| Citation: | Qiao J C, Zhang L T, Xing G H, Hao Q, Liang S Y, Cui J B, Duan Y J. Viscoelastic behaviors of amorphous alloys in the framework of the quasi-point defect theory. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-015 |
| [1] |
汪卫华, 2013. 非晶态物质的本质和特性. 物理学进展, 33: 4-178 (Wang W H 2013. The nature and properties of amorphous matter. Progress in Physics, 33: 4-178).
Wang W H 2013. The nature and properties of amorphous matter. Progress in Physics, 33: 4-178.
|
| [2] |
王云江, 魏丹, 韩懂, 杨杰, 蒋敏强, 戴兰宏, 2020. 非晶态固体的结构可以决定性能吗? 力学学报, 52: 1-15 (Wang Y J, Wei D, Han D, et al. 2020. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 52: 303-317).
Wang Y J, Wei D, Han D, et al. 2020. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 52: 303-317.
|
| [3] |
Arikoglu A 2014. A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms. Rheologica Acta, 53: 219-233.
|
| [4] |
Blair G W S, Veinoglou B C 1944. A Study of the Firmness of Soft Materials Based on Nutting's Equation. Journal of Scientific Instruments, 21: 149.
|
| [5] |
Bruns M, Hassani M, Varnik F, et al. 2021. Decelerated aging in metallic glasses by low temperature thermal cycling. Physical Review Research, 3: 013234. doi: 10.1103/PhysRevResearch.3.013234
|
| [6] |
Cao L-L, Wang Y-J 2024. Dynamics–Entropy Relationship in Metallic Glasses. Journal of Physical Chemistry Letters, 15: 811-816.
|
| [7] |
Cao P, Short M P, Yip S 2017. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Sciences, 114: 13631-13636.
|
| [8] |
Caputo M, Mainardi F 1971. A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91: 134-147.
|
| [9] |
Cavaille J Y, Perez J, Johari G P 1989. Molecular theory for the rheology of glasses and polymers. Physical Review B, 39: 2411-2422.
|
| [10] |
Chang C, Zhang H P, Zhao R, et al. 2022. Liquid-like atoms in dense-packed solid glasses. Nature Materials, 21: 1240-1245. doi: 10.1038/s41563-022-01327-w
|
| [11] |
Debenedetti P G, Stillinger F H 2001. Supercooled liquids and the glass transition. Nature, 410: 259-267.
|
| [12] |
Demetriou M D, Harmon J S, Tao M, et al. 2006. Cooperative Shear Model for the Rheology of Glass-Forming Metallic Liquids. Physical Review Letters, 97: 065502. doi: 10.1103/PhysRevLett.97.065502
|
| [13] |
Ding G, Jiang F, Song X, et al. 2022. Unraveling the threshold stress of structural rejuvenation of metallic glasses via thermo-mechanical creep. Science China Physics, Mechanics & Astronomy, 65: 264613.
|
| [14] |
Duan Y J, Nabahat M, Tong Y, et al. 2024. Connection between mechanical relaxation and equilibration kinetics in a high-entropy metallic glass. Physical Review Letters, 132: 056101. doi: 10.1103/PhysRevLett.132.056101
|
| [15] |
Duan Y J, Zhang L T, Qiao J C, et al. 2022. Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses. Physical Review Letters, 129: 175501. doi: 10.1103/PhysRevLett.129.175501
|
| [16] |
Ediger M D 2000. Spatially heterogeneous dynamics in supercooled liquids. Annual Review of Physical Chemistry, 51: 99-128.
