| Citation: | Wang W J, Yang H, Zhang W M, Ma L. Design strategies for non-positive Poisson's ratio mechanical metamaterials and their cushioning and energy absorption characteristics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-021 |
| [1] |
廖瑜, 石少卿, 夏菲, 等. 2025. 双梯形负泊松比蜂窝夹心结构抗爆力学性能研究. 工程力学, 42: 244-261 (Liao Y, Shi S Q, Xia F, et al. 2025. Study on anti-explosion mechanical properties of double trapezoidal negative Poisson's ratio auxetic sandwich honeycomb structure. Engineering Mechanics, 42: 244-261).
Liao Y, Shi S Q, Xia F, et al. 2025. Study on anti-explosion mechanical properties of double trapezoidal negative Poisson's ratio auxetic sandwich honeycomb structure. Engineering Mechanics, 42: 244-261
|
| [2] |
王钦泽, 韩宾, 郑培远, 等. 2024. 负刚度扭转超结构力学性能研究. 应用数学和力学, 45: 1082-1095 (Wang Q Z, Han B, Zheng P Y, et al. 2024. Research on mechanical properties of negative stiffness torsion metastructures. Applied Mathematics and Mechanics, 45: 1082-1095).
Wang Q Z, Han B, Zheng P Y, et al. 2024. Research on mechanical properties of negative stiffness torsion metastructures. Applied Mathematics and Mechanics, 45: 1082-1095
|
| [3] |
王玮婧, 张伟明, 郭孟甫, 等. 2024. 内凹-星型三维负泊松比结构设计及冲击吸能特性. 振动与冲击, 43: 75-83 (Wang W J, Zhang W M, Guo M F, et al. 2024. Design and impact energy absorption characteristics of concave-star three dimensional negative Poisson's ratio structures. Journal of Vibration and Shock, 43: 75-83).
Wang W J, Zhang W M, Guo M F, et al. 2024. Design and impact energy absorption characteristics of concave-star three dimensional negative Poisson's ratio structures. Journal of Vibration and Shock, 43: 75-83
|
| [4] |
王信涛. 2018. 三维有序负泊松比结构的设计、制备与力学性能表征[博士学位论文]. 哈尔滨: 哈尔滨工业大学 ((Wang X T. 2018. The design, fabrication and mechanical characterization of three-dimensional periodic auxetic cellular structures[PhD Thesis]. Harbin: Harbin Institute of Technology).
(Wang X T. 2018. The design, fabrication and mechanical characterization of three-dimensional periodic auxetic cellular structures[PhD Thesis]. Harbin: Harbin Institute of Technology
|
| [5] |
薛玉祥. 2021. 三维负泊松比星型结构冲击动力学研究[硕士学位论文]. 广州: 广州大学 ((Xue Y X. 2021. Study on the impact dynamics of three-dimensional negative Poisson's ratio star-shaped structure[Master Thesis]. Guangzhou: Guangzhou University).
(Xue Y X. 2021. Study on the impact dynamics of three-dimensional negative Poisson's ratio star-shaped structure[Master Thesis]. Guangzhou: Guangzhou University
|
| [6] |
杨航. 2023. 可编程机械超材料的结构设计及力学行为研究[博士学位论文]. 哈尔滨: 哈尔滨工业大学 ((Yang H. 2023. Structure design and mechanical behavior of programmable mechanical metamaterials[PhD Thesis]. Harbin: Harbin Institute of Technology).
(Yang H. 2023. Structure design and mechanical behavior of programmable mechanical metamaterials[PhD Thesis]. Harbin: Harbin Institute of Technology
|
| [7] |
于靖军, 谢岩, 裴旭. 2018. 负泊松比超材料研究进展. 机械工程学报, 54: 1-14 (Yu J J, Xie Y, Pei X. 2018. State-of-art of metamaterials with negative Poisson's ratio. Journal of Mechanical Engineering, 54: 1-14).
Yu J J, Xie Y, Pei X. 2018. State-of-art of metamaterials with negative Poisson's ratio. Journal of Mechanical Engineering, 54: 1-14
|
| [8] |
余阳, 付涛. 2023. 低速冲击下负泊松比蝴蝶形蜂窝夹芯板的动力响应. 爆炸与冲击, 43: 84-95 (Yu Y, Fu T. 2023. Dynamic response of a sandwich panel cored by butterfly-shaped honeycombs with negative Poisson's ratio to low-velocity impact. Explosion and Shock Waves, 43: 84-95).
Yu Y, Fu T. 2023. Dynamic response of a sandwich panel cored by butterfly-shaped honeycombs with negative Poisson's ratio to low-velocity impact. Explosion and Shock Waves, 43: 84-95
|
| [9] |
张宝庆, 蒋森. 2025. 旋转型负泊松比星形蜂窝结构能量吸收特性研究. 固体力学学报, 46: 129-148 (Zhang B Q, Jiang S. 2025. Study on energy absorption characteristics of rotating star-shaped honeycomb structure with negative Poisson's ratio. Chinese Journal of Solid Mechanics, 46: 129-148).
