Citation: | Wang B L, Liu Y Q. Fundamental mechanism and multiscale simulations of hydrodynamic cavitating flows. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-012 |
[1] |
程怀玉, 季斌, 龙新平, 彭晓星. 2024. 旋涡空化水动力学特性研究进展与展望. 力学进展, 54(1): 86-137 (Cheng H Y, Ji B, Long X P, Peng X X. 2024. Research progresses and prospects of vortex cavitation dynamics. Advances in Mechanics, 54(1): 86-137).
Cheng H Y, Ji B, Long X P, Peng X X. 2024. Research progresses and prospects of vortex cavitation dynamics. Advances in Mechanics, 54(1): 86-137
|
[2] |
董世汤, 王国强, 唐登海, 等. 2009. 船舶推进器水动力学. 北京: 国防工业出版社 (Dong S T, Wang G Q, Tang D H, et al. 2009. Hydrodynamic of Ship Propulsors. Beijing: National Defense Industry Press).
Dong S T, Wang G Q, Tang D H, et al. 2009. Hydrodynamic of Ship Propulsors. Beijing: National Defense Industry Press.
|
[3] |
冯先忍. 2024. 喷水推进空化流场特性与尺度效应研究. 上海交通大学博士学位论文 (Feng X R. 2024. Study on the characteristics of cavitation flow field and scale effects in waterjet propulsion. PhD thesis, Shanghai Jiao Tong University).
Feng X R. 2024. Study on the characteristics of cavitation flow field and scale effects in waterjet propulsion. PhD thesis, Shanghai Jiao Tong University.
|
[4] |
潘森森, 彭晓星. 2013. 空化机理. 北京: 国防工业出版社 (Pan S S, Peng X X. 2013. Physical Mechanism of Cavitation. Beijing: National Defense Industry Press).
Pan S S, Peng X X. 2013. Physical Mechanism of Cavitation. Beijing: National Defense Industry Press.
|
[5] |
季斌, 程怀玉, 黄彪, 等. 2019. 空化水动力学非定常特性研究进展及展望. 力学进展, 49: 201906 (Ji B, Cheng H Y, Huang B, etc. 2019. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 49: 201906).
Ji B, Cheng H Y, Huang B, etc. 2019. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 49: 201906.
|
[6] |
李游, 李贵, 李桥忠, 代安定, 牛小东. 2024. 正则化相场格子玻尔兹曼两相流模型. 力学学报, 56(8): 2259-2270 (Liu Y, Li G, Li Q Z, Dai A D, Niu X D. 2024. A regularized phase-field lattice Boltzmann model for two-phase flows. Chinese J. Theor. and Appl. Mech., 56(8): 2259-2270).
Liu Y, Li G, Li Q Z, Dai A D, Niu X D. 2024. A regularized phase-field lattice Boltzmann model for two-phase flows. Chinese J. Theor. and Appl. Mech., 56(8): 2259-2270.
|
[7] |
潘定一, 胡国辉, 陈硕, PHAN-THIEN N. 2024. 复杂多相流体的介观模拟: 耗散粒子动力学方法及应用. 力学进展, 54(1): 173-201 (Pan D Y, Hu G H, Chen S, Phan-Thien N. 2024. Mesoscopic modeling of complex multiphase fluids: Dissipative particle dynamics (DPD) method and its applications. Advances in Mechanics, 2024, 54(1): 173-201).
Pan D Y, Hu G H, Chen S, Phan-Thien N. 2024. Mesoscopic modeling of complex multiphase fluids: Dissipative particle dynamics (DPD) method and its applications. Advances in Mechanics, 2024, 54(1): 173-201.
|
[8] |
汤渭霖, 俞孟萨, 王斌. 2019. 水动力噪声理论. 科学出版社 (Tang W L, Yu M S, Wang B. 2019. Theory of hydrodynamic noise. Beijing: Science Press).
Tang W L, Yu M S, Wang B. 2019. Theory of hydrodynamic noise. Beijing: Science Press.
|
[9] |
王本龙, 张浩, 刘筠乔. 2023. 空化区多相混合流体介质特性实验研究进展. 实验流体力学, 37(5): 111-121 (Wang B L, Zhang H, Liu Y Q. 2023. Experimental research on the mixture properties inside cloud cavitation region. J. Exper. Fluid Mech., 37(5): 111-121).
Wang B L, Zhang H, Liu Y Q. 2023. Experimental research on the mixture properties inside cloud cavitation region. J. Exper. Fluid Mech., 37(5): 111-121.
|
[10] |
Abdel-Maksoud M, Hänel D, Lantermann U. 2010. Modeling and computation of cavitation in vortical flow. Int. J. Heat and Fluid Flow, 31: 1065-1074. doi: 10.1016/j.ijheatfluidflow.2010.05.010
|
[11] |
Adama Maiga M, Coutier-Delgosha O, Buisine D. 2018. A new cavitation model bashed on bubble-bubble interactions. Phys. Fluids, 30: 123301. doi: 10.1063/1.5052257
|
[12] |
Adama Maiga M, Coutier-Delgosha O, Buisine D. 2019. Analysis of sheet cavitation with bubble/bubble interaction models. Phys. Fluids, 31: 073302. doi: 10.1063/1.5095781
|
[13] |
Agarwal K, Ram O, Lu Y H, Katz J. 2023. On the pressure field, nuclei dynamics and their relation to cavitation inception in a turbulent shear layer. J. Fluid Mech., 966: A31. doi: 10.1017/jfm.2023.368
|
[14] |
Aktas B, Atlar M, Turkmen S, et al. 2016 Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials. Ocean Eng., 120: 122-135.
|
[15] |
Alamé K, Mahesh K. 2024. Effect of gas content on cavitation nuclei. J. Fluid Mech., 982: A4. doi: 10.1017/jfm.2024.79
|
[16] |
Allan E S C, Barbaca L, Venning J A, Russell P S, Pearce B W, Brandner P A. 2023. Nucleation and cavitation inception in high Reynolds number shear layers. Phys. Fluids, 35: 013317. doi: 10.1063/5.0132054
|
[17] |
Amini A, Reclari M, Sano T, Iino M, Dreyer M, Farhat M. 2019. On the physical mechanism of tip vortex cavitation hysteresis. Exp. Fluids, 60: 118. doi: 10.1007/s00348-019-2762-x
|
[18] |
Amromin E L. 2021. Modeling of the impact of laminar-turbulent transition on cavitation inception. Appl. Ocean Res, 114: 102796. doi: 10.1016/j.apor.2021.102796
|
[19] |
Ando K, Colonius T, Brennen C E. 2011. Numerical simulation of shock propagation in a polydisperse bubbly liquid. Int. J. Multiphase Flow., 37: 596-608. doi: 10.1016/j.ijmultiphaseflow.2011.03.007
|
[20] |
Angélil R, Diemand J, Tanaka K K, Tanaka H. 2014. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations. J. Chem. Phys., 140: 074303. doi: 10.1063/1.4865256
|
[21] |
Apfel R E. 1970. The role of impurities in cavitation-threshold determination. J. Acoust. Soc. Am., 48(5): 1179-1186.