|
| [17] |
Fujita T, Guan P F, Sheng H W, et al. 2010. Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Physical Review B, 81: 140204. doi: 10.1103/PhysRevB.81.140204
|
| [18] |
Gao L, Yu H-B, Schrøder T B, et al. 2025. Unified percolation scenario for the α and β processes in simple glass formers. Nature Physics, 21: 1-9. doi: 10.1038/s41567-024-02771-y
|
| [19] |
Gao Y, Yang C, Ding G, et al. 2024. Structural rejuvenation of a well-aged metallic glass. Fundamental Research, 4: 1266-1271. doi: 10.1016/j.fmre.2022.12.004
|
| [20] |
Gauthier C, David L, Ladouce L, et al. 1997. Nonlinear mechanical response of amorphous polymers below and through glass transition temperature. Journal of Applied Polymer Science, 65: 2517-2528. doi: 10.1002/(SICI)1097-4628(19970919)65:12<2517::AID-APP22>3.0.CO;2-W
|
| [21] |
Gauthier C, Pelletier J M, David L, et al. 2000. Relaxation of non-crystalline solids under mechanical stress. Journal of Non-Crystalline Solids, 274: 181-187. doi: 10.1016/S0022-3093(00)00213-1
|
| [22] |
Guiselin B, Scalliet C, Berthier L 2022. Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nature Physics, 18: 468-472.
|
| [23] |
Hao Q, Lyu G J, Pineda E, et al. 2022. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 154: 103288. doi: 10.1016/j.ijplas.2022.103288
|
| [24] |
Hao Q, Pineda E, Wang Y J, et al. 2023b. Reversible anelastic deformation mediated by β relaxation and resulting two-step deformation in a La60Ni15Al25 metallic glass. Physical Review B, 108: 024101.
|
| [25] |
Hao Q, Xing G, Pineda E, et al. 2024. Deciphering the α relaxation and the anelastic-to-plastic transition in the deep glassy state. Science China Physics, Mechanics & Astronomy, 68: 234611.
|
| [26] |
Harmon J S, Demetriou M D, Johnson W L, et al. 2007. Anelastic to Plastic Transition in Metallic Glass-Forming Liquids. Physical Review Letters, 99: 135502. doi: 10.1103/PhysRevLett.99.135502
|
| [27] |
Heymans N 1996. Hierarchical models for viscoelasticity: dynamic behaviour in the linear range. Rheologica Acta, 35: 508-519.
|
| [28] |
Hu Y, Guan P, Li M, et al. 2016. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 93: 214202. doi: 10.1103/PhysRevB.93.214202
|
| [29] |
Hu Y C, Li Y W, Yang Y, et al. 2018. Configuration correlation governs slow dynamics of supercooled metallic liquids. Proceedings of the National Academy of Sciences, 115: 6375. doi: 10.1073/pnas.1802300115
|
| [30] |
Ichitsubo T, Matsubara E, Yamamoto T, et al. 2005. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Physical Review Letters, 95: 245501. doi: 10.1103/PhysRevLett.95.245501
|
| [31] |
Ke H B, Zeng J F, Liu C T, et al. 2014. Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 30: 560-565. doi: 10.1016/j.jmst.2013.11.014
|
| [32] |
Ketov S V, Sun Y H, Nachum S, et al. 2015. Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 524: 200-203. doi: 10.1038/nature14674
|
| [33] |
Li X, Wei D, Zhang J Y, et al. 2020. Ultrasonic plasticity of metallic glass near room temperature. Applied Materials Today, 21: 100866. doi: 10.1016/j.apmt.2020.100866
|
| [34] |
Liang S Y, Zhu F, Wang Y-J, et al. 2024. On the kinetics of structural evolution in metallic glasses. International Journal of Engineering Science, 205: 104146. doi: 10.1016/j.ijengsci.2024.104146
|
| [35] |
Liu Y H, Wang D, Nakajima K, et al. 2011. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 106: 125504. doi: 10.1103/PhysRevLett.106.125504
|
| [36] |
Louzguine-Luzgin D V, Zadorozhnyy M Y, Ketov S V, et al. 2019. Influence of cyclic loading on the structure and double-stage structure relaxation behavior of a Zr-Cu-Fe-Al metallic glass. Materials Science and Engineering: A, 742: 526-531. doi: 10.1016/j.msea.2018.11.031
|
| [37] |
Lu Z, Shang B S, Sun Y T, et al. 2016. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass. Journal of Chemical Physics, 144: 144501. doi: 10.1063/1.4945279
|
| [38] |
Lubchenko V, Wolynes P G 2007. Theory of Structural Glasses and Supercooled Liquids. Annual Review of Physical Chemistry, 58: 235-266.