Zhang B Q, Jiang S. 2025. Study on energy absorption characteristics of rotating star-shaped honeycomb structure with negative Poisson's ratio. Chinese Journal of Solid Mechanics, 46: 129-148
|
| [10] |
赵淳铮, 王昕, 李振, 等. 2024. 可调控热膨胀力学超材料设计制备与表征评测研究进展. 复合材料学报, 41: 4589-4605 (Zhao C Z, Wang X, Li Z, et al. 2024. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials. Acta Materiae Compositae Sinica, 41: 4589-4605).
Zhao C Z, Wang X, Li Z, et al. 2024. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials. Acta Materiae Compositae Sinica, 41: 4589-4605
|
| [11] |
Airoldi A, Novak N, Sgobba F, et al. 2020. Foam-filled energy absorbers with auxetic behaviour for localized impacts. Materials Science and Engineering: A, 788: 139500 doi: 10.1016/j.msea.2020.139500
|
| [12] |
Alderson A, Alderson K L, Attard D, et al. 2010. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70: 1042-1048 doi: 10.1016/j.compscitech.2009.07.009
|
| [13] |
Alderson K L, Webber R S, Evans K E. 2000. Novel variations in the microstructure of auxetic ultra-high molecular weight polyethylene. Part 2: Mechanical properties. Polymer Engineering & Science, 40: 1906-1914
|
| [14] |
Andrade C, Ha C S, Lakes R S. 2018. Extreme Cosserat elastic cube structure with large magnitude of negative Poisson's ratio. Journal of Mechanics of Materials and Structures, 13: 93-101 doi: 10.2140/jomms.2018.13.93
|
| [15] |
Bauer J, Schroer A, Schwaiger R, et al. 2016. Approaching theoretical strength in glassy carbon nanolattices. Nature Materials, 15: 438-443 doi: 10.1038/nmat4561
|
| [16] |
Baughman R H, Stafstrom S, Cui C, et al. 1998. Materials with negative compressibilities in one or more dimensions. Science, 279: 1522-1524 doi: 10.1126/science.279.5356.1522
|
| [17] |
Bertoldi K, Reis P M, Willshaw S, et al. 2010. Negative Poisson's ratio behavior induced by an elastic instability. Advanced Materials, 22: 361-366 doi: 10.1002/adma.200901956
|
| [18] |
Chen C Q, Airoldi A, Caporale A M, et al. 2024. Impact response of composite energy absorbers based on foam-filled metallic and polymeric auxetic frames. Composite Structures, 331: 117916 doi: 10.1016/j.compstruct.2024.117916
|
| [19] |
Chen C Q, He Y L, Xu R, et al. 2024. Dynamic behaviors of sandwich panels with 3D-printed gradient auxetic cores subjected to blast load. International Journal of Impact Engineering, 188: 104943 doi: 10.1016/j.ijimpeng.2024.104943
|
| [20] |
Chen C Q, Jiang L, Wang H R, et al. 2024. Quasi-static and dynamic responses of gradient hexachiral auxetics: Experimental and numerical analysis. Materials Today Communications, 41: 110670 doi: 10.1016/j.mtcomm.2024.110670
|
| [21] |
Chen Y, Fu M H. 2018. Mechanical properties of a novel zero Poisson's ratio honeycomb. Advanced Engineering Materials, 20: 1700452 doi: 10.1002/adem.201700452
|
| [22] |
Cui H, Hensleigh R, Yao D, et al. 2019. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 18: 234-241 doi: 10.1038/s41563-018-0268-1
|
| [23] |
De Jong M, Chen W, Angsten T, et al. 2015. Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2: 150009 doi: 10.1038/sdata.2015.9
|
| [24] |
Del Broccolo S, Laurenzi S, Scarpa F. 2017. AuxHex-A Kirigami inspired zero Poisson's ratio cellular structure. Composite Structures, 176: 433-441 doi: 10.1016/j.compstruct.2017.05.050
|
| [25] |
Ding L, Zhang D, Lin Y, et al. 2024. Improving energy absorption of rotating triangle auxetic metamaterials through multistage perforations. Materials Today Communications, 41: 110746 doi: 10.1016/j.mtcomm.2024.110746
|
| [26] |
Dong Y, Huang N. 2024. Multifield and higher-order analysis of sandwich smart curved beams made of graphene origami auxetic metamaterial. Mechanics of Advanced Materials and Structures, 31: 1-19 doi: 10.1080/15376494.2024.2302247
|
| [27] |
Donoghue J, Alderson K, Evans K. 2009. The fracture toughness of composite laminates with a negative Poisson's ratio. Physica Status Solidi B, 246: 2011-2017 doi: 10.1002/pssb.200982031
|
| [28] |
Esmaeili A, Karimi M, Heidari-Rarani M, et al. 2024. A new design of star auxetic metastructure with enhanced energy-absorption under various loading rates: Experimental and numerical study. Structures, 63: 106457 doi: 10.1016/j.istruc.2024.106457
|
| [29] |
Etemadi E, Bashtani M, Hu H. 2024. Novel auxetic metamaterials inspired from geometry patterns of an Iranian Mosque with improved energy absorption capability. Materials Today Communications, 41: 110470 doi: 10.1016/j.mtcomm.2024.110470
|
| [30] |
Evans K E. 1991. Auxetic polymers: A new range of materials. Endeavour, 15: 170-174 doi: 10.1016/0160-9327(91)90123-S
|
| [31] |
