| Citation: | Xu Z P. Resolving Physical Complexities with Machine Intelligence. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-018 |
| [1] |
甘磊, 吴昊, 仲政. 2025. 数据驱动的金属疲劳寿命模型研究进展. 力学进展, 55(1): 30-79
|
| [2] |
王鹏, 孙升, 张庆, 张统一. 2024. 力学信息学简介. 自然杂志, 40(5): 313-322
|
| [3] |
王润梓, 廖鼎, 张显程, 朱顺鹏, 涂善东, 郭素娟. 2021. 高温结构蠕变疲劳寿命设计方法: 从材料到结构. 机械工程学报, 57(16): 66-86
|
| [4] |
轩福贞, 朱明亮, 王国彪. 2021. 结构疲劳百年研究的回顾与展望. 机械工程学报, 57(6): 26-51
|
| [5] |
杨强, 孟松鹤, 仲政, 解维华, 郭早阳, 金华, 张幸红. 2020. 力学研究中“大数据”的启示、应用与挑战. 力学进展, 50(1): 202011
|
| [6] |
杨卫. 2024. 数智力学−驾驭数智时代的力学. 力学进展, 54(4): 629-638
|
| [7] |
Abramson J, Adler J, Dunger J, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016): 493-500 doi: 10.1038/s41586-024-07487-w
|
| [8] |
Abu-Mostafa Y S, Magdon-Ismail M, Lin H T. 2012. Learning from Data. AMLBook New York
|
| [9] |
AI P. 2025. The Well: A Collection of Machine Learning Datasets for Spatiotemporal Physical Systems. Accessed: 2025-02-25.
|
| [10] |
Allen A, Markou S, Tebbutt W, et al. 2025. End-to-end data-driven weather prediction. Nature, 641(8065): 1172-1179 doi: 10.1038/s41586-025-08897-0
|
| [11] |
Allen M P, Tildesley D J. 1987. Computer Simulation of Liquids. Clarendon: Oxford
|
| [12] |
Angelopoulos A, Cahoon J F, Alterovitz R. 2024. Transforming science labs into automated factories of discovery. Sci. Robot., 9(95): eadm6991 doi: 10.1126/scirobotics.adm6991
|
| [13] |
Archetype AI. 2024. Archetype AI: Official Website. https://www.archetypeai.io. Accessed: 2024-05-05
|
| [14] |
Augustine M T. 2024. A survey on universal approximation theorems. arXiv preprint arXiv: 2407.12895
|
| [15] |
Bahri Y, Dyer E, Kaplan J, et al. 2024. Explaining neural scaling laws. Proc. Natl. Acad. Sci., 121(27): e2311878121 doi: 10.1073/pnas.2311878121
|
| [16] |
Bansal H, Lin Z, Xie T, et al. 2024. Videophy: Evaluating physical commonsense for video generation. arXiv preprint arXiv: 2406.03520
|
| [17] |
Barducci A, Bonomi M, Parrinello M. 2011. Metadynamics. Wiley Interdiscip. Rev. : Comput. Mol. Sci., 1(5): 826-843. doi: 10.1002/wcms.31
|
| [18] |
Battaglia P, Pascanu R, Lai M, et al. 2016. Interaction networks for learning about objects, relations and physics. Adv. neural Inf. Process. Sys., 29
|
| [19] |
Batzner S, Musaelian A, Sun L, et al. 2022. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun., 13(1): 2453 doi: 10.1038/s41467-022-29939-5
|
| [20] |
Behler J, Parrinello M. 2007. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14): 146401 doi: 10.1103/PhysRevLett.98.146401
|
| [21] |
Belsky A, Hellenbrandt M, Karen V L, et al. 2002. New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Cryst. B, 58(3): 364-369 doi: 10.1107/S0108768102006948
|
| [22] |
Ben Mahmoud C, Gardner J L, Deringer V L. 2024. Data as the next challenge in atomistic machine learning. Nat. Comput. Sci., 4(6): 384-387 doi: 10.1038/s43588-024-00636-1
|
| [23] |
Ben-David S, Blitzer J, Crammer K, et al. 2010. A theory of learning from different domains. Mach. Learn., 79: 151-175 doi: 10.1007/s10994-009-5152-4
|
| [24] |
