Tian W, Zhao T, Gu Y, et al. 2022a. Nonlinear flutter suppression and performance evaluation of periodically embedded nonlinear vibration absorbers in a supersonic FGM plate. Aerospace Science and Technology, 121: 107198. doi: 10.1016/j.ast.2021.107198
    [189]
    Tian W, Zhao T, Yang Z. 2022b. Theoretical modelling and design of metamaterial stiffened plate for vibration suppression and supersonic flutter. Composite Structures, 282: 115010. doi: 10.1016/j.compstruct.2021.115010
    [190]
    Tian W, Zhao T, Yang Z. 2022c. Supersonic meta-plate with tunable-stiffness nonlinear oscillators for nonlinear flutter suppression. International Journal of Mechanical Sciences, 229: 107533. doi: 10.1016/j.ijmecsci.2022.107533
    [191]
    Tian Z, Bennett J, Yang J, et al. 2022d. Experimental investigation of mechanical, acoustic and hybrid metamaterial designs for enhanced and multi-band electric motor noise dissipation. Engineering Structures, 271: 114945. doi: 10.1016/j.engstruct.2022.114945
    [192]
    Wan S, Li L, Wang G, et al. 2024. A novel locally resonance metamaterial cylindrical shell with tower-shaped lattice for broadband vibration suppression. Mechanical Systems and Signal Processing, 216: 111510. doi: 10.1016/j.ymssp.2024.111510
    [193]
    Wang G, Chen S. 2016. Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier–resonator feedback circuits. Smart Materials and Structures, 25: 015004. doi: 10.1088/0964-1726/25/1/015004
    [194]
    Wang G, Chen S, Wen J. 2011. Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou’s circuit: Experimental investigation on beams. Smart Materials and Structures, 20: 015026. doi: 10.1088/0964-1726/20/1/015026
    [195]
    Wang G, Cheng J, Chen J, et al. 2017. Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial. Smart Materials and Structures, 26(2): 025031. doi: 10.1088/1361-665X/aa53ea
    [196]
    Wang G, Wen J, Wen X. 2005. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: Application to locally resonant beams with flexural wave band gap. Physical Review B-Condensed Matter and Materials Physics, 71(10): 104302. doi: 10.1103/PhysRevB.71.104302
    [197]
    Wang Q, Li J, Zhang Y, et al. 2021. Bandgap properties in metamaterial sandwich plate with periodically embedded plate-type resonators. Mechanical Systems and Signal Processing, 151: 107375. doi: 10.1016/j.ymssp.2020.107375
    [198]
    Wang S, Xiao Y, Gu J, et al. 2023. Double-panel metastructure lined with porous material for broadband low-frequency sound insulation. Applied Acoustics, 207: 109332. doi: 10.1016/j.apacoust.2023.109332
    [199]
    Wang X, Chen Y, Zhou G, et al. 2019. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. Journal of Sound and Vibration, 459: 114867. doi: 10.1016/j.jsv.2019.114867
    [200]
    Wang X, Sun P, Gu X, et al. 2025a. Industrial-scale manufactured acoustic metamaterials for multi-bandgap sound reduction. International Journal of Mechanical Sciences, 293: 110184. doi: 10.1016/j.ijmecsci.2025.110184
    [201]
    Wang X, Zhao J, Kovacic I, et al. 2025b. A new strategy for vibration suppression in locally resonant metamaterials based on autoparametric resonance. Nonlinear Dynamics, 113: 24077-24100. doi: 10.1007/s11071-025-11104-4
    [202]
    Wang Y, Wang K, Wang B. 2025c. Tunable bandgaps and programmable wave propagation of magnetically actuated metamaterial plates. Mechanical Systems and Signal Processing, 241: 113576. doi: 10.1016/j.ymssp.2025.113576
    [203]
    Wang Z, Lu X, Zhao Y, et al. 2025d. Harnessing nonlocal coupling effect to enhance broadband sound insulation in gradient acoustic metamaterial. Extreme Mechanics Letters, 78: 102376. doi: 10.1016/j.eml.2025.102376
    [204]
    Wei X Y, Xiong J, Wang J, et al. 2020. New advances in fiber-reinforced composite honeycomb materials. Science China Technological Sciences, 63(8): 1348-1370. doi: 10.1007/s11431-020-1650-9
    [205]
    Wu Q, Huang G, Liu C, et al. 2019. Low-frequency multi-mode vibration suppression of a metastructure beam with two-stage high-static-low-dynamic stiffness oscillators. Acta Mechanica, 230(12): 4341-4356. doi: 10.1007/s00707-019-02515-7
    [206]
