Turn off MathJax
Article Contents
Xu Z P. Resolving Physical Complexities with Machine Intelligence. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-018
Citation: Xu Z P. Resolving Physical Complexities with Machine Intelligence. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-018

Resolving Physical Complexities with Machine Intelligence

doi: 10.6052/1000-0992-25-018 cstr: 32046.14.1000-0992-25-018
More Information
  • Understanding the relationships between material microstructures and their mechanical performance and using them to make predictions are pivotal topics in solid mechanics. From Galileo’s beam bending analysis, Cauchy’s stress definition to Arrhenius-based creep laws, theoretical and simulation frameworks find great success in addressing engineering problems. Yet, the spatiotemporal complexity challenges the conventional ‘observation-hypothesis-model’ approach for structural integrity in key industrial sectors such as aerospace, nuclear energy, and semiconductors. Recent progress and fusion of high-performance computing, high-throughput experiments, data science, and artificial intelligence provide a complementary solution to scientific discovery and engineering deployment on these issues. However, unlike their applications in vision and language domains, engineering science demands stronger data-model inference capabilities. High-quality, physically consistent databases and digital libraries are needed to enhance model performance, generalization, and interpretability. Concepts such as “physics transfer” and “reality reconstruction” offer guiding principles for modeling and predicting complex behaviors. With further support from cognitive science, intelligent agents and physical intelligence are increasingly capable of assisting, or even replacing, researchers in conducting exploration and reasoning in complex, dynamic scenarios. This paper reviews key insights of the complexities in solid mechanics and discusses active research areas through the lenses of learning theory and open science, with particular emphasis on multiscale mechanics and the long-term service behavior of materials and structures.

     

  • loading
  • [1]
    甘磊, 吴昊, 仲政. 2025. 数据驱动的金属疲劳寿命模型研究进展. 力学进展, 55(1): 30-79
    [2]
    王鹏, 孙升, 张庆, 张统一. 2024. 力学信息学简介. 自然杂志, 40(5): 313-322
    [3]
    王润梓, 廖鼎, 张显程, 朱顺鹏, 涂善东, 郭素娟. 2021. 高温结构蠕变疲劳寿命设计方法: 从材料到结构. 机械工程学报, 57(16): 66-86
    [4]
    轩福贞, 朱明亮, 王国彪. 2021. 结构疲劳百年研究的回顾与展望. 机械工程学报, 57(6): 26-51
    [5]
    杨强, 孟松鹤, 仲政, 解维华, 郭早阳, 金华, 张幸红. 2020. 力学研究中“大数据”的启示、应用与挑战. 力学进展, 50(1): 202011
    [6]
    杨卫. 2024. 数智力学−驾驭数智时代的力学. 力学进展, 54(4): 629-638
    [7]
    Abramson J, Adler J, Dunger J, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016): 493-500 doi: 10.1038/s41586-024-07487-w
    [8]
    Abu-Mostafa Y S, Magdon-Ismail M, Lin H T. 2012. Learning from Data. AMLBook New York
    [9]
    AI P. 2025. The Well: A Collection of Machine Learning Datasets for Spatiotemporal Physical Systems. Accessed: 2025-02-25.
    [10]
    Allen A, Markou S, Tebbutt W, et al. 2025. End-to-end data-driven weather prediction. Nature, 641(8065): 1172-1179 doi: 10.1038/s41586-025-08897-0
    [11]
    Allen M P, Tildesley D J. 1987. Computer Simulation of Liquids. Clarendon: Oxford
    [12]
    Angelopoulos A, Cahoon J F, Alterovitz R. 2024. Transforming science labs into automated factories of discovery. Sci. Robot., 9(95): eadm6991 doi: 10.1126/scirobotics.adm6991
    [13]
    Archetype AI. 2024. Archetype AI: Official Website. https://www.archetypeai.io. Accessed: 2024-05-05
    [14]
    Augustine M T. 2024. A survey on universal approximation theorems. arXiv preprint arXiv: 2407.12895
    [15]
    Bahri Y, Dyer E, Kaplan J, et al. 2024. Explaining neural scaling laws. Proc. Natl. Acad. Sci., 121(27): e2311878121 doi: 10.1073/pnas.2311878121
    [16]
    Bansal H, Lin Z, Xie T, et al. 2024. Videophy: Evaluating physical commonsense for video generation. arXiv preprint arXiv: 2406.03520
    [17]
    Barducci A, Bonomi M, Parrinello M. 2011. Metadynamics. Wiley Interdiscip. Rev. : Comput. Mol. Sci., 1(5): 826-843. doi: 10.1002/wcms.31
    [18]