|
[22] |
Arakeri V H. 1975. Viscous effects on the position of cavitation separation from smooth bodies. J. Fluid Mech., 68(4): 779-799. doi: 10.1017/S0022112075001231
|
[23] |
Arndt R E A. 2002. Cavitation in vortical flows. Annu. Rev. Fluid Mech., 34: 143-175. doi: 10.1146/annurev.fluid.34.082301.114957
|
[24] |
Asnaghi A, Feymark A, Bensow R R. 2017. Improvement of cavitation mass transfer modeling based on local flow properties. Int. J. Multiphase Flow, 93: 142-157. doi: 10.1016/j.ijmultiphaseflow.2017.04.005
|
[25] |
Atchley A A, Prosperetti. 1989. The crevice model of bubble nucleation. Phys. Fluids, 86: 1065-1084.
|
[26] |
Augier F, Gilli E, Raimundo P M. 2021. One-equation model to assess population balance kernels in turbulent bubbly flows. Chem. Eng. Sci., 229: 116096. doi: 10.1016/j.ces.2020.116096
|
[27] |
Azouzi M, Ramboz C, Lenain J, Caupin F. 2013. A coherent picture of water at extreme negative pressure. Nat. Phys., 9: 38-41. doi: 10.1038/nphys2475
|
[28] |
Bai X R, Cheng H Y, Ji B. 2022 LES investigation of the noise characteristics of sheet and tip leakage vortex cavitating flows. Int. J. Multiphase Flow, 146: 103880.
|
[29] |
Balachandar S, Eaton J K. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech., 42: 111-133. doi: 10.1146/annurev.fluid.010908.165243
|
[30] |
Bauer A A, Patel S. 2009. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. J. Chem. Phys, 131: 084709. doi: 10.1063/1.3200869
|
[31] |
Bedeau D, Kjelstrup S. 2004. Irreversible thermodynamics – a tool to describe phase transitions far from global equilibrium. Chem. Eng. Sci., 59: 109-118.
|
[32] |
Bhatt A, Ganesh H, Ceccio S L. 2021. Cavitating flow behind a backward facing step. Int. J. Multiphase Flow, 139: 103548.
|
[33] |
Biryukov D A, Gerasimov D N, Yurin E I. 2022. Cavitation and Associated Phenomena. CRC Press. Pp: 68-69; 227.
|
[34] |
Blake J R, Gibson D C. 1987. Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech., 19: 99-123. doi: 10.1146/annurev.fl.19.010187.000531
|
[35] |
Borkent B M, Gekle S, Prosperetti A, Lohse D. 2009. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids, 21: 102003. doi: 10.1063/1.3249602
|
[36] |
Boussonnière A, Liu Q X, Tsai P A. 2020. Cavitation nuclei regeneration in a water-particle suspension. Phys. Rev. Lett., 124: 034501. doi: 10.1103/PhysRevLett.124.034501
|
[37] |
Brandao F L, Mahesh K. 2022. Large-eddy simulation of cavitation inception in a shear flow. Int. J. Multiphase Flow, 146: 103865. doi: 10.1016/j.ijmultiphaseflow.2021.103865
|
[38] |
Brandner P A, Venning J A, Pearce B W. 2022. Nucleation effects on cavitation about a sphere. J. Fluid Mech, 946: A1. doi: 10.1017/jfm.2022.511
|
[39] |
Brennen C E. 2005. Fundamentals of Multiphase Flow. Cambridge University Press. Chapter 10: 199-216.
|
[40] |
Caflisch R E, Miksis M J, Papanicolaou G C, Ting L. 1985a. Effective equations for wave propagation in bubbly liquids. J. Fluid Mech., 153: 259-273. doi: 10.1017/S0022112085001252
|
[41] |
Caflisch R E, Miksis M J, Papanicolaou G C, Ting L. 1985b. Wave propagation in bubbly liquids at finite volume fraction. J. Fluid Mech., 160: 1-14. doi: 10.1017/S0022112085003354
|
[42] |
Cai Y, Liu Y Q, Wang B L. 2025. A decoupling approach to analyze sound propagation through inhomogeneous and polydisperse bubbly flows. 12th Int. Conf. Multiphase Flow, Toulouse, France, May. 12-16.
|
[43] |
Carrica P M, Bonetto F, Drew D, Lahey R T. 1999. A polydisperse model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow., 25: 257-305. doi: 10.1016/S0301-9322(98)00047-0
|
[44] |
Ceccio S, Gowing S, Shen Y T. 1997. The effects of salt water on bubble cavitation. J. Fluids Eng., 119: 155-163. doi: 10.1115/1.2819102
|
[45] |
Chahine G L. 2009. Numerical simulation of bubble flow interactions. J. Hydrodynamics, 21(3): 316-332. doi: 10.1016/S1001-6058(08)60152-3
|
[46] |
Chan H, Cherukara M J, Narayanan B, et al 2019. Machine learning coarse grained model for water. Nat. Commn., 10: 379.
|
[47] |
Chen J L, Xue B, Mahesh K, et al. 2019. Molecular simulations probing the thermophysical properties of homogeneously stretched and bubbly water systems. J. Chem. Eng. Data, 64: 3755-3771. doi: 10.1021/acs.jced.9b00284
|
[48] |
Chen J L, Prelesnik J L, Liang B, et al. 2023. Large-scale molecular dynamics simulations of bubble collapse in water: effects of system size, water model, and nitrogen. J. Chem. Phys., 159: 224505. doi: 10.1063/5.0181781
|
[49] |
Chen L, Kang Q J, Mu Y T, He Y L, Tao W Q. 2014. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and application. Int. J. Heat Mass Transfer, 76: 210-236. doi: 10.1016/j.ijheatmasstransfer.2014.04.032
|
[50] |
Chen L Y, Zhang L X, Peng X X, Shao X M. 2019. Influence of water quality on the tip vortex cavitation inception. Phys. Fluids, 31: 023303. doi: 10.1063/1.5053930
|
[51] |
Chen Y, Hu Y, Wang B L, Chu X S, Zhang L W. 2024. Interfacial thermal fluctuations stabilize bulk nanobubbles. Phys. Rev. Lett., 133: 104001. doi: 10.1103/PhysRevLett.133.104001
|
[52] |
Chiapolino A, Boivin P, Saurel R. 2017. A simple phase transition relaxation solver for liquid-vapor flows. Int. J. Numer. Meth. Fluids, 83: 583-605. doi: 10.1002/fld.4282
|
[53] |
Commander K W, Prosperetti A. 1989. Linear pressure waves in bubbly liquids : Comparison between theory and experiments. J. Acoust. Soc. Am. 85: 732-746.