Evans K E, Alderson A. 2000. Auxetic materials: Functional materials and structures from lateral thinking! Advanced Materials, 12: 617-628
|
| [32] |
Fan J, Zhang L, Wei S, et al. 2021. A review of additive manufacturing of metamaterials and developing trends. Materials Today, 50: 303-328 doi: 10.1016/j.mattod.2021.04.019
|
| [33] |
Fu M H, Zheng B B, Li W H. 2017. A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters. Composite Structures, 176: 442-448 doi: 10.1016/j.compstruct.2017.05.027
|
| [34] |
Fu M, Liu F, Hu L. 2018. A novel category of 3D chiral material with negative Poisson's ratio. Composites Science and Technology, 160: 111-118 doi: 10.1016/j.compscitech.2018.03.017
|
| [35] |
Fu T, Hu X, Yang C. 2023. Impact response analysis of stiffened sandwich functionally graded porous materials doubly-curved shell with re-entrant honeycomb auxetic core. Applied Mathematical Modelling, 124: 553-575 doi: 10.1016/j.apm.2023.08.024
|
| [36] |
Fu T, Wang X, Hu X, et al. 2024. Impact dynamic response of stiffened porous functionally graded materials sandwich doubly-curved shells with arc-type auxetic core. International Journal of Impact Engineering, 191: 105000 doi: 10.1016/j.ijimpeng.2024.105000
|
| [37] |
Gao Y, Wei X, Han X, et al. 2021. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism. International Journal of Solids and Structures, 233: 111232 doi: 10.1016/j.ijsolstr.2021.111232
|
| [38] |
Gibson L J, Ashby M F, Schajer G, et al. 1982. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382: 25-42 doi: 10.1098/rspa.1982.0087
|
| [39] |
Gömöry F, Solovyov M, Šouc J, et al. 2012. Experimental realization of a magnetic cloak. Science, 335: 1466-1468 doi: 10.1126/science.1218316
|
| [40] |
Gong X, Huang J, Scarpa F, et al. 2015. Zero Poisson's ratio cellular structure for two-dimensional morphing applications. Composite Structures, 134: 384-392 doi: 10.1016/j.compstruct.2015.08.048
|
| [41] |
Greaves G N, Greer A L, Lakes R S, et al. 2011. Poisson's ratio and modern materials. Nature Materials, 10: 823-837 doi: 10.1038/nmat3134
|
| [42] |
Grima J N, Evans K E. 2000. Auxetic behavior from rotating squares. Journal of Materials Science Letters, 19: 1563-1565 doi: 10.1023/A:1006781224002
|
| [43] |
Grima J N, Gatt R, Farrugia P S. 2008. On the properties of auxetic meta-tetrachiral structures. Physica Status Solidi B, 245: 511-520 doi: 10.1002/pssb.200777704
|
| [44] |
Grima J N, Mizzi L, Azzopardi K M, et al. 2016. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Advanced Materials, 28: 385-389 doi: 10.1002/adma.201503653
|
| [45] |
Grima J N, Oliveri L, Attard D, et al. 2010. Hexagonal honeycombs with zero Poisson's ratios and enhanced stiffness. Advanced Engineering Materials, 12: 855-862 doi: 10.1002/adem.201000140
|
| [46] |
Günaydın K, Rea C, Kazancı Z. 2022. Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) lattice structures by using multi-material reinforcements. Additive Manufacturing, 59: 103076 doi: 10.1016/j.addma.2022.103076
|
| [47] |
Guo M F, Yang H, Ma L. 2020a. Design and analysis of 2D double-U auxetic honeycombs. Thin-Walled Structures, 155: 106915 doi: 10.1016/j.tws.2020.106915
|
| [48] |
Guo M F, Yang H, Ma L. 2020b. Design and characterization of 3D AuxHex lattice structures. International Journal of Mechanical Sciences, 181: 105700 doi: 10.1016/j.ijmecsci.2020.105700
|
| [49] |
Guo M F, Yang H, Ma L. 2022. 3D lightweight double arrow-head plate-lattice auxetic structures with enhanced stiffness and energy absorption performance. Composite Structures, 290: 115484 doi: 10.1016/j.compstruct.2022.115484
|
| [50] |
Guo Y, Zhang J, Chen L, et al. 2020. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerospace Science and Technology, 98: 105662 doi: 10.1016/j.ast.2019.105662
|
| [51] |
Hao J, Han D, Zhang X G, et al. 2022. Novel dual-platform lightweight metamaterials with auxeticity. Engineering Structures, 270: 114891 doi: 10.1016/j.engstruct.2022.114891
|
| [52] |
He H, Wei X, Yang B, et al. 2022. Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 13: 4242 doi: 10.1038/s41467-022-31957-2
|
| [53] |
Hou Y, Quan J, Thai B Q, et al. 2022. Ultralight biomass-derived carbon fibre aerogels for electromagnetic and acoustic noise mitigation. Journal of Materials Chemistry A, 10: 22771-22780 doi: 10.1039/D2TA06402B
|
| [54] |
Hu Q, Lu G, Tse K M. 2024. Dynamic responses of shear thickening fluid-filled lattice structures. International Journal of Impact Engineering, 189: 104954 doi: 10.1016/j.ijimpeng.2024.104954
|
| [55] |
Huang J, Gong X, Zhang Q, et al. 2016. In-plane mechanics of a novel zero Poisson's ratio honeycomb core. Composites Part B: Engineering, 89: 67-76 doi: 10.1016/j.compositesb.2015.11.032