|
| [39] |
Luckabauer M, Hayashi T, Kato H, et al. 2019. Decreasing activation energy of fast relaxation processes in a metallic glass during aging. Physical Review B, 99: 140202. doi: 10.1103/PhysRevB.99.140202
|
| [40] |
Lunkenheimer P, Wehn R, Schneider U, et al. 2005. Glassy aging dynamics. Physical Review Letters, 95: 055702. doi: 10.1103/PhysRevLett.95.055702
|
| [41] |
Luo P, Wen P, Bai H Y, et al. 2017. Relaxation decoupling in metallic glasses at low temperatures. Physical Review Letters, 118: 225901. doi: 10.1103/PhysRevLett.118.225901
|
| [42] |
Ma Y, Ye J H, Peng G J, et al. 2015. Loading rate effect on the creep behavior of metallic glassy films and its correlation with the shear transformation zone. Materials Science and Engineering: A, 622: 76-81. doi: 10.1016/j.msea.2014.11.022
|
| [43] |
Magagnosc D J, Kumar G, Schroers J, et al. 2014. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Materialia, 74: 165-182. doi: 10.1016/j.actamat.2014.04.002
|
| [44] |
Mainardi F, 1997. Fractals and Fractional Calculus in Continuum Mechanics.
|
| [45] |
Menard K P, Menard N, 2020. Dynamic mechanical analysis. Boca Raton: Taylor and Francis.
|
| [46] |
Nabahat M, Amini N, Pineda E, et al. 2022. Delayed elasticity of metallic glasses: Loading time and temperature dependences of the anelastic relaxation. Physical Review Materials, 6: 125601. doi: 10.1103/PhysRevMaterials.6.125601
|
| [47] |
Ngai K L 2023. Universal properties of relaxation and diffusion in complex materials: Originating from fundamental physics with rich applications. Progress in Materials Science, 139: 101130.
|
| [48] |
Ngai K L, Wang L M, Yu H B 2017. Relating ultrastable glass formation to enhanced surface diffusion via the Johari-Goldstein beta-relaxation in molecular glasses. Journal of Physical Chemistry Letters, 8: 2739-2744.
|
| [49] |
Nutting P G 1921. A new general law of deformation. Journal of the Franklin Institute, 191: 679-685.
|
| [50] |
Palade L-I, Verney V, Attané P 1996. A modified fractional model to describe the entire viscoelastic behavior of polybutadienes from flow to glassy regime. Rheologica Acta, 35: 265-273.
|
| [51] |
Palmer R G, Stein D L, Abrahams E, et al. 1984. Models of Hierarchically Constrained Dynamics for Glassy Relaxation. Physical Review Letters, 53: 958-961. doi: 10.1103/PhysRevLett.53.958
|
| [52] |
Perez J 1984. Homogeneous flow and anelastic/plastic deformation of metallic glasses. Acta Metallurgica, 32: 2163-2173.
|
| [53] |
Perez J 1988. Defect diffusion model for volume and enthalpy recovery in amorphous polymers. Polymer, 29: 483-489.
|
| [54] |
Perez J 1990. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics, 39: 69-79.
|
| [55] |
Perez J, 1998. Physics and Mechanics of Amorphous Polymers: Taylor & Francis.
|
| [56] |
Perez J, Cavaille J Y, Etienne S, et al. 1988. Physical interpretation of the rheological behavior of amorphous polymers through the glass-transition. Revue De Physique Appliquee, 23: 125-135. doi: 10.1051/rphysap:01988002302012500
|
| [57] |
Qiao J, Pelletier J-M 2014. Dynamic mechanical relaxation in bulk metallic glasses: a review. Journal of Materials Science Technology, 30: 523-545.