|
[54] |
Crialesi-Esposito M, Boffetta G, Brandt L, Chibbaro L, Musacchio S. 2024. How small droplets form in turbulent multiphase flows. Phys. Rev. Fluids, 9: L072301. doi: 10.1103/PhysRevFluids.9.L072301
|
[55] |
Crighton D G, Ffowcs Williams J E. 1969. Sound generation by turbulent two-phase flow. J. Fluid Mech., 36(3): 585-603. doi: 10.1017/S0022112069001868
|
[56] |
Crum L A. 1979. Tensile strength of water. Nature, 278: 148-149. doi: 10.1038/278148a0
|
[57] |
Darmana D, Deen N G, Kuipers J A M. 2006. Parallelization of an Euler-Lagrange model using mixed domain decomposition and a mirror domain technique: application to dispersed gas-liquid two-phase flow. J. Comput. Phys., 220: 216-248. doi: 10.1016/j.jcp.2006.05.011
|
[58] |
Diemand J, Angélil R, Tanaka K K, Tanaka H. 2013. Large scale molecular dynamics simulations of homogeneous nucleation. J. Chem. Phys., 139: 074309. doi: 10.1063/1.4818639
|
[59] |
d’Agostino L, Brennen C E. 1989. Linearized dynamics of spherical bubble clouds. J. Fluid Mech, 199: 155-176. doi: 10.1017/S0022112089000339
|
[60] |
Du T Z, Wang Y W, Liao L J et al. 2016. A numerical model for the evolution of internal structure of cavitation cloud. Phys. Fluids, 28: 077103. doi: 10.1063/1.4958885
|
[61] |
Elghobashi S, Truesdell G C. 1993. On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids, 5: 1790-1801.
|
[62] |
Epstein P S, Plesset M S. 1950. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys., 18: 1505-1509. doi: 10.1063/1.1747520
|
[63] |
Farrell K J. 2003. Eulerian/Lagrangian analysis for the prediction of cavitation inception. J. Fluids Eng., 125: 46-52. doi: 10.1115/1.1522411
|
[64] |
Ferry J, Balachandar S. 2001. A fast Eulerian method for disperse two-phase flow. Int. J. Multiphase Flow, 27: 1199-1226. doi: 10.1016/S0301-9322(00)00069-0
|
[65] |
Franc J P, Michel J M. 2010. Fundamentals of cavitation. Netherlands: Kluwer Academic Publishers.
|
[66] |
Furness R A, Hutton S P. 1975. Experimental and theoretical studies of two-dimensional fixed-type cavities. J. Fluid Eng., 97(4): 515-521. doi: 10.1115/1.3448098
|
[67] |
Fuster D, Colonius T. 2011. Modelling bubble clusters in compressible liquids. J. Fluid Mech., 688: 352-389. doi: 10.1017/jfm.2011.380
|
[68] |
Ganesh H, Mäkiharju S A, Ceccio S L. 2016. Bubbly Shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech, 802: 37. doi: 10.1017/jfm.2016.425
|
[69] |
Gallo M, Magaletti F, Cocco D, et al. 2020. Nucleation and growth dynamics of vapour bubbles. J. Fluid Mech., 883: A14. doi: 10.1017/jfm.2019.844
|
[70] |
Gallo M, Magaletti F, Casciola C M. 2021. Heterogeneous bubble nucleation dynamics. J. Fluid Mech., 906: A20. doi: 10.1017/jfm.2020.761
|
[71] |
Gao Z, Wu W X, Wang B. 2021. The effects of nanoscale nuclei on cavitation. J. Fluid Mech., 911: A20. doi: 10.1017/jfm.2020.1049
|
[72] |
Garrett C, Li M, Farmer D. 2020. The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr., 30(9): 2163-2171.
|
[73] |
Gaylo D B, Hendrickson K, Yue D K P. 2021. Effects of power-law entrainment on bubble fragmentation cascades. J. Fluid Mech., 917: R1. doi: 10.1017/jfm.2021.333
|
[74] |
Ge M Y, Svennberg U, Bensow R E. 2021. Improved prediction of sheet cavitation inception using bridged transition sensitive turbulence model and cavitation model. J. Mar. Sci. Eng., 9: 1343. doi: 10.3390/jmse9121343
|
[75] |
Ge M Y, Svennberg U, Bensow R E. 2022. Investigation on prediction of ship noise using the FWH acoustic analogy with incompressible flow input. Ocean Eng., 257: 111531. doi: 10.1016/j.oceaneng.2022.111531
|
[76] |
Ghahramani E, Mahesh K. 2016. Numerical investigation of near wake characteristics of cavitating flow over a circular cylinder. J. Fluid Mech., 790: 453-491. doi: 10.1017/jfm.2016.19
|
[77] |
Ghahramani E, Arabnejad M H, Bensow R E. 2019. A comparative study between numerical methods in simulation of cavitating bubbles. Int. J. Multiphase Flow, 111: 339-359. doi: 10.1016/j.ijmultiphaseflow.2018.10.010
|
[78] |
Ghahramani E, Ström H, Bensow R E. 2021. Numerical simulation and analysis of multi-scale cavitating flows. J. Fluid Mech., 922: A22. doi: 10.1017/jfm.2021.424
|
[79] |
Giannadakis E, Gavaises M, Arcoumanis C. 2008. Modelling of cavitation in diesel injector nozzles. J. Fluid Mech., 616: 153-193. doi: 10.1017/S0022112008003777
|
[80] |
Grandjean H, Jacques N, Zaleski S. 2012. Shock propagation in liquids containing bubbly clusters: a continuum approach. J. Fluid Mech., 701: 304-332. doi: 10.1017/jfm.2012.159
|
[81] |
Groβ T F, Bauer J, Ludwig G, Fernandez Rivas D, Pelz P F. 2018. Bubble nucleation from micro-crevices in a shear flow. Exp. Fluids, 59: 12. doi: 10.1007/s00348-017-2459-y
|
[82] |
Groβ T F, Pelz P F. 2017. Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation. J. Fluid Mech., 830: 138-164. doi: 10.1017/jfm.2017.587
|
[83] |
Gunstensen A K, Rothman D H, Zaleski S, Zanetti G. 1991. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A., 43(8): 4320-4327. doi: 10.1103/PhysRevA.43.4320
|
[84] |
Habiyaremye V, Kuerten J G M, Frederix E M A. 2023. Comparison of population balance models for polydisperse bubbly flow. Chem. Eng. Sci., 278: 118932. doi: 10.1016/j.ces.2023.118932
|
[85] |
Haller G. 2015. Lagrangian coherent structures. Annu. Rev. Fluid Mech, 47: 137-162. doi: 10.1146/annurev-fluid-010313-141322
|
[86] |
Herbert E, Balibar S, Caupin F. 2006. Cavitation pressure in water. 2006. Phys. Rev. E., 74: 041603.