    Battaglia P, Pascanu R, Lai M, et al. 2016. Interaction networks for learning about objects, relations and physics. Adv. neural Inf. Process. Sys., 29
    [19]
    Batzner S, Musaelian A, Sun L, et al. 2022. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun., 13(1): 2453 doi: 10.1038/s41467-022-29939-5
    [20]
    Behler J, Parrinello M. 2007. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14): 146401 doi: 10.1103/PhysRevLett.98.146401
    [21]
    Belsky A, Hellenbrandt M, Karen V L, et al. 2002. New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Cryst. B, 58(3): 364-369 doi: 10.1107/S0108768102006948
    [22]
    Ben Mahmoud C, Gardner J L, Deringer V L. 2024. Data as the next challenge in atomistic machine learning. Nat. Comput. Sci., 4(6): 384-387 doi: 10.1038/s43588-024-00636-1
    [23]
    Ben-David S, Blitzer J, Crammer K, et al. 2010. A theory of learning from different domains. Mach. Learn., 79: 151-175 doi: 10.1007/s10994-009-5152-4
    [24]
    Benito T, Barrientos A. 2024. An intelligent human-machine interface architecture for long-term remote robot handling in fusion reactor environments. Appl. Sci., 14(11): 4814 doi: 10.3390/app14114814
    [25]
    Bonatti C, Mohr D. 2021. One for all: Universal material model based on minimal state-space neural networks. Sci. Adv., 7(26): eabf3658 doi: 10.1126/sciadv.abf3658
    [26]
    Bronstein M M, Bruna J, Cohen T, et al. 2021. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv: 2104.13478
    [27]
    Brunton S L, Proctor J L, Kutz J N. 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci., 113(15): 3932-3937 doi: 10.1073/pnas.1517384113
    [28]
    Cai S, Mao Z, Wang Z, et al. 2021. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin., 37(12): 1727-1738 doi: 10.1007/s10409-021-01148-1
    [29]
    Canty R B, Bennett J A, Brown K A, et al. 2025. Science acceleration and accessibility with self-driving labs. Nat. Commun., 16(1): 3856 doi: 10.1038/s41467-025-59231-1
    [30]
    Chen C, Ong S P. 2022. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci., 2(11): 718-728 doi: 10.1038/s43588-022-00349-3
    [31]
    Chen P C, Gao M, McCandler C A, et al. 2024. Complete miscibility of immiscible elements at the nanometre scale. Nat. Nanotechnol., 19: 775-781 doi: 10.1038/s41565-024-01626-0
    [32]
    Chmiela S, Vassilev-Galindo V, Unke O T, et al. 2023. Accurate global machine learning force fields for molecules with hundreds of atoms. Sci. Adv., 9(2): eadf0873 doi: 10.1126/sciadv.adf0873
    [33]
    Collins K M, Sucholutsky I, Bhatt U, et al. 2024. Building machines that learn and think with people. Nat. Human Behav., 8(10): 1851-1863 doi: 10.1038/s41562-024-01991-9
    [34]
    Consortium E. 2022. European Virtual Human Twin. Accessed: 2023-10-15.
    [35]
    Cornelio C, Dash S, Austel V, et al. 2023. Combining data and theory for derivable scientific discovery with AI-Descartes. Nat. Commun., 14(1): 1777 doi: 10.1038/s41467-023-37236-y
    [36]
    Corrosion Data Center (CORRDATA). 2025. CORRDATA: Corrosion Data and Resources. https://www.corrdata. org.cn/. Accessed: 2025-07-02
    [37]
    Curtarolo S, Ceder G. 2002. Dynamics of an inhomogeneously coarse grained multiscale system. Phys. Rev. Lett., 88(25): 255504 doi: 10.1103/PhysRevLett.88.255504
    [38]
    Cybenko G. 1989. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst., 2(4): 303-314 doi: 10.1007/BF02551274
    [39]
    Deng B, Zhong P, Jun K, et al. 2023. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell., 5(9): 1031-1041 doi: 10.1038/s42256-023-00716-3
    [40]
    Dirac P A M. 1929. Quantum mechanics of many-electron systems. Proc. Roy. Soc. London. A, 123(792): 714-733 doi: 10.1098/rspa.1929.0094
    [41]
    Drori I. 2022. The Science of Deep Learning. Cambridge University Press
    [42]
    Elder K, Grant M, Provatas N, et al. 2001. Sharp interface limits of phase-field models. Phys. Rev. E, 64(2): 021604 doi: 10.1103/PhysRevE.64.021604
    [43]
    Everson R, Sirovich L. 1995. Karhunen-Loeve procedure for gappy data. J. Opt. Soc. Am. A, 12(8): 1657-1664 doi: 10.1364/JOSAA.12.001657
    [44]
    Figshare. 2025. Figshare. Accessed: 2025-06-29.