|
| [58] |
Qiao J C, Cong J, Wang Q, et al. 2018. Effects of iron addition on the dynamic mechanical relaxation of Zr55Cu30Ni5Al10 bulk metallic glasses. Journal of Alloys and Compounds, 749: 262-267. doi: 10.1016/j.jallcom.2018.03.285
|
| [59] |
Qiao J C, Pelletier J M 2012. Mechanical relaxation in a Zr-based bulk metallic glass: Analysis based on physical models. Journal of Applied Physics, 112: 033518.
|
| [60] |
Qiao J C, Pelletier J M, Esnouf C, et al. 2014. Impact of the structural state on the mechanical properties in a Zr–Co–Al bulk metallic glass. Journal of Alloys and Compounds, 607: 139-149. doi: 10.1016/j.jallcom.2014.04.008
|
| [61] |
Qiao J C, Wang Q, Pelletier J M, et al. 2019. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 104: 250-329. doi: 10.1016/j.pmatsci.2019.04.005
|
| [62] |
Richert R 2002. Heterogeneous dynamics in liquids: fluctuations in space and time. Journal of Physics: Condensed Matter, 14: R703.
|
| [63] |
Rinaldi R, Gaertner R, Chazeau L, et al. 2011. Modelling of the mechanical behaviour of amorphous glassy polymer based on the Quasi Point Defect theory—Part I: Uniaxial validation on polycarbonate. International Journal of Non-Linear Mechanics, 46: 496-506. doi: 10.1016/j.ijnonlinmec.2010.11.004
|
| [64] |
Schiessel H, Metzler R, Blumen A, et al. 1995. Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General, 28: 6567. doi: 10.1088/0305-4470/28/23/012
|
| [65] |
Shao L, Xue L, Qiao J, et al. 2023. Gamma relaxation in Dy-based metallic glasses and its correlation with plasticity. Scripta Materialia, 222: 115017. doi: 10.1016/j.scriptamat.2022.115017
|
| [66] |
Sharma R, Cherayil B J 2010. Polymer melt dynamics: Microscopic roots of fractional viscoelasticity. Physical Review E, 81: 021804.
|
| [67] |
Song J, Zhu W, Wei X 2021. Correlations between the hierarchical spatial heterogeneity and the mechanical properties of metallic glasses. International Journal of Mechanical Sciences, 204: 106570.
|
| [68] |
Song L, Gao Y, Zou P, et al. 2023. Detecting the exponential relaxation spectrum in glasses by high-precision nanocalorimetry. Proceedings of the National Academy of Sciences, 120: e2302776120. doi: 10.1073/pnas.2302776120
|
| [69] |
Song S, Zhu F, Chen M 2022. Universal scaling law of glass rheology. Nature Materials, 21: 404-409.
|
| [70] |
Spieckermann F, Şopu D, Soprunyuk V, et al. 2022. Structure-dynamics relationships in cryogenically deformed bulk metallic glass. Nature Communications, 13: 127. doi: 10.1038/s41467-021-27661-2
|
| [71] |
Srolovitz D, Maeda K, Vitek V, et al. 1981. Structural defects in amorphous solids Statistical analysis of a computer model. Philosophical Magazine A, 44: 847-866. doi: 10.1080/01418618108239553
|
| [72] |
Sun Y-T, Zhao R, Ding D-W, et al. 2023. Distinct relaxation mechanism at room temperature in metallic glass. Nature Communications, 14: 540. doi: 10.1038/s41467-023-36300-x
|
| [73] |
Sun Y, Concustell A, Greer A L 2016. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nature Reviews Materials, 1: 16039.
|
| [74] |
Tao K, Khonik V A, Qiao J C 2023. Indentation creep dynamics in metallic glasses under different structural states. International Journal of Mechanical Sciences, 240: 107941.
|
| [75] |
Tong Y, Dmowski W, Bei H, et al. 2018. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep. Acta Materialia, 148: 384-390. doi: 10.1016/j.actamat.2018.02.019
|
| [76] |
Wagner H, Bedorf D, Küchemann S, et al. 2011. Local elastic properties of a metallic glass. Nature Materials, 10: 439-442. doi: 10.1038/nmat3024
|
| [77] |
Wang C H, Hu Y J, Qiao J C, et al. 2018. Mechanical relaxation behavior of Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. Materials Science & Engineering A, 738: 57-62.