|
| [56] |
Jiang F, Yang S, Qi C. 2022. Quasi-static crushing response of a novel 3D re-entrant circular auxetic metamaterial. Composite Structures, 300: 116066 doi: 10.1016/j.compstruct.2022.116066
|
| [57] |
Jiang W, Zhang X G, Han D, et al. 2023. Experimental and numerical analysis of a novel assembled auxetic structure with two-stage programmable mechanical properties. Thin-Walled Structures, 185: 110555 doi: 10.1016/j.tws.2023.110555
|
| [58] |
Jiang Z, Rong J, Chen Z, et al. 2025. Deformation mechanisms and energy absorption characteristics of 3D-printed negative Poisson's ratio sandwich structures subjected to underwater impulsive loading. International Journal of Impact Engineering, 203: 105355 doi: 10.1016/j.ijimpeng.2025.105355
|
| [59] |
Jiao C, Yan G. 2021. Design and elastic mechanical response of a novel 3D-printed hexa-chiral helical structure with negative Poisson's ratio. Materials & Design, 212: 110219
|
| [60] |
Kashani H, Ito Y, Han J, et al. 2019. Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 5: eaat6951 doi: 10.1126/sciadv.aat6951
|
| [61] |
Kokkinis D, Schaffner M, Studart A R. 2015. Multimaterial magnetically assisted 3D printing of composite materials. Nature Communications, 6: 8643 doi: 10.1038/ncomms9643
|
| [62] |
Lakes R. 1987. Foam structures with a negative Poisson's ratio. Science, 235: 1038-1040 doi: 10.1126/science.235.4792.1038
|
| [63] |
Lakes R, Elms K. 1993. Indentability of conventional and negative Poisson's ratio foams. Journal of Composite Materials, 27: 1193-1202 doi: 10.1177/002199839302701203
|
| [64] |
Larsen U D, Signund O, Bouwsta S. 1997. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6: 99-106 doi: 10.1109/84.585787
|
| [65] |
Lendlein A, Gould O E. 2019. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 4: 116-133 doi: 10.1038/s41578-018-0078-8
|
| [66] |
Li C, Zhou Q, Li H, et al. 2024. Dynamic crushing responses of enhanced auxetic re-entrant honeycomb based on additive manufacturing. Structures, 69: 107367 doi: 10.1016/j.istruc.2024.107367
|
| [67] |
Li F, Lin D, Chen Z, et al. 2018. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 17: 349-354 doi: 10.1038/s41563-018-0034-4
|
| [68] |
Li H, Bi K, Han Q, et al. 2025. A state-of-the-art review on negative stiffness-based structural vibration control. Engineering Structures, 323: 119247 doi: 10.1016/j.engstruct.2024.119247
|
| [69] |
Li L, He Q, Jing X, et al. 2023. Study on three-point bending behavior of sandwich beams with novel auxetic honeycomb core. Materials Today Communications, 35: 106259 doi: 10.1016/j.mtcomm.2023.106259
|
| [70] |
Li Q X, Zhi X D, Fan F. 2022. Quasi-static compressive behaviour of 3D-printed origami-inspired cellular structure: Experimental, numerical and theoretical studies. Virtual and Physical Prototyping, 17: 69-91 doi: 10.1080/17452759.2021.1987051
|
| [71] |
Li W, Zhong Y, Zhu Y, et al. 2024. Enhancing the structural stiffness and energy absorption of re-entrant auxetic honeycombs using folded stiffeners. Thin-Walled Structures, 205: 112504 doi: 10.1016/j.tws.2024.112504
|
| [72] |
Li X, Fan R, Fan Z, et al. 2021. Programmable mechanical metamaterials based on hierarchical rotating structures. International Journal of Solids and Structures, 216: 145-155 doi: 10.1016/j.ijsolstr.2021.01.028
|
| [73] |
Li X, Li Z, Guo Z, et al. 2025. A novel hybrid star honeycomb with individually adjustable second plateau stresses. Composite Structures, 356: 118881 doi: 10.1016/j.compstruct.2025.118881
|
| [74] |
Lin H B, Liu H T. 2023. Mechanical properties and band gap characteristics of flexible skin based on multi-concave angle honeycomb. Materials Today Communications, 35: 106113 doi: 10.1016/j.mtcomm.2023.106113
|
| [75] |
Lin Y X, Zhong Y F, Hien P L, et al. 2025. Gradient re-entrant honeycomb with quasi-ZPR and improved out-of-plane flexibility through tunable horizontal ligaments. Thin-Walled Structures, 213: 113241 doi: 10.1016/j.tws.2025.113241
|
| [76] |
Lira C, Scarpa F, Tai Y H, et al. 2011. Transverse shear modulus of SILICOMB cellular structures. Composites Science and Technology, 71: 1236-1241 doi: 10.1016/j.compscitech.2011.04.008
|
| [77] |
Liu H, Deng H, Bao J. 2025. A deployable modular structure with zero thermal expansion for mesh reflector antennas and its structural performance. Structures, 71: 108000 doi: 10.1016/j.istruc.2024.108000
|
| [78] |
Liu K, Han L, Hu W, et al. 2020. 4D printed zero Poisson's ratio metamaterial with switching function of mechanical and vibration isolation performance. Materials & Design, 196: 109153