Benito T, Barrientos A. 2024. An intelligent human-machine interface architecture for long-term remote robot handling in fusion reactor environments. Appl. Sci., 14(11): 4814 doi: 10.3390/app14114814
|
| [25] |
Bonatti C, Mohr D. 2021. One for all: Universal material model based on minimal state-space neural networks. Sci. Adv., 7(26): eabf3658 doi: 10.1126/sciadv.abf3658
|
| [26] |
Bronstein M M, Bruna J, Cohen T, et al. 2021. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv: 2104.13478
|
| [27] |
Brunton S L, Proctor J L, Kutz J N. 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci., 113(15): 3932-3937 doi: 10.1073/pnas.1517384113
|
| [28] |
Cai S, Mao Z, Wang Z, et al. 2021. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin., 37(12): 1727-1738 doi: 10.1007/s10409-021-01148-1
|
| [29] |
Canty R B, Bennett J A, Brown K A, et al. 2025. Science acceleration and accessibility with self-driving labs. Nat. Commun., 16(1): 3856 doi: 10.1038/s41467-025-59231-1
|
| [30] |
Chen C, Ong S P. 2022. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci., 2(11): 718-728 doi: 10.1038/s43588-022-00349-3
|
| [31] |
Chen P C, Gao M, McCandler C A, et al. 2024. Complete miscibility of immiscible elements at the nanometre scale. Nat. Nanotechnol., 19: 775-781 doi: 10.1038/s41565-024-01626-0
|
| [32] |
Chmiela S, Vassilev-Galindo V, Unke O T, et al. 2023. Accurate global machine learning force fields for molecules with hundreds of atoms. Sci. Adv., 9(2): eadf0873 doi: 10.1126/sciadv.adf0873
|
| [33] |
Collins K M, Sucholutsky I, Bhatt U, et al. 2024. Building machines that learn and think with people. Nat. Human Behav., 8(10): 1851-1863 doi: 10.1038/s41562-024-01991-9
|
| [34] |
Consortium E. 2022. European Virtual Human Twin. Accessed: 2023-10-15.
|
| [35] |
Cornelio C, Dash S, Austel V, et al. 2023. Combining data and theory for derivable scientific discovery with AI-Descartes. Nat. Commun., 14(1): 1777 doi: 10.1038/s41467-023-37236-y
|
| [36] |
Corrosion Data Center (CORRDATA). 2025. CORRDATA: Corrosion Data and Resources. https://www.corrdata. org.cn/. Accessed: 2025-07-02
|
| [37] |
Curtarolo S, Ceder G. 2002. Dynamics of an inhomogeneously coarse grained multiscale system. Phys. Rev. Lett., 88(25): 255504 doi: 10.1103/PhysRevLett.88.255504
|
| [38] |
Cybenko G. 1989. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst., 2(4): 303-314 doi: 10.1007/BF02551274
|
| [39] |
Deng B, Zhong P, Jun K, et al. 2023. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell., 5(9): 1031-1041 doi: 10.1038/s42256-023-00716-3
|
| [40] |
Dirac P A M. 1929. Quantum mechanics of many-electron systems. Proc. Roy. Soc. London. A, 123(792): 714-733 doi: 10.1098/rspa.1929.0094
|
| [41] |
Drori I. 2022. The Science of Deep Learning. Cambridge University Press
|
| [42] |
Elder K, Grant M, Provatas N, et al. 2001. Sharp interface limits of phase-field models. Phys. Rev. E, 64(2): 021604 doi: 10.1103/PhysRevE.64.021604
|
| [43] |
Everson R, Sirovich L. 1995. Karhunen-Loeve procedure for gappy data. J. Opt. Soc. Am. A, 12(8): 1657-1664 doi: 10.1364/JOSAA.12.001657
|
| [44] |
Figshare. 2025. Figshare. Accessed: 2025-06-29.