|
[87] |
Hovem J M. 2012. Marine Acoustics : The Physics of Sound in Underwater Environments. Peninsula Publishing, California. Pp: 60-64.
|
[88] |
Hsiao C T, Pauley L L. 1999. Study of tip vortex cavitaion inception using Navier-Stokes computation and bubble dynamics model. ASME J. Fluid Mech., 121(1): 198-204. doi: 10.1115/1.2822002
|
[89] |
Hsiao C T, Vhahine G L, Liu H L. 2003. Scaling effect on prediction of cavitation inception in a line vortex flow. ASME J. Fluid Eng., 125: 53-60. doi: 10.1115/1.1521956
|
[90] |
Hsiao C T, Wu X, Ma J, Chahine G L. 2013. Numerical and experimental study of bubble entrainment due to a horizontal plunging jet. Int. Shipbuilding Progress, 60: 435-469.
|
[91] |
Hsiao C T, Ma J, Chahine G L. 2017. Multiscale two-phase flow modeling of sheet and cloud cavitation. Int. J. Multiphase Flow, 90: 102-117. doi: 10.1016/j.ijmultiphaseflow.2016.12.007
|
[92] |
Hsiao C T, Chahine G L, Ma J. 2020. Dynamics of dispersed bubbly flow over a lifting surface: gas diffusion and bubble breakup effects. Ocean Eng., 213: 107630. doi: 10.1016/j.oceaneng.2020.107630
|
[93] |
Hu K, Song M T, Ma C, et al. 2025. Characteristics of radiated noise from the cavitation flow around a NACA16012 twisted hydrofoil, J. Hydrodynamics, XX: XXX. (accepted
|
[94] |
Hulburt H, Katz S. 1964. Some problems in particle technology. A statistical mechanical formulation. Chem. Eng. Sci., 19: 555-574. doi: 10.1016/0009-2509(64)85047-8
|
[95] |
Iben U, Ivanov N G, Isaenko I I, Schmidt A A. 2015. A Eulerian-Lagrangian description of cavitating flow. Tech. Phys. Lett., 41(12): 1159-1162. doi: 10.1134/S1063785015120238
|
[96] |
Ilinskii Y A, Hamilton M F, Zabolotskaya E A, Meegan G D. 2006. Influence of compressibility on bubble interaction. AIP Conf. Proc., 838: 303-310. doi: 10.1063/1.2210366
|
[97] |
Inanc S, Shy W. 2004. Interfacial dynamics-based modeling of turbulent cavitating flows, Part-Ι: Model development and steady-state computations. Int. J. Numer. Methods Fluids, 44(9): 975-995. doi: 10.1002/fld.692
|
[98] |
Ji B, Wang X C, Bai X R, et al. 2023. Cavitation inception noise excited by a tip leakage vortex with various gap sizes: a Eulerian-Lagrangian investigation. Phys. Fluids, 35: 122107. doi: 10.1063/5.0174198
|
[99] |
Ji B, Wang Z Y, Cheng H Y, Bensow R E. 2024. Cavitation research with computational fluid dynamics: from Euler-Euler to Euler-Lagrange approach. J. Hydrodynamics, 36(1): 1-23. doi: 10.1007/s42241-024-0001-2
|
[100] |
Jiménez J. 2018. Coherent structures in wall-bounded turbulence. J. Fluid Mech., 842: P1. doi: 10.1017/jfm.2018.144
|
[101] |
Jones S F, Evans G M, Galvin K P. 1999. Bubble nucleation from gas cavities—a review. Adv. Colloid Interface Sci., 80: 27-50. doi: 10.1016/S0001-8686(98)00074-8
|
[102] |
Joshi S Y, Deshmukh S A. 2021. A review of advancements in coarse-grained molecular dynamics simulations. Mole. Simul., 47(10-11): 786-803. doi: 10.1080/08927022.2020.1828583
|
[103] |
Joswiak M N, Duff N, Doherty M F, Peters B. 2013. Size-dependent surface free energy and Tolman-corrected droplet nucleation of TIP4P2005 water. Phys. Chem. Lett., 4: 4267-4272. doi: 10.1021/jz402226p
|
[104] |
Kapila A K, Menikoff R, Bdzil J B, et al. 2001. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids, 13: 3002-3024. doi: 10.1063/1.1398042
|
[105] |
Khlifa I, Hocevar M, Vabre A, Fezza K, Fuzier S, Coutier-Delgosha O. 2017. Fast X-ray imaging of cavitating flows. Exp Fluids, 58: 157. doi: 10.1007/s00348-017-2426-7
|
[106] |
Kimmerl J, Mertes P, Abdel-Maksoud M. 2021. Application of large eddy simulation to predict underwater noise of marine propulsors. Part 1: cavitation dynamics. J. Mar. Sci. Eng., 9: 792. doi: 10.3390/jmse9080792
|
[107] |
Kalová J, Mareš R. 2019. Size dependences of surface tension and measurement accuracy. AIP Conf. Proc., 2189: 020010.
|
[108] |
Katz J. 1984. Cavitation phenomena within regions of flow separation. J. Fluid Mech., 140: 397-436. doi: 10.1017/S0022112084000665
|
[109] |
Kameda M, Matsumoto Y. 1996. Shock waves in a liquid containing small gas bubbles. Phys. Fluids, 8: 322-335. doi: 10.1063/1.868788
|
[110] |
Kataoka I, Serizawa A. 1989. Basic equations of turbulence in gas-liquid two-phase flow. Int. J. Multiphase Flow, 15: 843. doi: 10.1016/0301-9322(89)90045-1
|
[111] |
Kawanami Y., Kato H, Yamaguchi H, Tanimuri H, Tagaya Y. 1997. Mechanism and control of cloud cavitation. J. Fluid Engng., 119(4): 788-794. doi: 10.1115/1.2819499
|
[112] |
Kawakami D T, Qin Q, Arndt R E A. 2005. Water quality and the periodicity of sheet/cloud cavitation. ASME Fluids Engineering Division Summer Meeting and Exhibition, Houston, TX, USA.