    [45]
    Fortunato S, Bergstrom C T, Börner K, et al. 2018. Science of science. Science, 359(6379): eaao0185 doi: 10.1126/science.aao0185
    [46]
    Gardiner R, Goodwin P, Dodd S, et al. 1996. Non-equilibrium synthesis of new materials. Adv. Perform. Mater., 3: 343-364 doi: 10.1007/BF00136796
    [47]
    Ghaboussi J, Garrett Jr J, Wu X. 1991. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech., 117(1): 132-153
    [48]
    Ghafarollahi A, Buehler M J. 2025. Automating alloy design and discovery with physics-aware multimodal multiagent AI. Proc. Natl. Acad. Sci., 122(4): e2414074122 doi: 10.1073/pnas.2414074122
    [49]
    Git SCM. 2025. Git: Fast, scalable, distributed revision control system. https://git-scm.com/. Accessed: 2025-06-29
    [50]
    Gottweis J, Weng W H, Daryin A, et al. 2025. Towards an AI co-scientist. arXiv preprint arXiv: 2502.18864
    [51]
    Guo K, Yang Z, Yu C H, et al. 2021. Artificial intelligence and machine learning in design of mechanical materials. Mater. Hori., 8(4): 1153-1172 doi: 10.1039/D0MH01451F
    [52]
    Ha D, Schmidhuber J. 2018. World models. arXiv preprint arXiv: 1803.10122
    [53]
    Han Y, Ding C, Wang J, et al. 2025. Efficient crystal structure prediction based on the symmetry principle. Nat. Comput. Sci., 5: 255-267 doi: 10.1038/s43588-025-00775-z
    [54]
    Harris P, Shanahan P. 2024. A Virtuous Cycle: Generative AI and Discovery in the Physical Sciences. Available at https://mit-genai.pubpub.org/pub/ewp5ckmf/release/1
    [55]
    Henkes A, Eshraghian J K, Wessels H. 2024. Spiking neural networks for nonlinear regression. R. Soc. Open Sci., 11(5): 231606 doi: 10.1098/rsos.231606
    [56]
    Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Netw., 2(5): 359-366 doi: 10.1016/0893-6080(89)90020-8
    [57]
    Horton M K, Huck P, Yang R X, et al. 2025. Accelerated data-driven materials science with the Materials Project. Nat. Mater., 1–11.
    [58]
    Hummer G. 2004. From transition paths to transition states and rate coefficients. J. Chem. Phys., 120(2): 516-523 doi: 10.1063/1.1630572
    [59]
    Isihara A. 2013. Statistical Physics. Academic Press
    [60]
    Jacobsen A, Miranda Azevedo R de, Juty N, et al. 2020. FAIR principles: Interpretations and implementation considerations. Data Intell., 2(1-2): 160018
    [61]
    Jin R, Yuan X, Gao E. 2023. Atomic stiffness for bulk modulus prediction and high-throughput screening of ultrain-compressible crystals. Nat. Commun., 14: 4258 doi: 10.1038/s41467-023-39826-2
    [62]
    Jing B, Stärk H, Jaakkola T, et al. 2024. Generative modeling of molecular dynamics trajectories. arXiv preprint arXiv: 2409.17808
    [63]
    Jung H, Covino R, Arjun A, et al. 2023. Machine-guided path sampling to discover mechanisms of molecular self-organization. Nat. Comput. Sci., 3(4): 334-345 doi: 10.1038/s43588-023-00428-z
    [64]
    Kabir M, Lau T T, Rodney D, et al. 2010. Predicting dislocation climb and creep from explicit atomistic details. Phys. Rev. Lett., 105(9): 095501 doi: 10.1103/PhysRevLett.105.095501
    [65]
    Kang B, Yue Y, Lu R, et al. 2024. How far is video generation from world model? A physical law perspective. arXiv preprint arXiv: 2411.02385
    [66]
    Kapteyn M G, Knezevic D J, Huynh D, et al. 2022. Data-driven physics-based digital twins via a library of component-based reduced-order models. Int. J. Numer. Methods Eng., 123(13): 2986-3003 doi: 10.1002/nme.6423
    [67]
    Kapteyn M G, Pretorius J V, Willcox K E. 2021. A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat. Comput. Sci., 1(5): 337-347 doi: 10.1038/s43588-021-00069-0