|
| [45] |
Fortunato S, Bergstrom C T, Börner K, et al. 2018. Science of science. Science, 359(6379): eaao0185 doi: 10.1126/science.aao0185
|
| [46] |
Gardiner R, Goodwin P, Dodd S, et al. 1996. Non-equilibrium synthesis of new materials. Adv. Perform. Mater., 3: 343-364 doi: 10.1007/BF00136796
|
| [47] |
Ghaboussi J, Garrett Jr J, Wu X. 1991. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech., 117(1): 132-153
|
| [48] |
Ghafarollahi A, Buehler M J. 2025. Automating alloy design and discovery with physics-aware multimodal multiagent AI. Proc. Natl. Acad. Sci., 122(4): e2414074122 doi: 10.1073/pnas.2414074122
|
| [49] |
Git SCM. 2025. Git: Fast, scalable, distributed revision control system. https://git-scm.com/. Accessed: 2025-06-29
|
| [50] |
Gottweis J, Weng W H, Daryin A, et al. 2025. Towards an AI co-scientist. arXiv preprint arXiv: 2502.18864
|
| [51] |
Guo K, Yang Z, Yu C H, et al. 2021. Artificial intelligence and machine learning in design of mechanical materials. Mater. Hori., 8(4): 1153-1172 doi: 10.1039/D0MH01451F
|
| [52] |
Ha D, Schmidhuber J. 2018. World models. arXiv preprint arXiv: 1803.10122
|
| [53] |
Han Y, Ding C, Wang J, et al. 2025. Efficient crystal structure prediction based on the symmetry principle. Nat. Comput. Sci., 5: 255-267 doi: 10.1038/s43588-025-00775-z
|
| [54] |
Harris P, Shanahan P. 2024. A Virtuous Cycle: Generative AI and Discovery in the Physical Sciences. Available at https://mit-genai.pubpub.org/pub/ewp5ckmf/release/1
|
| [55] |
Henkes A, Eshraghian J K, Wessels H. 2024. Spiking neural networks for nonlinear regression. R. Soc. Open Sci., 11(5): 231606 doi: 10.1098/rsos.231606
|
| [56] |
Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Netw., 2(5): 359-366 doi: 10.1016/0893-6080(89)90020-8
|
| [57] |
Horton M K, Huck P, Yang R X, et al. 2025. Accelerated data-driven materials science with the Materials Project. Nat. Mater., 1–11.
|
| [58] |
Hummer G. 2004. From transition paths to transition states and rate coefficients. J. Chem. Phys., 120(2): 516-523 doi: 10.1063/1.1630572
|
| [59] |
Isihara A. 2013. Statistical Physics. Academic Press
|
| [60] |
Jacobsen A, Miranda Azevedo R de, Juty N, et al. 2020. FAIR principles: Interpretations and implementation considerations. Data Intell., 2(1-2): 160018
|
| [61] |
Jin R, Yuan X, Gao E. 2023. Atomic stiffness for bulk modulus prediction and high-throughput screening of ultrain-compressible crystals. Nat. Commun., 14: 4258 doi: 10.1038/s41467-023-39826-2
|
| [62] |
Jing B, Stärk H, Jaakkola T, et al. 2024. Generative modeling of molecular dynamics trajectories. arXiv preprint arXiv: 2409.17808
|
| [63] |
Jung H, Covino R, Arjun A, et al. 2023. Machine-guided path sampling to discover mechanisms of molecular self-organization. Nat. Comput. Sci., 3(4): 334-345 doi: 10.1038/s43588-023-00428-z
|
| [64] |
Kabir M, Lau T T, Rodney D, et al. 2010. Predicting dislocation climb and creep from explicit atomistic details. Phys. Rev. Lett., 105(9): 095501 doi: 10.1103/PhysRevLett.105.095501
|
| [65] |
Kang B, Yue Y, Lu R, et al. 2024. How far is video generation from world model? A physical law perspective. arXiv preprint arXiv: 2411.02385
|
| [66] |
Kapteyn M G, Knezevic D J, Huynh D, et al. 2022. Data-driven physics-based digital twins via a library of component-based reduced-order models. Int. J. Numer. Methods Eng., 123(13): 2986-3003 doi: 10.1002/nme.6423
|
| [67] |
Kapteyn M G, Pretorius J V, Willcox K E. 2021. A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat. Comput. Sci., 1(5): 337-347 doi: 10.1038/s43588-021-00069-0