    Wu Q, Liu C, Su Y, et al. 2024a. Influences of inherent geometrical nonlinearity of high-static-low-dynamic-stiffness resonator on flexural wave attenuation performance of metamaterial beam. Nonlinear Dynamics, 112(10): 7831-7845. doi: 10.1007/s11071-024-09519-6
    [207]
    Wu Q, Qian H, Chen Y, et al. 2023. Dynamic phononic crystals with spatially and temporally modulated circuit networks. Acta Mechanica Sinica, 39(7): 723007. doi: 10.1007/s10409-023-23007-x
    [208]
    Wu Y, Yan W, Wen G, et al. 2024b. Design and application of a lightweight plate-type acoustic metamaterial for vehicle interior low-frequency noise reductio. Crystals, 14(11): 957. doi: 10.3390/cryst14110957
    [209]
    Xi C, Dou L, Mi Y, et al. 2021. Inertial amplification induced band gaps in corrugated-core sandwich panels. Composite Structures, 267: 113918. doi: 10.1016/j.compstruct.2021.113918
    [210]
    Xi C, Yu X, Cheng L, et al. 2023. Broadband low-frequency sound insulation of a metamaterial plate with inertial amplification. Applied Acoustics, 213: 109655. doi: 10.1016/j.apacoust.2023.109655
    [211]
    Xia D, Pu X, Tong S, et al. 2024. Piezoelectric metamaterial with digitally controlled nonlinear shunt circuit for broadband wave attenuation. Applied Physics Letters, 124(12): 121704. doi: 10.1063/5.0197609
    [212]
    Xia Y, Ruzzene M, Erturk A. 2019. Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Applied Physics Letters, 114: 093501. doi: 10.1063/1.5066329
    [213]
    Xiao Y, Cao J, Wang S, et al. 2021. Sound transmission loss of plate-type metastructures: Semi-analytical modeling, elaborate analysis, and experimental validation. Mechanical Systems and Signal Processing, 153: 107487. doi: 10.1016/j.ymssp.2020.107487
    [214]
    Xiao Y, Wen J, Wen X. 2012a. Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators. Journal of Sound and Vibration, 331(25): 5408-5423. doi: 10.1016/j.jsv.2012.07.016
    [215]
    Xiao Y, Wen J, Wen X. 2012b. Flexural wave band gaps in locally resonant thin plates with periodically attached springmass resonators. Journal of Physics D: Applied Physics, 45(19): 195401. doi: 10.1088/0022-3727/45/19/195401
    [216]
    Xiao Y, Wen J, Wen X. 2012c. Broadband locally resonant beams containing multiple periodic arrays of attached resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 376(16): 1384-1390. doi: 10.1016/j.physleta.2012.02.059
    [217]
    Xue Y, Li J, Wang Y, et al. 2021. Tunable nonlinear band gaps in a sandwich-like meta-plate. Nonlinear Dynamics, 106(4): 2841-2857. doi: 10.1007/s11071-021-06961-8
    [218]
    Yan G, Yao S, Li Y, et al. 2023. Topological optimization of thin elastic metamaterial plates for ultrawide flexural vibration bandgaps. International Journal of Mechanical Sciences, 242: 108014. doi: 10.1016/j.ijmecsci.2022.108014
    [219]
    Yang X, Kang Y, Xie X, et al. 2023. Multilayer coupled plate-type acoustic metamaterials for low-frequency broadband sound insulation. Applied Acoustics, 209: 109399. doi: 10.1016/j.apacoust.2023.109399
    [220]
    Yang Z, Mei J, Yang M, et al. 2008. Membrane-type acoustic metamaterial with negative dynamic mass. Physical Review Letters, 101(20): 204301. doi: 10.1103/PhysRevLett.101.204301
    [221]
    Yao D, Xiong M, Luo J, et al. 2022. Flexural wave mitigation in metamaterial cylindrical curved shells with periodic graded arrays of multi-resonator. Mechanical Systems and Signal Processing, 168: 108721. doi: 10.1016/j.ymssp.2021.108721
    [222]
    Yao S, Zhou X, Hu G. 2008. Experimental study on negative effective mass in a 1D mass-spring system. New Journal of Physics, 10: 043020. doi: 10.1088/1367-2630/10/4/043020
    [223]
    Yi K, Collet M. 2021. Broadening low-frequency bandgaps in locally resonant piezoelectric metamaterials by negative capacitance. Journal of Sound and Vibration, 493: 115837. doi: 10.1016/j.jsv.2020.115837
    [224]
    Yi K, Li L, Ichchou M, et al. 2017. Sound insulation performance of plates with interconnected distributed piezoelectric patches. Chinese Journal of Aeronautics, 30(1): 99-108. doi: 10.1016/j.cja.2016.12.012
    [225]