    [68]
    Kay W, Carreira J, Simonyan K, et al. 2017. The kinetics human action video dataset. arXiv preprint arXiv: 1705.06950
    [69]
    Kennedy M C, O’Hagan A. 2001. Bayesian calibration of computer models. J. Roy. Stat. Soc. B, 63(3): 425-464 doi: 10.1111/1467-9868.00294
    [70]
    Kirchdoerfer T, Ortiz M. 2016. Data-driven computational mechanics. Comput. Meth. Appl. Mech. Eng., 304: 81-101 doi: 10.1016/j.cma.2016.02.001
    [71]
    Ko T W, Finkler J A, Goedecker S, et al. 2021. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun., 12: 398 doi: 10.1038/s41467-020-20427-2
    [72]
    Kovachki N, Li Z, Liu B, et al. 2023. Neural operator: Learning maps between function spaces with applications to PDEs. J. Mach. Learn. Res., 24(89): 1-97
    [73]
    Lake B M, Ullman T D, Tenenbaum J B, et al. 2017 Building machines that learn and think like people. Behav. Brain Sci., 40: e253
    [74]
    LeCun Y, Bottou L, Bengio Y, et al. 2002. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11): 2278-2324
    [75]
    Li B, Deng B, Shou W, et al. 2024. Computational discovery of microstructured composites with optimal stiffness-toughness trade-offs. Sci. Adv., 10(5): eadk4284 doi: 10.1126/sciadv.adk4284
    [76]
    Li H, Xu Z, Taylor G, et al. 2017. Visualizing the loss landscape of neural nets. arXiv preprint arXiv: 1712.09913
    [77]
    Li K, Rubungo A N, Lei X, et al. 2025. Probing out-of-distribution generalization in machine learning for materials. Commun. Mater., 6(1): 9 doi: 10.1038/s43246-024-00731-w
    [78]
    Li Z, Kovachki N, Azizzadenesheli K, et al. 2020. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv: 2010.08895
    [79]
    Liu B, Li X, Zhang J, et al. 2025. Advances and challenges in foundation agents: From brain-inspired intelligence to evolutionary, collaborative, and safe systems. arXiv preprint arXiv: 2504.01990
    [80]
    Liu D, Zhang J, Dinh A D, et al. 2025. Generative physical AI in vision: A survey. arXiv preprint arXiv: 2501.10928
    [81]
    Liu M, Artyukhov V I, Lee H, et al. 2013. Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope. ACS Nano, 7(11): 10075-10082 doi: 10.1021/nn404177r
    [82]
    Liu X, Yu Z, Xiang N. 2023. Applying FAIR4RS principles to develop an integrated modeling environment for the magnetic confinement fusion. Sci. Data, 10(1): 592 doi: 10.1038/s41597-023-02470-y
    [83]
    Liu X, Zeng K, Luo Z, et al. 2025. Fine-tuning universal machine-learned interatomic potentials: A tutorial on methods and applications. arXiv preprint arXiv: 2506.21935
    [84]
    Liu Z, Wang B. 2023. Prediction of ideal strength by machine learning. Mater. Chem. Phys., 299: 127476 doi: 10.1016/j.matchemphys.2023.127476
    [85]
    Liu Z, Kitouni O, Nolte N S, et al. 2022. Towards understanding grokking: An effective theory of representation learning. Advances in Neural Information Processing Systems, 35: 34651-34663
    [86]
    Liu Z, Wang Y, Vaidya S, et al. 2024. KAN: Kolmogorov-Arnold networks. arXiv preprint arXiv: 2404.19756
    [87]
    Lu C, Lu C, Lange R T, et al. 2024. The AI scientist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv: 2408.06292
    [88]
    Lu L, Jin P, Karniadakis G E. 2019. DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv: 1910.03193
    [89]
    Lu P Y, Kim S, Soljačić M. 2020. Extracting interpretable physical parameters from spatiotemporal systems using unsupervised learning. Phys. Rev. X, 10(3): 031056
    [90]
    Lundberg S M, Lee S I. 2017. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Sys., 30.