|
[113] |
Kawakami D T, Fuji A, Tsujimoto Y, Arndt R E A. 2008. An assessment of the influence of environmental factors on cavitation instabilities. J. Fluid Engng., 130: 031303. doi: 10.1115/1.2842146
|
[114] |
Khoo M T, Venning J A, Pearce B W, et al. 2020. Natural nuclei population dynamics in cavitation tunnels. Exp. Fluids, 61: 34. doi: 10.1007/s00348-019-2843-x
|
[115] |
Khoo M T, Venning J A, Pearce B W, et al. 2021. Nucleation and cavitation number effects on tip vortex cavitation dynamics and noise. Exp. Fluids, 62: 216. doi: 10.1007/s00348-021-03308-2
|
[116] |
Kitagawa A, Murai Y, Yamamoto F. 2001. Two-way coupling of Eulerian-Lagrangian model for dispersed multiphase flows using filtering functions. Int. J. Multiphase Flow, 27: 2129-2153. doi: 10.1016/S0301-9322(01)00040-4
|
[117] |
Koumoutsakos P. 2005. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech., 37: 457-487. doi: 10.1146/annurev.fluid.37.061903.175753
|
[118] |
Kubota A, Kato H, Yamaguchi H. 1992. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech., 240: 59-96. doi: 10.1017/S002211209200003X
|
[119] |
Kunz R F, Boger D A, Stinebring D R, Chyczewski T S, Lindau J W, Gibeling H J, Venkateswaran S, Govindan T R. 2000. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Comput. & Fluids, 29: 849-875.
|
[120] |
Lavino A D, Smith E, Magnini M, et al. 2021. Surface topography effects on pool boiling via non-equilibrium molecular dynamics simulations. Langmuir, 37: 5731-5744. doi: 10.1021/acs.langmuir.1c00779
|
[121] |
Leighton T G. 1996. The Acoustic Bubble. Academic Press, San Diego.
|
[122] |
Lehr F, Millies M, Mewes D. 2002. Bubble-size distributions and flow fields in bubble columns. AIChE Journal, 48: 2426-2443. doi: 10.1002/aic.690481103
|
[123] |
Leroy V, Chastrette N, Thieury M, Lombard O, Tourin A. 2018. Acoustics of bubble arrays: role played by the dipole response of bubbles. Fluids, 3: 95. doi: 10.3390/fluids3040095
|
[124] |
Lesnik S, Aghelmaleki A, Mettin R, Brenner G. 2022. Modeling acoustic cavitation with inhomogeneous polydisperse bubble population on a large scale. Ultrason. Sonochem., 89: 106060. doi: 10.1016/j.ultsonch.2022.106060
|
[125] |
Li D Q, Hallander J, Johansson T. 2018. Predicting underwater radiated noise of a hull scale ship with model testing and numerical methods. Ocean Eng., 161: 121-135. doi: 10.1016/j.oceaneng.2018.03.027
|
[126] |
Li J J, Carrica P M. 2021. A population balance cavitation model. Int. J. Multiphase Flow, 138: 103617. doi: 10.1016/j.ijmultiphaseflow.2021.103617
|
[127] |
Li J J, Carrica P M. 2023. Numerical study of the cavitating flow over backward facing step with a polydisperse two-phase flow model. Phys. Fluids, 35: 063313. doi: 10.1063/5.0147595
|
[128] |
Li L M, Niu Y B, Wei G L, Manickam S, Sun X, Zhu Z C. 2023. Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling. Ultrason. Sonochem., 97: 106446. doi: 10.1016/j.ultsonch.2023.106446
|
[129] |
Li L M, Wang Z D, Li X J, Zhu Z C. 2021. Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model. Phys. Fluids, 33: 062104. doi: 10.1063/5.0054795
|
[130] |
Li Y H, Li M B, Zhang L W, Wang B L. 2024. Bridging the gap: unraveling the role of nano-gas nuclei in the non-equilibrium water-vapor phase transition. Int. J. Heat Mass Transfer, 232: 125958. doi: 10.1016/j.ijheatmasstransfer.2024.125958
|
[131] |
Li Y H, Li M B, Zhang L W, Wang B L. 2025. Cavitation inception triggered by transient ambient pressures in electrolyte solutions. Phys. Rev. Fluids, 10: 024202. doi: 10.1103/PhysRevFluids.10.024202
|
[132] |
Li Y H, Zhang L W, Wang B L. 2023. Role of mutual diffusion in the dissolution behavior of one primary bulk gas nanobubble in liquid: a molecular dynamics study. Langmuir, 39: 7684-7693. doi: 10.1021/acs.langmuir.3c00484
|
[133] |
Li M B, Li Y H, Gao Y W, Sun C, Wang B L. 2024. Effect of nanoscale nuclei on the dynamics of laser-induced cavitation. Phys. Fluids, 36: 093307. doi: 10.1063/5.0226162
|
[134] |
Liao Y X, Lucas D. 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci., 64: 3389-3406. doi: 10.1016/j.ces.2009.04.026
|
[135] |
Lidtke A K, Turnock S R, Humphrey V F. 2016 Characterisation of sheet cavity noise of a hydrofoil using the Ffowcs Williams-Hawkings acoustic analogy. Comput. Fluids, 130: 8-23.
|
[136] |
Lin C S, Maxey M, Li Z, Karniadakis G E. 2021. A seamless multiscale operator neural network for inferring bubble dynamics. J. Fluid Mech., 929: A18. doi: 10.1017/jfm.2021.866
|
[137] |
Liu Y Q, Wang B L. 2019. Dynamics and surface stability of a cylindrical cavitation bubble in a rectilinear vortex. J. Fluid Mech., 865: 963-992. doi: 10.1017/jfm.2019.103
|
[138] |
Liu Y Q, Zhang H, Zhang W etc. 2023. Bubble size distribution at early stage of hydrodynamic cloud cavitation. Phys. Fluids, 35: 063305. doi: 10.1063/5.0154309
|
[139] |
Lohse D, Prosperetti A. 2016. Homogeneous nucleation: patching the way form the macroscopic to the nanoscopic description. Proc. Natl. Acd. Sci. USA, 113(48): 13549-13550. doi: 10.1073/pnas.1616271113
|
[140] |
Long X P, Cheng H Y, Ji B, Arndt R E A, Peng X X. 2018. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int. J. Multiphase Flow, 100: 41-56. doi: 10.1016/j.ijmultiphaseflow.2017.12.002
|
[141] |
Lulli M, Biferale L, Falcucci G, Sbragaglia M, Shan X W. 2022. Mesoscale perspective on the Tolman length. Phys. Rev. E, 105: 015301. doi: 10.1103/PhysRevE.105.015301
|
[142] |
Lulli M, Biferale L, Falcucci G, Sbragaglia M, Yang D, Shan X W. 2024. Metastable and unstable hydrodynamics in multiphase lattice Boltzmann. Phys. Rev. E, 109: 045304.