|
| [79] |
Liu R, Ji C, Mock J, et al. 2009. Broadband ground-plane cloak. Science, 323: 366-369 doi: 10.1126/science.1166949
|
| [80] |
Liu W, Zhu H, Zhou S, et al. 2013. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing. Chinese Journal of Aeronautics, 26: 935-942 doi: 10.1016/j.cja.2013.04.015
|
| [81] |
Liu Z, Lv Q, Li D, et al. 2025. A straight-arch-straight beam tandem quasi-zero stiffness structure. International Journal of Mechanical Sciences, 286: 109818 doi: 10.1016/j.ijmecsci.2024.109818
|
| [82] |
Lu H, Wang X, Chen T. 2021. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption. Thin-Walled Structures, 160: 107366 doi: 10.1016/j.tws.2020.107366
|
| [83] |
Lu H, Wang X, Chen T. 2022. Design and quasi-static responses of a hierarchical negative Poisson's ratio structure with three plateau stages and three-step deformation. Composite Structures, 291: 115591 doi: 10.1016/j.compstruct.2022.115591
|
| [84] |
Lu H, Wang X, Chen T. 2023. Quasi-static bending response and energy absorption of a novel sandwich beam with a reinforced auxetic core under the fixed boundary at both ends. Thin-Walled Structures, 191: 111011 doi: 10.1016/j.tws.2023.111011
|
| [85] |
Lu Y, Luo Q, Tong L. 2025. Topology optimization for metastructures with quasi-zero stiffness and snap-through features. Computer Methods in Applied Mechanics and Engineering, 434: 117587 doi: 10.1016/j.cma.2024.117587
|
| [86] |
Lu Y, Ma Y, Deng F, et al. 2024. Gradient wood-derived hydrogel actuators constructed by an isotropic-anisotropic structure strategy with rapid thermal-response, high strength and programmable deformation. Chemical Engineering Journal, 504: 158903
|
| [87] |
Luo H C, Ren X, Zhang Y, et al. 2022. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Composite Structures, 280: 114922 doi: 10.1016/j.compstruct.2021.114922
|
| [88] |
Maldovan M. 2013. Sound and heat revolutions in phononics. Nature, 503: 209-217 doi: 10.1038/nature12608
|
| [89] |
Mao A, Zhao N, Liang Y, et al. 2021. Mechanically efficient cellular materials inspired by cuttlebone. Advanced Materials, 33: 2007348 doi: 10.1002/adma.202007348
|
| [90] |
Mirabolghasemi A, Akbarzadeh A, Rodrigue D, et al. 2019. Thermal conductivity of architected cellular metamaterials. Acta Materialia, 174: 61-80 doi: 10.1016/j.actamat.2019.04.061
|
| [91] |
Mueller J, Raney J R, Shea K, et al. 2018. Architected lattices with high stiffness and toughness via multicore–shell 3D printing. Advanced Materials, 30: 1705001 doi: 10.1002/adma.201705001
|
| [92] |
Muth J T, Dixon P G, Woish L, et al. 2017. Architected cellular ceramics with tailored stiffness via direct foam writing. Proceedings of the National Academy of Sciences, 114: 1832-1837 doi: 10.1073/pnas.1616769114
|
| [93] |
Na H, Kang Y W, Park C S, et al. 2022. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science, 376: 301-307 doi: 10.1126/science.abm7862
|
| [94] |
Ni X, Wong Z J, Mrejen M, et al. 2015. An ultrathin invisibility skin cloak for visible light. Science, 349: 1310-1314 doi: 10.1126/science.aac9411
|
| [95] |
Nicolaou Z G, Motter A E. 2012. Mechanical metamaterials with negative compressibility transitions. Nature Materials, 11: 608-613 doi: 10.1038/nmat3331
|
| [96] |
Niu H, Lu J, Qin R, et al. 2025. A self-locked chiral honeycomb: In-plane compression behavior and energy absorption. European Journal of Mechanics-A/Solids, 111: 105580 doi: 10.1016/j.euromechsol.2025.105580
|
| [97] |
Ouyang S B, Zhong Y F, Hien P L, et al. 2025. Designing re-entrant nested star-shaped honeycombs for energy-absorbing and load-bearing capabilities. Engineering Structures, 335: 120258 doi: 10.1016/j.engstruct.2025.120258
|
| [98] |
Overvelde J T B, Bertoldi K. 2014. Relating pore shape to the non-linear response of periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 64: 351-366 doi: 10.1016/j.jmps.2013.11.014
|
| [99] |
Pan D, Tan S, Zhang Z, et al. 2025. The metastructures actuated by rotational motion with quasi-zero stiffness, negative stiffness, and bistability. Thin-Walled Structures, 207: 112700 doi: 10.1016/j.tws.2024.112700
|
| [100] |
Pendry J B, Schurig D, Smith D R. 2006. Controlling electromagnetic fields. Science, 312: 1780-1782 doi: 10.1126/science.1125907
|
| [101] |
Prall D, Lakes R S. 1997. Properties of a chiral honeycomb with a Poisson's ratio of -1. International Journal of Mechanical Sciences, 39: 305-314 doi: 10.1016/S0020-7403(96)00025-2
|
| [102] |
Qu Y C, Teng X C, Zhang Y, et al. 2025. A novel 3D composite auxetic sandwich panel for energy absorption improvement. Engineering Structures, 322: 119129 doi: 10.1016/j.engstruct.2024.119129