    [91]
    Luo Y, Li M, Yuan H, et al. 2023. Predicting lattice thermal conductivity via machine learning: A mini review. npj Comput. Mater., 9(1): 4 doi: 10.1038/s41524-023-00964-2
    [92]
    Lyu Y, Yang Z, Liang H, et al. 2022. Artificial intelligence-assisted fatigue fracture recognition based on morphing and fully convolutional networks. Fatigue Fract. Eng. Mater. Struct., 45(6): 1690-1702 doi: 10.1111/ffe.13693
    [93]
    Maass W. 1997. Networks of spiking neurons: The third generation of neural network models. Neural Netw., 10(9): 1659-1671 doi: 10.1016/S0893-6080(97)00011-7
    [94]
    Mardt A, Pasquali L, Wu H, et al. 2018. VAMPnets for deep learning of molecular kinetics. Nat. Commun., 9: 5 doi: 10.1038/s41467-017-02388-1
    [95]
    Martin R M. 2020. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press
    [96]
    Martin R C. 2017. Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Prentice Hall Press
    [97]
    Materials Cloud. 2025. Materials Cloud. Accessed: 2025-06-29
    [98]
    MatWeb LLC. 2025. MatWeb: Online Materials Information Resource. https://www.matweb.com. Accessed: 2025-07-02
    [99]
    McGreivy N, Hakim A. 2024. Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations. Nat. Mach. Intell., 6(10): 1256-1269 doi: 10.1038/s42256-024-00897-5
    [100]
    Mehta P, Schwab D J. 2014 An exact mapping between the variational renormalization group and deep learning. arXiv preprint arXiv: 1410.3831
    [101]
    Merchant A, Batzner S, Schoenholz S S, et al. 2023. Scaling deep learning for materials discovery. Nature, 624(7990): 80-85 doi: 10.1038/s41586-023-06735-9
    [102]
    Moallemy-Oureh A, Beddar-Wiesing S, Nather R, et al. 2024. Marked neural spatio-temporal point process involving a dynamic graph neural network. arXiv preprint arXiv: 2206.03469
    [103]
    Moro V, Loh C, Dangovski R, et al. 2025. Multi-modal foundation models for material property prediction and discovery. Newton, 1: 100016 doi: 10.1016/j.newton.2025.100016
    [104]
    Mozaffar M, Bostanabad R, Chen W, et al. 2019. Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci., 116(52): 26414-26420 doi: 10.1073/pnas.1911815116
    [105]
    National Academies of Sciences E, Medicine. 2024. Foundational Research Gaps and Future Directions for Digital Twins. Washington, D. C. : National Academies Press
    [106]
    National Institute for Materials Science (NIMS). 2025. NIMS Materials Database. https://mits.nims.go.jp/ index_en.html. Accessed: 2025-07-02
    [107]
    National Institute of Standards and Technology (NIST). 2025. NIST Materials Data Repository. https://materialsdata. nist.gov. Accessed: 2025-07-02
    [108]
    Noé F, Nuske F. 2013. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul., 11(2): 635-655 doi: 10.1137/110858616
    [109]
    Noé F, Olsson S, Köhler J, et al. 2019. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science, 365(6457): eaaw1147 doi: 10.1126/science.aaw1147
    [110]
    Noether E. 1971. Invariant variation problems. Transp. Theory Stat. Phys., 1(3): 186-207 doi: 10.1080/00411457108231446
    [111]
    Ogata S, Li J, Yip S. 2002. Ideal pure shear strength of aluminum and copper. Science, 298(5594): 807-811 doi: 10.1126/science.1076652
    [112]
    Ohana R, McCabe M, Meyer L T, et al. 2024. “The Well: A Large-Scale Collection of Diverse Physics Simulations for Machine Learning”. In: The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track.