|
| [78] |
Wang F, Li J M, Huang P, et al. 2013. Nanoscale creep deformation in Zr-based metallic glass. Intermetallics, 38: 156-160. doi: 10.1016/j.intermet.2013.03.006
|
| [79] |
Wang H, Chang C-T, Cui Z-D, et al. 2023. Creep recovery of stress-annealed Zr-based metallic glass: Investigation based on the dynamic viscoelastic model. Materials Today Communications, 37: 107239. doi: 10.1016/j.mtcomm.2023.107239
|
| [80] |
Wang Q, Liu J J, Ye Y F, et al. 2017. Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses. Materials Today, 20: 293-300. doi: 10.1016/j.mattod.2017.05.007
|
| [81] |
Wang W H 2019. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 106: 100561.
|
| [82] |
Wang X Y, Xu W S, Zhang H, et al. 2019. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids. Journal of Chemical Physics, 151: 184503. doi: 10.1063/1.5125641
|
| [83] |
Wang Z, Sun B A, Bai H Y, et al. 2014. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications, 5.
|
| [84] |
Wei Y, Bower A F, Gao H 2010. Analytical model and molecular dynamics simulations of the size dependence of flow stress in amorphous intermetallic nanowires at temperatures near the glass transition. Physical Review B, 81: 125402.
|
| [85] |
Wu W-P, Şopu D, Yuan X, et al. 2021. Atomistic understanding of creep and relaxation mechanisms of Cu64Zr36 metallic glass at different temperatures and stress levels. Journal of Non-Crystalline Solids, 559: 120676. doi: 10.1016/j.jnoncrysol.2021.120676
|
| [86] |
Xing G, Hao Q, Zhu F, et al. 2024. Correlating dynamic relaxation and viscoelasticity in metallic glasses. Science China Physics, Mechanics & Astronomy, 67: 256111.
|
| [87] |
Xing G H, Hao Q, Lyu G-J, et al. 2025. Integrating dynamic relaxation with inelastic deformation in metallic glasses: Theoretical insights and experimental validation. Journal of Materials Science & Technology, 218: 135-152.
|
| [88] |
Yang C, Duan J, Ding G, et al. 2024a. Splitting of fast relaxation in a metallic glass by laser shocks. Physical Review B, 109: 024201.
|
| [89] |
Yang X-M, Yang Q, Zhang T, et al. 2024b. Probing slow glass dynamics down to 10−5 Hz. Applied Physics Reviews, 11: 041403. doi: 10.1063/5.0206556
|
| [90] |
Yang Y, Geng J, Cao Y, et al. 2025. Rejuvenation of La-based metallic glass by controlling different modes of relaxation. Scripta Materialia, 256: 116418. doi: 10.1016/j.scriptamat.2024.116418
|
| [91] |
Ye J C, Lu J, Liu C T, et al. 2010. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 9: 619-623. doi: 10.1038/nmat2802
|
| [92] |
Yu H-B, Richert R, Samwer K 2017a. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses. Science Advances, 3: e1701577.
|
| [93] |
Yu H-B, Yang M-H, Sun Y, et al. 2018. Fundamental Link between β Relaxation, Excess Wings, and Cage-Breaking in Metallic Glasses. Journal of Physical Chemistry Letters, 9: 5877-5883. doi: 10.1021/acs.jpclett.8b02629
|
| [94] |
Yu H B, Richert R, Samwer K 2017b. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses. Science Advances, 3: e1701577.
|
| [95] |
Yu H B, Samwer K, Wu Y, et al. 2012. Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Physical Review Letters, 109: 095508. doi: 10.1103/PhysRevLett.109.095508
|
| [96] |
Yu H B, Wang Q 2024. Liquid-like clusters in glassy solids as a unique state of matter: Dissipative but non-diffusive. Next Materials, 3: 100168.