|
| [68] |
Kay W, Carreira J, Simonyan K, et al. 2017. The kinetics human action video dataset. arXiv preprint arXiv: 1705.06950
|
| [69] |
Kennedy M C, O’Hagan A. 2001. Bayesian calibration of computer models. J. Roy. Stat. Soc. B, 63(3): 425-464 doi: 10.1111/1467-9868.00294
|
| [70] |
Kirchdoerfer T, Ortiz M. 2016. Data-driven computational mechanics. Comput. Meth. Appl. Mech. Eng., 304: 81-101 doi: 10.1016/j.cma.2016.02.001
|
| [71] |
Ko T W, Finkler J A, Goedecker S, et al. 2021. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun., 12: 398 doi: 10.1038/s41467-020-20427-2
|
| [72] |
Kovachki N, Li Z, Liu B, et al. 2023. Neural operator: Learning maps between function spaces with applications to PDEs. J. Mach. Learn. Res., 24(89): 1-97
|
| [73] |
Lake B M, Ullman T D, Tenenbaum J B, et al. 2017 Building machines that learn and think like people. Behav. Brain Sci., 40: e253
|
| [74] |
LeCun Y, Bottou L, Bengio Y, et al. 2002. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11): 2278-2324
|
| [75] |
Li B, Deng B, Shou W, et al. 2024. Computational discovery of microstructured composites with optimal stiffness-toughness trade-offs. Sci. Adv., 10(5): eadk4284 doi: 10.1126/sciadv.adk4284
|
| [76] |
Li H, Xu Z, Taylor G, et al. 2017. Visualizing the loss landscape of neural nets. arXiv preprint arXiv: 1712.09913
|
| [77] |
Li K, Rubungo A N, Lei X, et al. 2025. Probing out-of-distribution generalization in machine learning for materials. Commun. Mater., 6(1): 9 doi: 10.1038/s43246-024-00731-w
|
| [78] |
Li Z, Kovachki N, Azizzadenesheli K, et al. 2020. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv: 2010.08895
|
| [79] |
Liu B, Li X, Zhang J, et al. 2025. Advances and challenges in foundation agents: From brain-inspired intelligence to evolutionary, collaborative, and safe systems. arXiv preprint arXiv: 2504.01990
|
| [80] |
Liu D, Zhang J, Dinh A D, et al. 2025. Generative physical AI in vision: A survey. arXiv preprint arXiv: 2501.10928
|
| [81] |
Liu M, Artyukhov V I, Lee H, et al. 2013. Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope. ACS Nano, 7(11): 10075-10082 doi: 10.1021/nn404177r
|
| [82] |
Liu X, Yu Z, Xiang N. 2023. Applying FAIR4RS principles to develop an integrated modeling environment for the magnetic confinement fusion. Sci. Data, 10(1): 592 doi: 10.1038/s41597-023-02470-y
|
| [83] |
Liu X, Zeng K, Luo Z, et al. 2025. Fine-tuning universal machine-learned interatomic potentials: A tutorial on methods and applications. arXiv preprint arXiv: 2506.21935
|
| [84] |
Liu Z, Wang B. 2023. Prediction of ideal strength by machine learning. Mater. Chem. Phys., 299: 127476 doi: 10.1016/j.matchemphys.2023.127476
|
| [85] |
Liu Z, Kitouni O, Nolte N S, et al. 2022. Towards understanding grokking: An effective theory of representation learning. Advances in Neural Information Processing Systems, 35: 34651-34663
|
| [86] |
Liu Z, Wang Y, Vaidya S, et al. 2024. KAN: Kolmogorov-Arnold networks. arXiv preprint arXiv: 2404.19756
|
| [87] |
Lu C, Lu C, Lange R T, et al. 2024. The AI scientist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv: 2408.06292
|
| [88] |
Lu L, Jin P, Karniadakis G E. 2019. DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv: 1910.03193
|
| [89] |
Lu P Y, Kim S, Soljačić M. 2020. Extracting interpretable physical parameters from spatiotemporal systems using unsupervised learning. Phys. Rev. X, 10(3): 031056
|
| [90] |
Lundberg S M, Lee S I. 2017. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Sys., 30.