    Yi K, Matten G, Ouisse M, et al. 2020. Programmable metamaterials with digital synthetic impedance circuits for vibration control. Smart Materials and Structures, 29(3): 035005. doi: 10.1088/1361-665X/ab6693
    [226]
    Yilmaz C, Hulbert G M, Kikuchi N. 2007. Phononic band gaps induced by inertial amplification in periodic media. Physical Review B-Condensed Matter and Materials Physics, 76(5): 054309. doi: 10.1103/PhysRevB.76.054309
    [227]
    Yu D, Liu Y, Wang G, et al. 2006a. Flexural vibration band gaps in Timoshenko beams with locally resonant structures. Journal of Applied Physics, 100(12): 124901. doi: 10.1063/1.2400803
    [228]
    Yu D, Liu Y, Zhao H, et al. 2006b. Flexural vibration band gaps in Euler−Bernoulli beams with locally resonant structures with two degrees of freedom. Physical Review B, 73(6): 064301. doi: 10.1103/physrevb.73.064301
    [229]
    Yu H, Zhang X, Yang R, et al. 2025. Digital controlled nonlinear smart metamaterial for broadband elastic wave attenuation. Journal of Applied Physics, 138(8): 083105. doi: 10.1063/5.0280933
    [230]
    Yu J, Nerse C, Chang K J, et al. 2021. A framework of flexible locally resonant metamaterials for attachment to curved structures. International Journal of Mechanical Sciences, 204: 106533. doi: 10.1016/j.ijmecsci.2021.106533
    [231]
    Yuan H, Zheng Y, Feng W, et al. 2025. Adaptive sound insulation of piezoelectric metastructure shells around ring and coincidence frequencies. International Journal of Mechanical Sciences, 293: 110175. doi: 10.1016/j.ijmecsci.2025.110175
    [232]
    Zhang C, Zhang D, Yin F, et al. 2025a. “Borrow-force-attack-force” by multi-scale elastic metamaterial with nonlinear damping. Composites Part B, 288: 111884. doi: 10.1016/j.compositesb.2024.111884
    [233]
    Zhang H, Chen S, Liu Z, et al. 2020. Light-weight large-scale tunable metamaterial panel for low-frequency sound insulation. Applied Physics Express, 13: 067003. doi: 10.35848/1882-0786/ab916b
    [234]
    Zhang H, Wen J, Xiao Y, et al. 2015. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. Journal of Sound and Vibration, 343: 104-120. doi: 10.1016/j.jsv.2015.01.019
    [235]
    Zhang J, Yao D, Peng W, et al. 2022. Optimal design of lightweight acoustic metamaterials for low-frequency noise and vibration control of high-speed train composite floor. Applied Acoustics, 199: 109041. doi: 10.1016/j.apacoust.2022.109041
    [236]
    Zhang W, Zhang W, Yang D, et al. 2025b. A nonlinear locally resonant metamaterial beam with customized stiffness for low-frequency and broadband band gaps. Engineering Structures, 343: 121256. doi: 10.1016/j.engstruct.2025.121256
    [237]
    Zhang X, Chen F, Chen Z, et al. 2019. Membrane-type smart metamaterials for multi-modal sound insulation. The Journal of the Acoustical Society of America, 144(6): 3514-3524. doi: 10.1121/1.5084039
    [238]
    Zhang X, Yu H, He Z, et al. 2021. A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mechanical Systems and Signal Processing, 159: 107826. doi: 10.1016/j.ymssp.2021.107826
    [239]
    Zhang Y, Zhang J, Li Y, et al. 2024. Research progress on thin-walled sound insulation metamaterial structures. Acoustics, 6(2): 298-330. doi: 10.3390/acoustics6020016
    [240]
    Zhao B, Thomsen H R, Pu X, et al. 2024. A nonlinear damped metamaterial: Wideband attenuation with nonlinear bandgap and modal dissipation. Mechanical Systems and Signal Processing, 208: 111079. doi: 10.1016/j.ymssp.2023.111079
    [241]
    Zhao J, Kovacic I, Zhu R. 2025. Wideband vibration attenuation of a metamaterial beam via integrated hardening and softening nonlinear resonators. Nonlinear Dynamics, 113: 23903-23920. doi: 10.1007/s11071-024-10402-7
    [242]
    Zhao J, Zhou H, Yi K, et al. 2023. Ultra-broad bandgap induced by hybrid hardening and softening nonlinearity in metastructure. Nonlinear Dynamics, 111(19): 17687-17707. doi: 10.1007/s11071-023-08808-w
    [243]
    Zheng Y, Chen B, Qu Y, et al. 2022a. Vibration control of a piezoelectric metamaterial shell shunted with high order resonant circuits. Proc. 28th Int. Congr. Sound Vib. Singapore: International Institute of Acoustics and Vibration.