|
[143] |
Lyu H M, Schlegel F, Rzehak R, Lucas D. 2023. Euler-Euler model of bubbly flow using particle-center-averaging method. Nuclear Sci. Eng., 197(10): 2602-2619. doi: 10.1080/00295639.2022.2131344
|
[144] |
Lyu X X, Pan S C, Hu X Y, Adams N A. 2018. Numerical investigation of homogeneous cavitation nucleation in a microchannel. Phys. Rev. Fluids, 3: 064303. doi: 10.1103/PhysRevFluids.3.064303
|
[145] |
Lyu X X, Zhu Y J, Zhang C, Hu X Y, Adams N A. 2021. Modeling of cavitation bubble cloud with discrete Lagrangian tracking. Water, 13: 2684. doi: 10.3390/w13192684
|
[146] |
Ma J, Oberai A A, Hyman M C, Drew D A, Lahey Jr R T. 2011. Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model. Comput. Fluids, 52: 50-57. doi: 10.1016/j.compfluid.2011.08.015
|
[147] |
Ma J, Hsiao C T, Chahine G L. 2016. A physical based multiscale modeling of cavitating flows. Comput. Fluids, 145: 68-84.
|
[148] |
Ma T, Lucas D, Jakirlić S, Fröhlich J. 2020a. Progress in the second-moment closure for bubbly flow based on direct numerical simulation data. J. Fluid Mech., 883: A9. doi: 10.1017/jfm.2019.851
|
[149] |
Ma T, Lucas D, Bragg A D. 2020b. Explicit algebraic relation for calculating Reynolds normal stresses in flows dominated by bubble-induced turbulence. Phys. Rev. Fluids, 5: 084305. doi: 10.1103/PhysRevFluids.5.084305
|
[150] |
Ma T, Santarelli C, Ziegenhein T, Lucas D, Fröhlich J. 2017. Direct numerical simulation-based Reynolds-average closure for bubble-induced turbulence. Phys. Rev. Fluids, 2: 034301. doi: 10.1103/PhysRevFluids.2.034301
|
[151] |
Madabhushi A, Mahesh K. 2023. A compressible multi-scale model to simulate cavitating flows. J. Fluid Mech., 961: A6. doi: 10.1017/jfm.2023.192
|
[152] |
Maeda K, Colonius T. 2018. Eulerian-Lagrangian method for simulation of cloud cavitation. J. Comput. Phys., 371: 994-1017. doi: 10.1016/j.jcp.2018.05.029
|
[153] |
Maeda K, Colonius T. 2019. Bubble cloud dynamics in an ultrasound field. J. Fluids Mech., 862: 1105-1134. doi: 10.1017/jfm.2018.968
|
[154] |
Mao Y J, Hu Z W. 2018. Acoustic analogy for multiphase or multicomponent flow. J. Vib. Acoust., 140: 021006. doi: 10.1115/1.4037702
|
[155] |
Marchisio D L, Pikturna J T, Fox R O, Vigil R D, Barresi A A. 2003. Quadrature method of moments for population-balance equations. AIChE J., 49(5): 1266-1276. doi: 10.1002/aic.690490517
|
[156] |
Marchisio D L, Fox R O. 2005. Solution of population balance equations using the direct quadrature method of moments. Aerosol Sci., 36: 43-73. doi: 10.1016/j.jaerosci.2004.07.009
|
[157] |
Marschall H B, Mørch K A, Keller A P, Kjeldsen M. 2003. Cavitation inception by almost spherical solid particles in water. Phys. Fluids, 15: 545-553.
|
[158] |
Martínez-Bazán C, Rodríguez-Rodríguez J, Deane G B, Montañés J L, Lasheras J C. 2010. Considerations on bubble fragmentation models. J. Fluid Mech., 661: 159-177. doi: 10.1017/S0022112010003186
|
[159] |
Meland R, Frezzotti A, Ytrehus T, Hafskjold B. 2004. Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interface. Phys. Fluids, 16(2): 223-243. doi: 10.1063/1.1630797
|
[160] |
Menzl G, Gonzalez M A, Geiger P, et al. 2016. Molecular mechanism for cavitation in water under tension. Proc. Natl. Acd. Sci USA, 113(48): 13582-13587. doi: 10.1073/pnas.1608421113
|
[161] |
Mishra S K, Deymier P A, Muralidharan K, Frantzskonis G, Pannala S, Simunovic S. 2010. Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity. Ultrason. Sonochem., 17(1): 258-265. doi: 10.1016/j.ultsonch.2009.05.014
|
[162] |
Moeendarbary E, Ng T Y, Zangeneh M. 2009. Dissipative particle dynamics : introduction, methodology and complex fluid applications – A review. Int. J. Appl. Mech. 1(4): 737-763.
|
[163] |
Morciano M, Fasano M, Nold A, et al. 2017. Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces. J. Chem. Phys., 146: 244507. doi: 10.1063/1.4986904
|
[164] |
Müller E A, Mejía A. 2014. Resolving discrepancies in the measurements of the interfacial tension for the CO2 + H2O mixture by computer simulation. Phys. Chem. Lett., 5: 1267-1271. doi: 10.1021/jz500417w
|
[165] |
Pai M G, Subramaniam S. 2009. A comprehensive probability density function formalism for multiphase flows. J. Fluid Mech., 628: 181-228. doi: 10.1017/S002211200900617X
|
[166] |
Pan D, Zhao G, Lin Y, Shao X. 2018. Mesoscopic modelling of microbubble in liquid with finite density ratio of gas to liquid. EPL Europhys. Lett., 122: 20003. doi: 10.1209/0295-5075/122/20003
|
[167] |
Park K, Seol H, Choi W, Lee S. 2009. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution. Appl. Acous., 70: 674-680. doi: 10.1016/j.apacoust.2008.08.003
|
[168] |
Peng C, Tian S C, Li G S, Sukop M C. 2018. Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation. Phys Rev. E., 98: 023305. doi: 10.1103/PhysRevE.98.023305
|
[169] |
Peng C, Tian S C, Li G S, Sukop M C. 2019. Simulation of multiple cavitation bubbles interaction with single-component multiphase Lattice Boltzmann method. Int. J. Heat Mass Transfer, 137: 301-317. doi: 10.1016/j.ijheatmasstransfer.2019.03.096
|
[170] |
Peng C, Tian S C, Li G S, Sukop M C. 2020. Simulation of laser-produced single cavitation bubbles with hybrid thermal Lattice Boltzmann method. Int. J. Heat Mass Transfer, 149: 119136. doi: 10.1016/j.ijheatmasstransfer.2019.119136
|
[171] |
Peng H N, He X L, Zhang J M, Wang Y R. 2020. Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method. AIP Advances, 10: 105104. doi: 10.1063/5.0005048
|
[172] |
Peng H N, Zhang J M, He X L, Wang Y R. 2021. Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary. Comput. Fluids, 217: 104817. doi: 10.1016/j.compfluid.2020.104817
|
[173] |
Peng X X, Wang B L, Li H Y. 2017. Generation of abnormal acoustic noise: singing of a cavitating tip vortex. Phys. Rev. Fluids, 2: 053602. doi: 10.1103/PhysRevFluids.2.053602
|
[174] |
Prince M J, Blanch H W. 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J., 46(10): 1485-1499.