|
| [91] |
Luo Y, Li M, Yuan H, et al. 2023. Predicting lattice thermal conductivity via machine learning: A mini review. npj Comput. Mater., 9(1): 4 doi: 10.1038/s41524-023-00964-2
|
| [92] |
Lyu Y, Yang Z, Liang H, et al. 2022. Artificial intelligence-assisted fatigue fracture recognition based on morphing and fully convolutional networks. Fatigue Fract. Eng. Mater. Struct., 45(6): 1690-1702 doi: 10.1111/ffe.13693
|
| [93] |
Maass W. 1997. Networks of spiking neurons: The third generation of neural network models. Neural Netw., 10(9): 1659-1671 doi: 10.1016/S0893-6080(97)00011-7
|
| [94] |
Mardt A, Pasquali L, Wu H, et al. 2018. VAMPnets for deep learning of molecular kinetics. Nat. Commun., 9: 5 doi: 10.1038/s41467-017-02388-1
|
| [95] |
Martin R M. 2020. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press
|
| [96] |
Martin R C. 2017. Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Prentice Hall Press
|
| [97] |
Materials Cloud. 2025. Materials Cloud. Accessed: 2025-06-29
|
| [98] |
MatWeb LLC. 2025. MatWeb: Online Materials Information Resource. https://www.matweb.com. Accessed: 2025-07-02
|
| [99] |
McGreivy N, Hakim A. 2024. Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations. Nat. Mach. Intell., 6(10): 1256-1269 doi: 10.1038/s42256-024-00897-5
|
| [100] |
Mehta P, Schwab D J. 2014 An exact mapping between the variational renormalization group and deep learning. arXiv preprint arXiv: 1410.3831
|
| [101] |
Merchant A, Batzner S, Schoenholz S S, et al. 2023. Scaling deep learning for materials discovery. Nature, 624(7990): 80-85 doi: 10.1038/s41586-023-06735-9
|
| [102] |
Moallemy-Oureh A, Beddar-Wiesing S, Nather R, et al. 2024. Marked neural spatio-temporal point process involving a dynamic graph neural network. arXiv preprint arXiv: 2206.03469
|
| [103] |
Moro V, Loh C, Dangovski R, et al. 2025. Multi-modal foundation models for material property prediction and discovery. Newton, 1: 100016 doi: 10.1016/j.newton.2025.100016
|
| [104] |
Mozaffar M, Bostanabad R, Chen W, et al. 2019. Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci., 116(52): 26414-26420 doi: 10.1073/pnas.1911815116
|
| [105] |
National Academies of Sciences E, Medicine. 2024. Foundational Research Gaps and Future Directions for Digital Twins. Washington, D. C. : National Academies Press
|
| [106] |
National Institute for Materials Science (NIMS). 2025. NIMS Materials Database. https://mits.nims.go.jp/ index_en.html. Accessed: 2025-07-02
|
| [107] |
National Institute of Standards and Technology (NIST). 2025. NIST Materials Data Repository. https://materialsdata. nist.gov. Accessed: 2025-07-02
|
| [108] |
Noé F, Nuske F. 2013. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul., 11(2): 635-655 doi: 10.1137/110858616
|
| [109] |
Noé F, Olsson S, Köhler J, et al. 2019. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science, 365(6457): eaaw1147 doi: 10.1126/science.aaw1147
|
| [110] |
Noether E. 1971. Invariant variation problems. Transp. Theory Stat. Phys., 1(3): 186-207 doi: 10.1080/00411457108231446
|
| [111] |
Ogata S, Li J, Yip S. 2002. Ideal pure shear strength of aluminum and copper. Science, 298(5594): 807-811 doi: 10.1126/science.1076652
|
| [112] |
Ohana R, McCabe M, Meyer L T, et al. 2024. “The Well: A Large-Scale Collection of Diverse Physics Simulations for Machine Learning”. In: The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track.
|
| [113] |
Open Science for Engineering. 2025. Open Science for Engineering. Accessed: 2025-06-22
|
| [114] |
OpenAI. 2024. ChatGPT with Deep Research. https://openai.com/chatgpt. Accessed: 2025-06-28
|
| [115] |
Parliament E, Council. 2023. Regulation (EU) 2023/2854 of the European Parliament and of the Council of 13 December 2023 on harmonised rules on fair access to and use of data. Official Journal L 2023/2854, 22 December 2023
|
| [116] |