|
| [97] |
Yu H B, Wang W H, Bai H Y, et al. 2014. The β-relaxation in metallic glasses. National Science Review, 1: 429-461. doi: 10.1093/nsr/nwu018
|
| [98] |
Yu H B, Wang W H, Bai H Y, et al. 2010. Relating activation of shear transformation zones to β relaxations in metallic glasses. Physical Review B, 81: 220201. doi: 10.1103/PhysRevB.81.220201
|
| [99] |
Zhang C, Qiao J C, Pelletier J M, et al. 2016. Thermal activation in the Zr65Cu18Ni7Al10 metallic glass by creep deformation and stress relaxation. Scripta Materialia, 113: 180-184. doi: 10.1016/j.scriptamat.2015.11.001
|
| [100] |
Zhang L, Duan Y, Crespo D, et al. 2021. Dynamic mechanical relaxation and thermal creep of high-entropy La30Ce30Ni10Al20Co10 bulk metallic glass. Science China Physics, Mechanics & Astronomy, 64: 296111.
|
| [101] |
Zhang L, Duan Y, Pineda E, et al. 2022a. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass. Journal of Materials Science & Technology, 115: 1-9.
|
| [102] |
Zhang L, Duan Y, Wang Y, et al. 2023. Tailoring the mechanical properties of bulk metallic glasses via cooling from the supercooled liquid region. Science China Technological Sciences, 66: 173-180. doi: 10.1007/s11431-022-2237-5
|
| [103] |
Zhang L, Wang Y, Pineda E, et al. 2022b. Achieving structural rejuvenation in metallic glass by modulating β relaxation intensity via easy-to-operate mechanical cycling. International Journal of Plasticity, 157: 103402. doi: 10.1016/j.ijplas.2022.103402
|
| [104] |
Zhang L T, Wang Y J, Nabahat M, et al. 2024a. Creep deformation in metallic glasses: A global approach with strain as an indicator within transition state theory. International Journal of Plasticity, 174: 103923. doi: 10.1016/j.ijplas.2024.103923
|
| [105] |
Zhang L T, Wang Y J, Yang Y, et al. 2024b. Mechanical memory and relaxation decoupling of metallic glasses in homogenous flow. International Journal of Mechanical Sciences, 281: 109661. doi: 10.1016/j.ijmecsci.2024.109661
|
| [106] |
Zhou Z-Y, Yang Q, Yu H-B 2024a. Toward atomic-scale understanding of structure-dynamics-properties relations for metallic glasses. Progress in Materials Science, 145: 101311.
|
| [107] |
Zhou Z Y, Chen Q, Sun Y, et al. 2021. Unveiling correlation between α relaxation and yielding behavior in metallic glasses. Physical Review B, 103: 094117. doi: 10.1103/PhysRevB.103.094117
|
| [108] |
Zhou Z Y, Yang Q, Yu H B 2024b. Toward atomic-scale understanding of structure-dynamics-properties relations for metallic glasses. Progress in Materials Science, 145: 101311.
|
| [109] |
Zhu F, Song S X, Reddy K M, et al. 2018. Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 9: 3965. doi: 10.1038/s41467-018-06476-8
|
| [110] |
Zhu F, Xing G H, Lyu G J, et al. 2023. Physics-motivated fractional viscoelasticity model for dynamic relaxation in amorphous solids. International Journal of Plasticity, 164: 103588. doi: 10.1016/j.ijplas.2023.103588
|
| [111] |
Zhu F, Xing G H, Wang Y-J, et al. 2024a. Quantifying contribution of hierarchically correlated shear microdomains underlying creep in metallic glass. International Journal of Plasticity, 174: 103900. doi: 10.1016/j.ijplas.2024.103900
|
| [112] |
Zhu W, Deng Y, Liu J, et al. 2024b. Strain-dependent transition of the relaxation dynamics in metallic glasses. Modelling and Simulation in Materials Science and Engineering, 32: 035026. doi: 10.1088/1361-651X/ad29b1
|