    [113]
    Open Science for Engineering. 2025. Open Science for Engineering. Accessed: 2025-06-22
    [114]
    OpenAI. 2024. ChatGPT with Deep Research. https://openai.com/chatgpt. Accessed: 2025-06-28
    [115]
    Parliament E, Council. 2023. Regulation (EU) 2023/2854 of the European Parliament and of the Council of 13 December 2023 on harmonised rules on fair access to and use of data. Official Journal L 2023/2854, 22 December 2023
    [116]
    Parliament E, Council. 2024. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence. Official Journal L 2024/1689, 12 July 2024
    [117]
    Pearl J. 2009. Causality. Cambridge University Press
    [118]
    Polyak A, Zohar A, Brown A, et al. 2024. Movie Gen: A cast of media foundation models, 2025. arXiv preprint arXiv: 2410.13720
    [119]
    Pozdnyakov S N, Willatt M J, Bartók A P, et al. 2020. Incompleteness of atomic structure representations. Phys. Rev. Lett., 125(16): 166001 doi: 10.1103/PhysRevLett.125.166001
    [120]
    Prinz J H, Wu H, Sarich M, et al. 2011. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys., 134(17
    [121]
    Raccuglia P, Elbert K C, Adler P D, et al. 2016. Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601): 73-76 doi: 10.1038/nature17439
    [122]
    Raissi M, Perdikaris P, Karniadakis G E. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
    [123]
    RCSB. 2025. Protein Data Bank (RCSB PDB). Accessed: 2025-06-29
    [124]
    Ribeiro M T, Singh S, Guestrin C. 2016. “ Why should I trust you? Explaining the predictions of any classifier”. In: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. pp. 1135–1144
    [125]
    Riebesell J, Goodall R E, Benner P, et al. 2025. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell., 7(6): 836-847 doi: 10.1038/s42256-025-01055-1
    [126]
    Roberts D A, Yaida S, Hanin B. 2022. The Principles of Deep Learning Theory. Vol. 46. Cambridge University Press Cambridge, MA, USA
    [127]
    Rubio P B, Chamoin L, Louf F. 2019. Real-time Bayesian data assimilation with data selection, correction of model bias, and on-the-fly uncertainty propagation. Comptes Rendus. Mécanique, 347(11): 762-779
    [128]
    Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell., 1(5): 206-215 doi: 10.1038/s42256-019-0048-x
    [129]
    Rudy S H, Brunton S L, Proctor J L, et al. 2017. Data-driven discovery of partial differential equations. Sci. Adv., 3(4): e1602614 doi: 10.1126/sciadv.1602614
    [130]
    Saal J E, Kirklin S, Aykol M, et al. 2013. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM, 65: 1501-1509 doi: 10.1007/s11837-013-0755-4
    [131]
    Saeed W, Omlin C. 2023. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl-Based Syst., 263: 110273 doi: 10.1016/j.knosys.2023.110273
    [132]
    Schilling-Wilhelmi M, Ríos-García M, Shabih S, et al. 2025. From text to insight: Large language models for chemical data extraction. Chemical Society Reviews, 54: 1125-1150 doi: 10.1039/D4CS00913D
    [133]
    Shaikeea A J D, Cui H, O’Masta M, et al. 2022. The toughness of mechanical metamaterials. Nat. Mater., 21(3): 297-304 doi: 10.1038/s41563-021-01182-1
    [134]
    Shao Q, Li R, Yue Z, et al. 2021. Data-driven discovery and understanding of ultrahigh-modulus crystals. Chem. Mater., 33(4): 1276-1284 doi: 10.1021/acs.chemmater.0c04146
    [135]
    Sharkey L, Chughtai B, Batson J, et al. 2025. Open problems in mechanistic interpretability. arXiv preprint arXiv: 2501.16496.
    [136]
    Shea D E, Brunton S L, Kutz J N. 2021. SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems. Phys. Rev. Res., 3(2): 023255 doi: 10.1103/PhysRevResearch.3.023255
    [137]
    Shen S C, Buehler M J. 2022. Nature-inspired architected materials using unsupervised deep learning. Commun. Eng., 1: 37 doi: 10.1038/s44172-022-00037-0
    [138]
    Shi P, Feng S, Xu Z. 2024. Non-equilibrium nature of fracture determines the crack paths. Extreme Mech. Lett., 68: 102151 doi: 10.1016/j.eml.2024.102151
    [139]
    Shi P, Xu Z. 2024. Exploring fracture of h-BN and graphene by neural network force fields. J. Phys. Condens. Matter, 36(41): 415401 doi: 10.1088/1361-648X/ad5c31
    [140]