Parliament E, Council. 2024. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence. Official Journal L 2024/1689, 12 July 2024
|
| [117] |
Pearl J. 2009. Causality. Cambridge University Press
|
| [118] |
Polyak A, Zohar A, Brown A, et al. 2024. Movie Gen: A cast of media foundation models, 2025. arXiv preprint arXiv: 2410.13720
|
| [119] |
Pozdnyakov S N, Willatt M J, Bartók A P, et al. 2020. Incompleteness of atomic structure representations. Phys. Rev. Lett., 125(16): 166001 doi: 10.1103/PhysRevLett.125.166001
|
| [120] |
Prinz J H, Wu H, Sarich M, et al. 2011. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys., 134(17
|
| [121] |
Raccuglia P, Elbert K C, Adler P D, et al. 2016. Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601): 73-76 doi: 10.1038/nature17439
|
| [122] |
Raissi M, Perdikaris P, Karniadakis G E. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
|
| [123] |
RCSB. 2025. Protein Data Bank (RCSB PDB). Accessed: 2025-06-29
|
| [124] |
Ribeiro M T, Singh S, Guestrin C. 2016. “ Why should I trust you? Explaining the predictions of any classifier”. In: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. pp. 1135–1144
|
| [125] |
Riebesell J, Goodall R E, Benner P, et al. 2025. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell., 7(6): 836-847 doi: 10.1038/s42256-025-01055-1
|
| [126] |
Roberts D A, Yaida S, Hanin B. 2022. The Principles of Deep Learning Theory. Vol. 46. Cambridge University Press Cambridge, MA, USA
|
| [127] |
Rubio P B, Chamoin L, Louf F. 2019. Real-time Bayesian data assimilation with data selection, correction of model bias, and on-the-fly uncertainty propagation. Comptes Rendus. Mécanique, 347(11): 762-779
|
| [128] |
Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell., 1(5): 206-215 doi: 10.1038/s42256-019-0048-x
|
| [129] |
Rudy S H, Brunton S L, Proctor J L, et al. 2017. Data-driven discovery of partial differential equations. Sci. Adv., 3(4): e1602614 doi: 10.1126/sciadv.1602614
|
| [130] |
Saal J E, Kirklin S, Aykol M, et al. 2013. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM, 65: 1501-1509 doi: 10.1007/s11837-013-0755-4
|
| [131] |
Saeed W, Omlin C. 2023. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl-Based Syst., 263: 110273 doi: 10.1016/j.knosys.2023.110273
|
| [132] |
Schilling-Wilhelmi M, Ríos-García M, Shabih S, et al. 2025. From text to insight: Large language models for chemical data extraction. Chemical Society Reviews, 54: 1125-1150 doi: 10.1039/D4CS00913D
|
| [133] |
Shaikeea A J D, Cui H, O’Masta M, et al. 2022. The toughness of mechanical metamaterials. Nat. Mater., 21(3): 297-304 doi: 10.1038/s41563-021-01182-1
|
| [134] |
Shao Q, Li R, Yue Z, et al. 2021. Data-driven discovery and understanding of ultrahigh-modulus crystals. Chem. Mater., 33(4): 1276-1284 doi: 10.1021/acs.chemmater.0c04146
|
| [135] |
Sharkey L, Chughtai B, Batson J, et al. 2025. Open problems in mechanistic interpretability. arXiv preprint arXiv: 2501.16496.
|
| [136] |
Shea D E, Brunton S L, Kutz J N. 2021. SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems. Phys. Rev. Res., 3(2): 023255 doi: 10.1103/PhysRevResearch.3.023255
|
| [137] |
Shen S C, Buehler M J. 2022. Nature-inspired architected materials using unsupervised deep learning. Commun. Eng., 1: 37 doi: 10.1038/s44172-022-00037-0
|
| [138] |
Shi P, Feng S, Xu Z. 2024. Non-equilibrium nature of fracture determines the crack paths. Extreme Mech. Lett., 68: 102151 doi: 10.1016/j.eml.2024.102151
|
| [139] |
Shi P, Xu Z. 2024. Exploring fracture of h-BN and graphene by neural network force fields. J. Phys. Condens. Matter, 36(41): 415401 doi: 10.1088/1361-648X/ad5c31
|
| [140] |
Shwartz-Ziv R, Tishby N. 2017. Opening the black box of deep neural networks via information. arXiv preprint arXiv: 1703.00810
|
| [141] |
Song J, Shan Y, Zhang Z, et al. 2025. Phase-field-informed machine learning on creep behavior of Ni-based single-crystal superalloys. J. Mater. Inform., 5(3): 32