|
[175] |
Prosperetti A, Crum L A, Commander K W. 1988. Nonlinear bubble dynamics. J. Acoust. Soc. Am., 83: 502-514. doi: 10.1121/1.396145
|
[176] |
Qi Y, Masuk A U M, Ni R. 2020. Towards a model of bubble breakup in turbulence through experimental constraints. Int. J. Multiphase Flow, 132: 103397. doi: 10.1016/j.ijmultiphaseflow.2020.103397
|
[177] |
Rahman A, Stillinger F H. 1971. Molecular dynamics study of liquid water. J. Chem. Phys., 55(7): 3336-3359 doi: 10.1063/1.1676585
|
[178] |
Rahmani F, Weathers T, Hosangadi A, Chiew Y C. 2020. A non-equilibrium molecular dynamics study of subcritical, supercritical and transcritical mixing of liquid-gas systems. Chem. Eng. Sci., 214: 115424. doi: 10.1016/j.ces.2019.115424
|
[179] |
Ram O, Agarwal K, Katz J. 2020. On the mechanisms that sustain the inception of attached cavitation. J. Fluid Mech., 901: R4. doi: 10.1017/jfm.2020.646
|
[180] |
Reis T, Phillips T N. 2007. Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A: Math. Theor., 40: 4033-4053. doi: 10.1088/1751-8113/40/14/018
|
[181] |
Reisman G E, Wang Y C, Brennen C E. 1996. Observations of shock waves in cloud cavitation. J. Fluid Mech., 355: 255-283.
|
[182] |
Risso F, Fabre J. 1998. Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech., 372: 323-355. doi: 10.1017/S0022112098002705
|
[183] |
Rivière A, Mostert W, Perrard S, Deike L. 2021. Sub-Hinze scale bubble production in turbulent bubble break-up. J. Fluid Mech., 917: A40. doi: 10.1017/jfm.2021.243
|
[184] |
Rosselló J M, Ohl C. -D. 2023. Clean production and characterization of nanobubbles using laser energy deposition. Ultrason. Sonochem., 94: 106321.
|
[185] |
Ruth D J, Mostert W, Perrard S, Deike L. 2019. Bubble pinch-off in turbulence. Proc. Natl. Acad. Sci. U. S. A., 116: 25412-25417. doi: 10.1073/pnas.1909842116
|
[186] |
Santarelli C, Fröhlich J. 2015. Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Int. J. Multiphase Flow, 75: 174-193. doi: 10.1016/j.ijmultiphaseflow.2015.05.007
|
[187] |
Saurel R, Petitpas F, Abgrall R. 2008. Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech., 607: 313-350. doi: 10.1017/S0022112008002061
|
[188] |
Schnerr G H, Sauer J. 2001. Physical and numerical modeling of unsteady cavitation dynamics. Proc. 4th Int. Conf. Multiphase Flow. New Orleans, La, USA.
|
[189] |
Sekine M, Yasuoka K, Kinjo T, Matsumoto M. 2008. Liquid-vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn. Res., 40: 597-605. doi: 10.1016/j.fluiddyn.2007.12.012
|
[190] |
Seo J H, Lele S K, Tryggvason G. 2010. Investigation and modeling of bubble-bubble interaction effect in homogeneous bubbly flows. Phys. Fluids, 22: 063302. doi: 10.1063/1.3432503
|
[191] |
Sethi S K, Kadian S, Manik G. 2022. A review of recent progress in molecular dynamics and coarse-grain simulations assisted understanding of wettability. Arch. Compt. Method Eng., 29: 3059-3085. doi: 10.1007/s11831-021-09689-1
|
[192] |
Shams E, Finn J, Apte S V. 2011. A numerical scheme for Euler-Lagrange simulation of bubbly flows in complex systems. Int. J. Numer. Meth. Fluids, 67: 1865-1898. doi: 10.1002/fld.2452
|
[193] |
Shan X, Chen H. 1993. Lattice Boltzmann model for simulating flows with multiple phase and components. Phys. Rev. E., 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815
|
[194] |
Shan X, Chen H. 1994. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E., 49(4): 2491-2498.
|
[195] |
Shiea M, Buffo A, Vanni M, Marchisio D. 2020. Numerical methods for the solution of population balance equations coupled with computational fluid dynamics. Annu. Rev. Chem. Biomol. Eng., 11: 339-366. doi: 10.1146/annurev-chembioeng-092319-075814
|
[196] |
Shinoda W, DeVane R, Klein M L. 2007. Multi-property fitting and parameterization a coarse grained model for aqueous surfactants. Mol. Simul., 33(1-2): 27-36. doi: 10.1080/08927020601054050
|
[197] |
Simon J M, Bedeaux D, Kjelstrup S, Xu J, Johannessen E. 2006. Interface film resistivities for heat and mass transfer—integral relations verified by non-equilibrium molecular dynamics. J. Phys. Chem., 110: 18528-18536. doi: 10.1021/jp062047y
|
[198] |
Singhal A K, Athavale M M, Li H Y, et al. 2002. Mathematical basis and validation of the full cavitation model. J. Fluid Eng., 124(3): 617-624. doi: 10.1115/1.1486223
|
[199] |
Soligo G, Roccon A, Soldati A. 2021. Turbulent flows with drops and bubbles: what numerical simulations can tell us- Freeman scholar lecture. J. Fluid Eng., 143: 080801.