    Shwartz-Ziv R, Tishby N. 2017. Opening the black box of deep neural networks via information. arXiv preprint arXiv: 1703.00810
    [141]
    Song J, Shan Y, Zhang Z, et al. 2025. Phase-field-informed machine learning on creep behavior of Ni-based single-crystal superalloys. J. Mater. Inform., 5(3): 32
    [142]
    Strohmann T, Melching D, Paysan F, et al. 2023. Towards self-driving labs for experimental mechanics: A data-centric approach for fatigue crack analysis in aerospace materials. Research Square rs. 3. rs-3128435
    [143]
    Strohmann T, Starostin-Penner D, Breitbarth E, Requena G. 2021. Automatic detection of fatigue crack paths using digital image correlation and convolutional neural networks. Fatigue Fract. Eng. Mater. Struct., 44(5): 1336-1348 doi: 10.1111/ffe.13433
    [144]
    Surjadi J U, Portela C M. 2025. Enabling three-dimensional architected materials across length scales and timescales. Nat. Mater., 24: 493-505 doi: 10.1038/s41563-025-02119-8
    [145]
    Sutton R. 2019. The bitter lesson. Incomplete Ideas (blog), 13(1): 38
    [146]
    Talirz L, Kumbhar S, Passaro E, et al. 2020. Materials Cloud, a platform for open computational science. Sci. Data, 7: 299 doi: 10.1038/s41597-020-00637-5
    [147]
    Tang H, Chen Z, Yao X, et al. 2025. Mechanical performance dataset for alloy with applications at low temperatures. Sci. Data, 12: 1235 doi: 10.1038/s41597-025-05512-9
    [148]
    Tang K, Zhang P, Zhao Y, et al. 2024. Deep learning-based semantic segmentation for morphological fractography. Eng. Fract. Mech., 303: 110149 doi: 10.1016/j.engfracmech.2024.110149
    [149]
    Tenenbaum J B, Kemp C, Griffiths T L, et al. 2011. How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022): 1279-1285 doi: 10.1126/science.1192788
    [150]
    Tezsezen E, Yigci D, Ahmadpour A, et al. 2024. AI-based metamaterial design. ACS Appl. Mater. Interf., 16(23): 29547-29569 doi: 10.1021/acsami.4c04486
    [151]
    Tian S, Zhou K, Yin W, et al. 2024. Machine learning enables the discovery of 2D Invar and anti-Invar monolayers. Nat. Commun., 15: 6977 doi: 10.1038/s41467-024-51379-6
    [152]
    Tishby N, Pereira F C, Bialek W. 2000. The information bottleneck method. arXiv preprint physics/0004057
    [153]
    Tishby N, Zaslavsky N. 2015. Deep learning and the information bottleneck principle. arXiv preprint arXiv: 1503.02406
    [154]
    Tom G, Schmid S P, Baird S G, et al. 2024. Self-driving laboratories for chemistry and materials science. Chem. Rev., 124(16): 9633-9732 doi: 10.1021/acs.chemrev.4c00055
    [155]
    Ullman T D, Stuhlmüller A, Goodman N D, et al. 2018. Learning physical parameters from dynamic scenes. Cogn. Psychol., 104: 57-82 doi: 10.1016/j.cogpsych.2017.05.006
    [156]
    Valiant L G. 1984. A theory of the learnable. Commun. of the ACM, 27(11): 1134-1142 doi: 10.1145/1968.1972
    [157]
    Valle-Pérez G, Louis A A. 2020. Generalization bounds for deep learning. arXiv preprint arXiv: 2012.04115
    [158]
    Vapnik V. 1999. The Nature of Statistical Learning Theory. Springer
    [159]
    Voter A F, Montalenti F, Germann T C. 2002. Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res., 32: 321-346 doi: 10.1146/annurev.matsci.32.112601.141541
    [160]
    Wälchli D, Weber P, Chatzimanolakis M, et al. 2025. Inverse reinforcement learning for objective discovery in collective behavior of artificial swimmers. Phys. Rev. Fluids, 10(6): 064901 doi: 10.1103/646f-dt2k
    [161]
    Wang J, Olsson S, Wehmeyer C, et al. 2019. Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci., 5(5): 755-767 doi: 10.1021/acscentsci.8b00913
    [162]
    Wang W, Gómez-Bombarelli R. 2019. Coarse-graining auto-encoders for molecular dynamics. npj Comput. Mater., 5: 125 doi: 10.1038/s41524-019-0261-5
    [163]
    Wang Y, Sun J, Bai J, et al. 2024. Kolmogorov Arnold informed neural network: A physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov Arnold Networks. arXiv preprint arXiv: 2406.11045
    [164]
    Wang Z, Wu K, Ding J, et al. 2025. Strut-buckling transformation enabling anomalous density-scaling toughening law in ultralight lattice metamaterials. Adv. Mater., 2419635.