|
| [142] |
Strohmann T, Melching D, Paysan F, et al. 2023. Towards self-driving labs for experimental mechanics: A data-centric approach for fatigue crack analysis in aerospace materials. Research Square rs. 3. rs-3128435
|
| [143] |
Strohmann T, Starostin-Penner D, Breitbarth E, Requena G. 2021. Automatic detection of fatigue crack paths using digital image correlation and convolutional neural networks. Fatigue Fract. Eng. Mater. Struct., 44(5): 1336-1348 doi: 10.1111/ffe.13433
|
| [144] |
Surjadi J U, Portela C M. 2025. Enabling three-dimensional architected materials across length scales and timescales. Nat. Mater., 24: 493-505 doi: 10.1038/s41563-025-02119-8
|
| [145] |
Sutton R. 2019. The bitter lesson. Incomplete Ideas (blog), 13(1): 38
|
| [146] |
Talirz L, Kumbhar S, Passaro E, et al. 2020. Materials Cloud, a platform for open computational science. Sci. Data, 7: 299 doi: 10.1038/s41597-020-00637-5
|
| [147] |
Tang H, Chen Z, Yao X, et al. 2025. Mechanical performance dataset for alloy with applications at low temperatures. Sci. Data, 12: 1235 doi: 10.1038/s41597-025-05512-9
|
| [148] |
Tang K, Zhang P, Zhao Y, et al. 2024. Deep learning-based semantic segmentation for morphological fractography. Eng. Fract. Mech., 303: 110149 doi: 10.1016/j.engfracmech.2024.110149
|
| [149] |
Tenenbaum J B, Kemp C, Griffiths T L, et al. 2011. How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022): 1279-1285 doi: 10.1126/science.1192788
|
| [150] |
Tezsezen E, Yigci D, Ahmadpour A, et al. 2024. AI-based metamaterial design. ACS Appl. Mater. Interf., 16(23): 29547-29569 doi: 10.1021/acsami.4c04486
|
| [151] |
Tian S, Zhou K, Yin W, et al. 2024. Machine learning enables the discovery of 2D Invar and anti-Invar monolayers. Nat. Commun., 15: 6977 doi: 10.1038/s41467-024-51379-6
|
| [152] |
Tishby N, Pereira F C, Bialek W. 2000. The information bottleneck method. arXiv preprint physics/0004057
|
| [153] |
Tishby N, Zaslavsky N. 2015. Deep learning and the information bottleneck principle. arXiv preprint arXiv: 1503.02406
|
| [154] |
Tom G, Schmid S P, Baird S G, et al. 2024. Self-driving laboratories for chemistry and materials science. Chem. Rev., 124(16): 9633-9732 doi: 10.1021/acs.chemrev.4c00055
|
| [155] |
Ullman T D, Stuhlmüller A, Goodman N D, et al. 2018. Learning physical parameters from dynamic scenes. Cogn. Psychol., 104: 57-82 doi: 10.1016/j.cogpsych.2017.05.006
|
| [156] |
Valiant L G. 1984. A theory of the learnable. Commun. of the ACM, 27(11): 1134-1142 doi: 10.1145/1968.1972
|
| [157] |
Valle-Pérez G, Louis A A. 2020. Generalization bounds for deep learning. arXiv preprint arXiv: 2012.04115
|
| [158] |
Vapnik V. 1999. The Nature of Statistical Learning Theory. Springer
|
| [159] |
Voter A F, Montalenti F, Germann T C. 2002. Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res., 32: 321-346 doi: 10.1146/annurev.matsci.32.112601.141541
|
| [160] |
Wälchli D, Weber P, Chatzimanolakis M, et al. 2025. Inverse reinforcement learning for objective discovery in collective behavior of artificial swimmers. Phys. Rev. Fluids, 10(6): 064901 doi: 10.1103/646f-dt2k
|
| [161] |
Wang J, Olsson S, Wehmeyer C, et al. 2019. Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci., 5(5): 755-767 doi: 10.1021/acscentsci.8b00913
|
| [162] |
Wang W, Gómez-Bombarelli R. 2019. Coarse-graining auto-encoders for molecular dynamics. npj Comput. Mater., 5: 125 doi: 10.1038/s41524-019-0261-5
|
| [163] |
Wang Y, Sun J, Bai J, et al. 2024. Kolmogorov Arnold informed neural network: A physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov Arnold Networks. arXiv preprint arXiv: 2406.11045
|
| [164] |
Wang Z, Wu K, Ding J, et al. 2025. Strut-buckling transformation enabling anomalous density-scaling toughening law in ultralight lattice metamaterials. Adv. Mater., 2419635.