|
| [103] |
Rafsanjani A, Pasini D. 2016. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 9: 291-296 doi: 10.1016/j.eml.2016.09.001
|
| [104] |
Ravirala N, Alderson A, Alderson K L. 2007. Interlocking hexagons model for auxetic behaviour. Journal of Materials Science, 42: 7433-7445 doi: 10.1007/s10853-007-1583-0
|
| [105] |
Ritchie R O. 2011. The conflicts between strength and toughness. Nature Materials, 10: 817-822 doi: 10.1038/nmat3115
|
| [106] |
Sadikbasha S, Pandurangan V. 2023. High velocity impact response of sandwich structures with auxetic tetrachiral cores: Analytical model, finite element simulations and experiments. Composite Structures, 317: 117064 doi: 10.1016/j.compstruct.2023.117064
|
| [107] |
Sahariah B J, Baishya M J, Namdeo A, et al. 2023. A novel strategy to design lattice structures with zero Poisson's ratio. Engineering Structures, 288: 116214 doi: 10.1016/j.engstruct.2023.116214
|
| [108] |
Schaedler T A, Jacobsen A J, Torrents A, et al. 2011. Ultralight metallic microlattices. Science, 334: 962-965 doi: 10.1126/science.1211649
|
| [109] |
Schenk M, Guest S D. 2013. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 110: 3276-3281 doi: 10.1073/pnas.1217998110
|
| [110] |
Schurig D, Mock J J, Justice B J, et al. 2006. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314: 977-980 doi: 10.1126/science.1133628
|
| [111] |
Schwartz J, Boydston A. 2019. Multimaterial actinic spatial control 3D and 4D printing. Nature Communications, 10: 791 doi: 10.1038/s41467-019-08639-7
|
| [112] |
Shelby R A, Smith D R, Schultz S. 2001. Experimental verification of a negative index of refraction. Science, 292: 77-79 doi: 10.1126/science.1058847
|
| [113] |
Sigmund O, Torquato S, Aksay I A. 1998. On the design of 1-3 piezocomposites using topology optimization. Journal of Materials Research, 13: 1038-1048 doi: 10.1557/JMR.1998.0145
|
| [114] |
Sklan S R, Li B. 2018. Thermal metamaterials: Functions and prospects. National Science Review, 5: 138-141 doi: 10.1093/nsr/nwy005
|
| [115] |
Smith C W, Grima J N, Evans K E. 2000. A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Materialia, 48: 4349-4356 doi: 10.1016/S1359-6454(00)00269-X
|
| [116] |
Song Z, Guo D, Liu Y, et al. 2025. Design of kirigami metamaterials with square-symmetric auxeticity under large stretching. Thin-Walled Structures, 213: 113268 doi: 10.1016/j.tws.2025.113268
|
| [117] |
Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al. 2016. Biomimetic 4D printing. Nature Materials, 15: 413-418 doi: 10.1038/nmat4544
|
| [118] |
Tan X, Chu K, Chen Z, et al. 2024. Recent advances in self-healing hydrogel composites for flexible wearable electronic devices. Nano Research Energy, 3: e9120123 doi: 10.26599/NRE.2024.9120123
|
| [119] |
Tang Y X, Zhong Y F, Zhu Y L, et al. 2025. Energy absorption characteristics and auxetic effect of novel elliptic-arc re-entrant honeycomb structures. Engineering Structures, 323: 119260 doi: 10.1016/j.engstruct.2024.119260
|
| [120] |
Theocaris P, Stavroulakis G, Panagiotopoulos P. 1997. Negative Poisson's ratios in composites with star-shaped inclusions: A numerical homogenization approach. Archive of Applied Mechanics, 67: 274-286 doi: 10.1007/s004190050117
|
| [121] |
Toombs J T, Luitz M, Cook C C, et al. 2022. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 376: 308-312 doi: 10.1126/science.abm6459
|
| [122] |
Virk K, Monti A, Trehard T, et al. 2013. SILICOMB PEEK Kirigami cellular structures: Mechanical response and energy dissipation through zero and negative stiffness. Smart Materials and Structures, 22: 084014 doi: 10.1088/0964-1726/22/8/084014
|
| [123] |
Wang H, Lu Z, Yang Z, et al. 2019. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Composite Structures, 208: 758-770 doi: 10.1016/j.compstruct.2018.10.024
|
| [124] |
Wang J, Luo X, Wang K, et al. 2022. On impact behaviors of 3D concave structures with negative Poisson's ratio. Composite Structures, 298: 115999 doi: 10.1016/j.compstruct.2022.115999
|
| [125] |
Wang N, Liu W, Tang A, et al. 2014. Strain isolation: A simple mechanism for understanding and detecting structures of zero Poisson's ratio. Physica Status Solidi B, 251: 2239-2246 doi: 10.1002/pssb.201451376
|
| [126] |
Wang Q, Tian X, Huang L, et al. 2018. Programmable morphing composites with embedded continuous fibers by 4D printing. Materials & Design, 155: 404-413
|
| [127] |
Wang S, Liu H T. 2023. Energy absorption performance of the auxetic arc-curved honeycomb with thickness and arc angle gradient based on additive manufacturing. Materials Today Communications, 35: 105515 doi: 10.1016/j.mtcomm.2023.105515