    [165]
    Wei J, Wang X, Schuurmans D, et al. 2022. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv: 2201.11903
    [166]
    Wen M, Tadmor E B. 2019. Hybrid neural network potential for multilayer graphene. Phys. Rev. B, 100(19): 195419 doi: 10.1103/PhysRevB.100.195419
    [167]
    Wilczek F. 2022. Fundamentals: Ten Keys to Reality. Penguin
    [168]
    Wilkinson M D, Dumontier M, Aalbersberg I J, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 3: 160018 doi: 10.1038/sdata.2016.18
    [169]
    Wines D, Choudhary K. 2025. CHIPS-FF: Evaluating universal machine learning force fields for material properties. ACS Mater. Lett., 7(6): 2105-2114 doi: 10.1021/acsmaterialslett.5c00093
    [170]
    Wu J, Yildirim I, Lim J J, et al. 2015. Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. Adv. Neural Inf. Process., 28
    [171]
    Wu L, Zhu Z, E W. 2017. Towards understanding generalization of deep learning: Perspective of loss landscapes. arXiv preprint arXiv: 1706.10239
    [172]
    Xu Z. 2023a. “Environmentally-Assisted Fatigue at Small Scales”. In: Comprehensive Structural Integrity (Second Edition). Ed. by M H F Aliabadi, W O Soboyejo. Second Edition. Oxford: Elsevier, pp. 131–162
    [173]
    Xu Z. 2023b. “Fracture of Low-Dimensional Materials”. In: Comprehensive Structural Integrity (Second Edition). Ed. by M H F Aliabadi, W O Soboyejo. Second Edition. Oxford: Elsevier, pp. 196–216
    [174]
    Xu Z. 2025. “Reliability in heterogeneous integration: A theoretical view”. In: EDTM 2025. IEEE, pp. 1–3
    [175]
    Xu Z, Zhang Z. 2024. The need for standardizing fatigue data reporting. Nat. Mater., 23(7): 866-868 doi: 10.1038/s41563-024-01929-6
    [176]
    Yamada Y, Lange R T, Lu C, et al. 2025. The AI Scientist-V2: Workshop-level automated scientific discovery via agentic tree search. arXiv preprint arXiv: 2504.08066
    [177]
    Yang F, Zhao W, Ru Y, et al. 2024. Transfer learning enables the rapid design of single crystal superalloys with superior creep resistances at ultrahigh temperature. npj Comput. Mater., 10: 149 doi: 10.1038/s41524-024-01349-9
    [178]
    Zeni C, Pinsler R, Zügner D, et al. 2025. A generative model for inorganic materials design. Nature, 639: 624-632 doi: 10.1038/s41586-025-08628-5
    [179]
    Zenodo. 2025. Zenodo. Accessed: 2025-06-29
    [180]
    Zhang L, Han J, Wang H, et al. 2018. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120(14): 143001 doi: 10.1103/PhysRevLett.120.143001
    [181]
    Zhang Z, Tang H, Xu Z. 2023. Fatigue database of complex metallic alloys. Sci. Data, 10: 447 doi: 10.1038/s41597-023-02354-1
    [182]
    Zhang Z, Xu Z. 2022. Failure life prediction for carbon nanotubes. J. Mech. Phys. Solids, 164: 104907 doi: 10.1016/j.jmps.2022.104907
    [183]
    Zhang Z, Xu Z. 2023. Fatigue database of additively manufactured alloys. Sci. Data, 10: 249 doi: 10.1038/s41597-023-02150-x
    [184]
    Zhao Y, Liu Y, Xu Z. 2023. Statistical learning prediction of fatigue crack growth via path slicing and re-weighting. Theo. Appl. Mech. Lett., 13(6): 100477 doi: 10.1016/j.taml.2023.100477
    [185]
    Zhao Y, Song Y, Xu F, et al. 2025. Predicting brain morphogenesis via physics-transfer learning. arXiv preprint arXiv: 2509.05305
    [186]
    Zhao Y, Xu Z. 2025a. Neural network modeling of microstructure complexity using digital libraries. arXiv preprint arXiv: 2501.18189
    [187]
    Zhao Y, Xu Z. 2025b. “Physics-transfer learning: A framework to address the accuracy-performance dilemma in modeling morphological complexities in brain development”. In: ICLR 2025 Workshop on Machine Learning Multiscale Processes.
    [188]
    Zhao Y, Zhou H, Zhang Z, et al. 2025. Discovering high-strength alloys via physics-transfer learning. Matter, 8(9): 102377 doi: 10.1016/j.matt.2025.102377
    [189]
    Zheng X, Zhang X, Chen T T, et al. 2023. Deep learning in mechanical metamaterials: From prediction and generation to inverse design. Adv. Mater., 35(45): 2302530 doi: 10.1002/adma.202302530
    [190]
    Zhou W, Yang Y, Zheng G, et al. 2020. Proton irradiation-decelerated intergranular corrosion of Ni-Cr alloys in molten salt. Nat. Commun., 11: 3430 doi: 10.1038/s41467-020-17244-y
    [191]
    Zhu R, Nong W, Yamazaki S, et al. 2024. WyCryst: Wyckoff inorganic crystal generator framework. Matter, 7(10): 3469-3488 doi: 10.1016/j.matt.2024.05.042
    [192]
    Zills F, Schäfer M, Tovey S, et al. 2024. ZnTrack: Data as code. arXiv preprint arXiv: 2401.10603
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (83) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return