|
| [165] |
Wei J, Wang X, Schuurmans D, et al. 2022. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv: 2201.11903
|
| [166] |
Wen M, Tadmor E B. 2019. Hybrid neural network potential for multilayer graphene. Phys. Rev. B, 100(19): 195419 doi: 10.1103/PhysRevB.100.195419
|
| [167] |
Wilczek F. 2022. Fundamentals: Ten Keys to Reality. Penguin
|
| [168] |
Wilkinson M D, Dumontier M, Aalbersberg I J, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 3: 160018 doi: 10.1038/sdata.2016.18
|
| [169] |
Wines D, Choudhary K. 2025. CHIPS-FF: Evaluating universal machine learning force fields for material properties. ACS Mater. Lett., 7(6): 2105-2114 doi: 10.1021/acsmaterialslett.5c00093
|
| [170] |
Wu J, Yildirim I, Lim J J, et al. 2015. Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. Adv. Neural Inf. Process., 28
|
| [171] |
Wu L, Zhu Z, E W. 2017. Towards understanding generalization of deep learning: Perspective of loss landscapes. arXiv preprint arXiv: 1706.10239
|
| [172] |
Xu Z. 2023a. “Environmentally-Assisted Fatigue at Small Scales”. In: Comprehensive Structural Integrity (Second Edition). Ed. by M H F Aliabadi, W O Soboyejo. Second Edition. Oxford: Elsevier, pp. 131–162
|
| [173] |
Xu Z. 2023b. “Fracture of Low-Dimensional Materials”. In: Comprehensive Structural Integrity (Second Edition). Ed. by M H F Aliabadi, W O Soboyejo. Second Edition. Oxford: Elsevier, pp. 196–216
|
| [174] |
Xu Z. 2025. “Reliability in heterogeneous integration: A theoretical view”. In: EDTM 2025. IEEE, pp. 1–3
|
| [175] |
Xu Z, Zhang Z. 2024. The need for standardizing fatigue data reporting. Nat. Mater., 23(7): 866-868 doi: 10.1038/s41563-024-01929-6
|
| [176] |
Yamada Y, Lange R T, Lu C, et al. 2025. The AI Scientist-V2: Workshop-level automated scientific discovery via agentic tree search. arXiv preprint arXiv: 2504.08066
|
| [177] |
Yang F, Zhao W, Ru Y, et al. 2024. Transfer learning enables the rapid design of single crystal superalloys with superior creep resistances at ultrahigh temperature. npj Comput. Mater., 10: 149 doi: 10.1038/s41524-024-01349-9
|
| [178] |
Zeni C, Pinsler R, Zügner D, et al. 2025. A generative model for inorganic materials design. Nature, 639: 624-632 doi: 10.1038/s41586-025-08628-5
|
| [179] |
Zenodo. 2025. Zenodo. Accessed: 2025-06-29
|
| [180] |
Zhang L, Han J, Wang H, et al. 2018. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120(14): 143001 doi: 10.1103/PhysRevLett.120.143001
|
| [181] |
Zhang Z, Tang H, Xu Z. 2023. Fatigue database of complex metallic alloys. Sci. Data, 10: 447 doi: 10.1038/s41597-023-02354-1
|
| [182] |
Zhang Z, Xu Z. 2022. Failure life prediction for carbon nanotubes. J. Mech. Phys. Solids, 164: 104907 doi: 10.1016/j.jmps.2022.104907
|
| [183] |
Zhang Z, Xu Z. 2023. Fatigue database of additively manufactured alloys. Sci. Data, 10: 249 doi: 10.1038/s41597-023-02150-x
|
| [184] |
Zhao Y, Liu Y, Xu Z. 2023. Statistical learning prediction of fatigue crack growth via path slicing and re-weighting. Theo. Appl. Mech. Lett., 13(6): 100477 doi: 10.1016/j.taml.2023.100477
|
| [185] |
Zhao Y, Song Y, Xu F, et al. 2025. Predicting brain morphogenesis via physics-transfer learning. arXiv preprint arXiv: 2509.05305
|
| [186] |
Zhao Y, Xu Z. 2025a. Neural network modeling of microstructure complexity using digital libraries. arXiv preprint arXiv: 2501.18189
|
| [187] |
Zhao Y, Xu Z. 2025b. “Physics-transfer learning: A framework to address the accuracy-performance dilemma in modeling morphological complexities in brain development”. In: ICLR 2025 Workshop on Machine Learning Multiscale Processes.
|
| [188] |
Zhao Y, Zhou H, Zhang Z, et al. 2025. Discovering high-strength alloys via physics-transfer learning. Matter, 8(9): 102377 doi: 10.1016/j.matt.2025.102377
|
| [189] |
Zheng X, Zhang X, Chen T T, et al. 2023. Deep learning in mechanical metamaterials: From prediction and generation to inverse design. Adv. Mater., 35(45): 2302530 doi: 10.1002/adma.202302530
|
| [190] |
Zhou W, Yang Y, Zheng G, et al. 2020. Proton irradiation-decelerated intergranular corrosion of Ni-Cr alloys in molten salt. Nat. Commun., 11: 3430 doi: 10.1038/s41467-020-17244-y
|
| [191] |
Zhu R, Nong W, Yamazaki S, et al. 2024. WyCryst: Wyckoff inorganic crystal generator framework. Matter, 7(10): 3469-3488 doi: 10.1016/j.matt.2024.05.042
|
| [192] |
Zills F, Schäfer M, Tovey S, et al. 2024. ZnTrack: Data as code. arXiv preprint arXiv: 2401.10603
|