    [244]
    Zheng Y, Li Q, Yan B, et al. 2018a. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs. Journal of Sound and Vibration, 422: 390-408. doi: 10.1016/j.jsv.2018.02.046
    [245]
    Zheng Y, Qu Y, Dai S, et al. 2024. Mitigating vibration and sound radiation with a digital piezoelectric meta-shell in heavy fluids. Journal of Sound and Vibration, 573: 118221. doi: 10.1016/j.jsv.2023.118221
    [246]
    Zheng Y, Tian W, Lee N K X, et al. 2022b. A programmable macro-fiber-composite meta-ring with digital shunting circuits. Journal of Sound and Vibration, 533: 117017. doi: 10.1016/j.jsv.2022.117017
    [247]
    Zheng Y, Wu Z, Zhang X, et al. 2019. A piezo-metastructure with bistable circuit shunts for adaptive nonreciprocal wave transmission. Smart Materials and Structures, 28(4): 045005. doi: 10.1088/1361-665X/ab083c
    [248]
    Zheng Y, Yuan H, Feng W, et al. 2025. Enhancing sound transmission loss of a piezoelectric metastructure shell in the low-frequency range using negative-capacitance shunting. European Journal of Mechanics/A Solids, 111: 105554. doi: 10.1016/j.euromechsol.2024.105554
    [249]
    Zheng Y, Zhang X, Luo Y, et al. 2016. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. Journal of Sound and Vibration, 360: 31-52. doi: 10.1016/j.jsv.2015.09.019
    [250]
    Zheng Y, Zhang X, Luo Y, et al. 2018b. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mechanical Systems and Signal Processing, 100(Supplement C): 135-151. doi: 10.1016/j.ymssp.2017.07.028
    [251]
    Zheng Y, Zhang J, Qu Y, et al. 2021. Adaptive nonreciprocal wave attenuation in linear piezoelectric metastructures shunted with one-way electrical transmission lines. Journal of Sound and Vibration, 503: 116113. doi: 10.1016/j.jsv.2021.116113
    [252]
    Zheng Y, Zhang J, Qu Y, et al. 2022c. Investigations of a piezoelectric metastructure using negative-resistance circuits to enhance the bandgap performance. Journal of Vibration and Control, 28(17-18): 2346-2356. doi: 10.1177/10775463211010540
    [253]
    Zhou B, Thouverez F, Lenoir D. 2014a. Essentially nonlinear piezoelectric shunt circuits applied to mistuned bladed disks. Journal of Sound and Vibration, 333(9): 2520-2542. doi: 10.1016/j.jsv.2013.12.019
    [254]
    Zhou J, Bhaskar A, Zhang X. 2014b. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material. Journal of Sound and Vibration, 333(7): 1972-1990. doi: 10.1016/j.jsv.2013.11.038
    [255]
    Zhou J, Dou L, Wang K, et al. 2019. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 96: 647-665. doi: 10.1007/s11071-019-04812-1
    [256]
    Zhou W, Wu Y, Zuo L. 2015. Vibration and wave propagation attenuation for metamaterials by periodic piezoelectric arrays with high-order resonant circuit shunts. Smart Materials and Structures, 24(6): 06502. doi: 10.1088/0964-1726/24/6/065021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(47)  / Tables(1)

    Article Metrics

    Article views (401) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return