|
| [128] |
Wang S, Liu H T. 2024. Quasi-static compression response of a novel multi-step auxetic honeycomb with tunable transition strain. Aerospace Science and Technology, 155: 109730 doi: 10.1016/j.ast.2024.109730
|
| [129] |
Wang S, Liu H T, Cai G B. 2024. Programmable mechanical responses of a hybrid star-rhombus honeycomb based on digital design method. Thin-Walled Structures, 205: 112399 doi: 10.1016/j.tws.2024.112399
|
| [130] |
Wang W J, Yang H, Zhang W M, et al. 2025. Experimental study on the impact resistance of fill-enhanced mechanical metamaterials. International Journal of Mechanical Sciences, 285: 109799 doi: 10.1016/j.ijmecsci.2024.109799
|
| [131] |
Wang W J, Zhang W M, Guo M F, et al. 2023. Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading. Thin-Walled Structures, 185: 110577 doi: 10.1016/j.tws.2023.110577
|
| [132] |
Wang W J, Zhang W M, Guo M F, et al. 2024. Impact resistance of assembled plate-lattice auxetic structures. Composite Structures, 338: 118132 doi: 10.1016/j.compstruct.2024.118132
|
| [133] |
Wang X T, Wang B, Wen Z H, et al. 2018. Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures. Composites Science and Technology, 164: 92-102 doi: 10.1016/j.compscitech.2018.05.014
|
| [134] |
Wang Y C, Lakes R. 2005. Composites with inclusions of negative bulk modulus: Extreme damping and negative Poisson's ratio. Journal of Composite Materials, 39: 1645-1657 doi: 10.1177/0021998305051112
|
| [135] |
Wei T, Lu F, Zhang C, et al. 2025. Energy absorption of 3D assembled auxetic meta-structure with compression-twisting effect. Structures, 73: 108482 doi: 10.1016/j.istruc.2025.108482
|
| [136] |
Wojciechowski K W. 1989. Two-dimensional isotropic system with a negative Poisson ratio. Physics Letters A, 137: 60-64 doi: 10.1016/0375-9601(89)90971-7
|
| [137] |
Wu L, Zhao F, Lu Z, et al. 2022. Impact energy absorption composites with shear stiffening gel-filled negative Poisson's ratio skeleton by kirigami method. Composite Structures, 298: 116009 doi: 10.1016/j.compstruct.2022.116009
|
| [138] |
Wu W, Hu W, Qian G, et al. 2019. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, 180: 107950
|
| [139] |
Wu X, Su Y, Shi J. 2020. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials. Composite Structures, 247: 112451 doi: 10.1016/j.compstruct.2020.112451
|
| [140] |
Wu X, Zhang S, Ding L, et al. 2024. Bi-material multistable auxetic honeycombs with reusable and enhanced energy-absorbing phases under in-plane crushing. Thin-Walled Structures, 201: 111988 doi: 10.1016/j.tws.2024.111988
|
| [141] |
Xia X, Afshar A, Yang H, et al. 2019. Electrochemically reconfigurable architected materials. Nature, 573: 205-213 doi: 10.1038/s41586-019-1538-z
|
| [142] |
Xu C, Stiubianu G T, Gorodetsky A A. 2018. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 359: 1495-1500 doi: 10.1126/science.aar5191
|
| [143] |
Xu H, Liu H T, Li G F. 2025. In-plane characteristics of a multi-arc re-entrant auxetic honeycomb with enhanced negative Poisson's ratio effect and energy absorption. European Journal of Mechanics-A/Solids, 109: 105473 doi: 10.1016/j.euromechsol.2024.105473
|
| [144] |
Xu M, Xu Z, Zhang Z, et al. 2019. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. International Journal of Mechanical Sciences, 159: 43-57 doi: 10.1016/j.ijmecsci.2019.05.044
|
| [145] |
Yan Y, Xu S, Wang X, et al. 2025. A photothermal-responsive and glucose-responsive antibacterial hydrogel featuring tunable mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 708: 136029 doi: 10.1016/j.colsurfa.2024.136029
|
| [146] |
Yang H, D'Ambrosio N, Liu P, et al. 2023. Shape memory mechanical metamaterials. Materials Today, 66: 36-49 doi: 10.1016/j.mattod.2023.04.003
|
| [147] |
Yang H, Ma L. 2021. Impact resistance of additively manufactured 3D double-U auxetic structures. Thin-Walled Structures, 169: 108373 doi: 10.1016/j.tws.2021.108373
|
| [148] |
Yang H, Yang L, Zheng X, et al. 2025. High-performance 3D auxetic metamaterials enabled by multiple auxetic mechanisms. International Journal of Mechanical Sciences, 287: 109981 doi: 10.1016/j.ijmecsci.2025.109981
|
| [149] |
Yang S, Chalivendra V B, Kim Y K. 2017. Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Composite Structures, 168: 120-129 doi: 10.1016/j.compstruct.2017.02.034
|
| [150] |
Yeo S J, Oh M J, Yoo P J. 2019. Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Advanced Materials, 31: 1803670 doi: 10.1002/adma.201803670
|
| [151] |
Yu P, Zhang P, Ji Q, et al. 2024. A multi-step auxetic metamaterial with instability regulation. International Journal of Solids and Structures, 305: 113040 doi: 10.1016/j.ijsolstr.2024.113040
|
| [152] |
Yu R, Luo W, Yuan H, et al. 2020. Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson's ratio. Thin-Walled Structures, 153: 106679 doi: 10.1016/j.tws.2020.106679
|
| [153] |
Yu X, Chen H, Lin H, et al. 2014. Continuously tuning effective refractive index based on thermally controllable magnetic metamaterials. Optics Letters, 39: 4643-4646 doi: 10.1364/OL.39.004643
|
| [154] |
Yu X, Zhou J, Liang H, et al. 2018. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 94: 114-173 doi: 10.1016/j.pmatsci.2017.12.003
|
| [155] |
Yuan C, Mu X, Dunn C K, et al. 2018. Thermomechanically triggered two-stage pattern switching of 2D lattices for adaptive structures. Advanced Functional Materials, 28: 1705727 doi: 10.1002/adfm.201705727
|
| [156] |
Yue L, Liu H, Cheng Z, et al. 2024. Dynamic crushing behavior of a novel bi-directional gradient lattice structure under axial and oblique impact loadings. Thin-Walled Structures, 198: 111697 doi: 10.1016/j.tws.2024.111697
|
| [157] |
Ze Q, Kuang X, Wu S, et al. 2020. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Advanced Materials, 32: 1906657 doi: 10.1002/adma.201906657
|
| [158] |
Zhang B, Zhang W, Zhang Z, et al. 2019. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Applied Materials & Interfaces, 11: 10328-10336
|
| [159] |
Zhang C, Lu F, Mo W, et al. 2025. Dynamic responses and energy absorption characteristics of windmill-shaped auxetic structure under impact loading. Structures, 75: 108670 doi: 10.1016/j.istruc.2025.108670
|
| [160] |
Zhang D, Lim X J G, Li X, et al. 2022. 3D-Printed porous thermoelectrics for in situ energy harvesting. ACS Energy Letters, 8: 332-338
|
| [161] |
Zhang H, Chen P, Lin G, et al. 2022. A corrugated gradient mechanical metamaterial: Lightweight, tunable auxeticity and enhanced specific energy absorption. Thin-Walled Structures, 176: 109355 doi: 10.1016/j.tws.2022.109355
|
| [162] |
Zhang Q, Sun Y. 2025. Energy absorption characteristic of auxetic metamaterials honeycombs and lattices with negative thermal expansion. Thin-Walled Structures, 208: 112824 doi: 10.1016/j.tws.2024.112824
|
| [163] |
Zhang W, Chen J, Li X, et al. 2020. Liquid metal-polymer microlattice metamaterials with high fracture toughness and damage recoverability. Small, 16: 2004190 doi: 10.1002/smll.202004190
|
| [164] |
Zhang W, Wang H, Lou X, et al. 2024. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb. Thin-Walled Structures, 194: 111303 doi: 10.1016/j.tws.2023.111303
|
| [165] |
Zhang X, Vyatskikh A, Gao H, et al. 2019. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences, 116: 6665-6672 doi: 10.1073/pnas.1817309116
|
| [166] |
Zhang Y, Ren X, Jiang W, et al. 2022. In-plane compressive properties of assembled auxetic chiral honeycomb composed of slotted wave plate. Materials & Design, 221: 110956
|
| [167] |
Zhang Z, Gu Y W, Wu H A, et al. 2025. Investigation on the energy absorption characteristics of novel graded auxetic re-entrant honeycombs. Composite Structures, 352: 118633 doi: 10.1016/j.compstruct.2024.118633
|
| [168] |
Zhang Z, Lei Y P, Wang H. 2025. Deformation and energy absorption characteristics of graded auxetic metamaterials featuring peanut-shaped perforations under in-plane compression. International Journal of Solids and Structures, 313: 113318 doi: 10.1016/j.ijsolstr.2025.113318
|
| [169] |
Zheng X, Lee H, Weisgraber T H, et al. 2014. Ultralight, ultrastiff mechanical metamaterials. Science, 344: 1373-1377 doi: 10.1126/science.1252291
|
| [170] |
Zhou C, Zhang F, Zhang X, et al. 2025. Hierarchical negative stiffness structures with improved resilience and energy absorption capability. Materials Today Communications, 42: 111371 doi: 10.1016/j.mtcomm.2024.111371
|
| [171] |
Zhou J, Wang Y, Luo H, et al. 2024. Energy absorption of auxetic honeycomb with graded beam thickness based on Bezier curve. Aerospace Science and Technology, 155: 109619 doi: 10.1016/j.ast.2024.109619
|
| [172] |
Zhou Y, Chen C, Zhu S, et al. 2019. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 30: 17-25 doi: 10.1016/j.mattod.2019.03.016
|
| [173] |
Zhu Y, Fu Y, Rui X, et al. 2025. On the design and crashworthiness of a novel auxetic self-locking energy absorption system. International Journal of Solids and Structures, 311: 113246 doi: 10.1016/j.ijsolstr.2025.113246
|
| [174] |
Zouaoui M, Saifouni O, Gardan J, et al. 2022. Improvement of fracture toughness based on auxetic patterns fabricated by metallic extrusion in 3D printing. Procedia Structural Integrity, 42: 680-686 doi: 10.1016/j.prostr.2022.12.086
|