|
[200] |
Strasberg M. 1959. Onset of ultrasonic cavitation in tap water. J. Acoust. Soc. Am., 31: 163-176. doi: 10.1121/1.1907688
|
[201] |
Subramaniam S. 2001. Statistical modeling of sprarys using the droplet distribution function. Phys. Fluids, 13(3): 624-642. doi: 10.1063/1.1344893
|
[202] |
Subramaniam S. 2013. Lagrangian-Eulerian methods for multiphase flows. Prog. Energy Comb. Sci., 39: 215-245. doi: 10.1016/j.pecs.2012.10.003
|
[203] |
Sukop M C, Or D. 2005. Lattice Boltzmann method for homogeneous and heterogeneous cavitation. Phys. Rev. E., 71(4): 46703. doi: 10.1103/PhysRevE.71.046703
|
[204] |
Swift M R, Orlandini E, Osborn W R, Yeomans J M. 1996. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E., 54(5): 5041-5052. doi: 10.1103/PhysRevE.54.5041
|
[205] |
Tani G, Viviani M, Felli M, et al. 2020. Noise measurements of a cavitating propeller in different facilities: Results of the round robin test programme. Ocean Eng, 213: 107599. doi: 10.1016/j.oceaneng.2020.107599
|
[206] |
Testa C, Ianniello S, Salvatore F. 2018. A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation. J. Sound Vib., 413: 421-441. doi: 10.1016/j.jsv.2017.10.004
|
[207] |
Tian B C, Huang B, Li L M. 2023. Investigation of transient sheet/cloud cavitating flow dynamics from multiscale perspective. Phys. Fluids, 35: 077115. doi: 10.1063/5.0159763
|
[208] |
Thomas R M. 1981. Bubble coalescence in turbulent flows. Int. J. Multiphase Flow, 7(6): 709-717. doi: 10.1016/0301-9322(81)90040-9
|
[209] |
Tomar G, Fuster D, Zaleski S, Popinet S. 2010. Multiscale simulations of primary atomization. Computers & Fluids, 39: 1864-1874.
|
[210] |
Tryggvason G, Dabiri S, Aboulhasanzadeh B, Lu J C. 2013. Multiscale considerations in direct numerical simulations of multiphase flows. Phys. Fluids, 25: 031302. doi: 10.1063/1.4793543
|
[211] |
Van Wijngaarden L. 1968. On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech., 33: 465-474. doi: 10.1017/S002211206800145X
|
[212] |
Venning J A, Pearce B W, Brandner P A. 2022. Nucleation effects on cloud cavitation about a hydrofoil. J. Fluid Mech., 947: A1. doi: 10.1017/jfm.2022.535
|
[213] |
Viitanen V M, Hynninen A, Sipilä T, et al. 2018. DDES of wetted and cavitating marine propeller for CHA underwater noise assessment. J. Mar. Sci. Eng., 6: 56. doi: 10.3390/jmse6020056
|
[214] |
Wan C R, Wang B L, Wang Q, etc. 2017. Probing and imaging of vapor-water mixture properties inside partial/cloud cavitating flows. J. Fluids Eng., 139: 031303. doi: 10.1115/1.4035013
|
[215] |
Wang B L, Liu Z H, Li H Y, etc. 2017. On the numerical simulations of vortical cavitating flows around various hydrofoils. J. Hydrodynamics, 29(6): 926-938. doi: 10.1016/S1001-6058(16)60807-7
|
[216] |
Wang Q Y, Wang B L, Wan C R, Zhang H, Liu Y Q. 2023. Modeling the distribution characteristics of vapor bubbles in cavitating flows. Phys. Fluids, 35: 123316. doi: 10.1063/5.0176400
|
[217] |
Wang T F, Wang J F, Jin Y. 2003. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Eng. Sci., 58: 4629-4637. doi: 10.1016/j.ces.2003.07.009
|
[218] |
Wang X C, Bai X R, Cheng H Y, Ji B, Peng X X. 2023. Numerical investigation of how gap size influences tip leakage vortex cavitation inception using a Eulerian-Lagrangian method. Phys. Fluids, 35: 012113. doi: 10.1063/5.0131813
|
[219] |
Wang Z J, Valeriani C, Frenkel D. 2009. Homogeneous bubble nucleation driven by local hot spots: a molecular dynamics study. J. Phys. Chem. B, 113: 3776-3784. doi: 10.1021/jp807727p
|
[220] |
Wang Z Y, Cheng H Y, Ji B. 2021. Euler-Lagrange study of cavitating turbulent flow around a hydrofoil. Phys. Fluids, 33: 112108. doi: 10.1063/5.0070312
|
[221] |
Wang Z Y, Cheng H Y, Ji B, Peng X X. 2023. Numerical investigation of inner structure and its formation mechanism of cloud cavitating flow. Int. J. Multiphase Flow, 165: 104484. doi: 10.1016/j.ijmultiphaseflow.2023.104484
|
[222] |
Watanabe H, Suzuki M, Ito N. 2010. Cumulative distribution functions associated with bubble-nucleation processes in cavitation. Phys. Rev. E, 82: 051604. doi: 10.1103/PhysRevE.82.051604
|
[223] |
Williams F A. 1958. Spray combustion and atomization. Phys. Fluids, 1: 541-545. doi: 10.1063/1.1724379
|
[224] |
Wood A B, Weston D E. 1964. The propagation of sound in mud. Acustica, 14: 156-162.
|
[225] |
Wu J, Deijlen L, Bhatt A, Ganesh H, Ceccio S L. 2021. Cavitation dynamics and vortex shedding in the wake of a bluff body. J. Fluid Mech, 917: A26. doi: 10.1017/jfm.2021.263
|
[226] |
Wu J, Ganesh H, Ceccio S. 2019. Multimodal partial cavity shedding on a two-dimensional hydrofoil and its relation to the presence of bubbly shocks. Exp. Fluids, 69: 66.
|
[227] |
Wu K, Cai H P, Zhang Z Z et al. 2024. Experimental investigation of tip vortex cavitation noise under static and dynamics states. Phys. Fluids, 36: 073329. doi: 10.1063/5.0217994
|
[228] |
Wu W B, Liu Y L, Zhang A M, Liu N N, Liu L T. 2020. Numerical investigation on underwater explosion cavitation characteristics near water wave. Ocean Eng., 205: 107321. doi: 10.1016/j.oceaneng.2020.107321
|
[229] |
Yamashita K, Daiguji H. 2016. Coarse-grained molecular dynamics simulations of capillary evaporation of water confined in hydrophilic mesopores. Molecular Phys., 114(6): 884-894. doi: 10.1080/00268976.2015.1133858
|
[230] |
Yoon S W, Crum L A, Prosperetti A, Lu N Q. 1991. An investigation of the collective oscillations of a bubble cloud. J. Acoust. Soc. Am., 89: 700-706. doi: 10.1121/1.1894629
|
[231] |
Young F R. 1999. Cavitaion. Imperial College Press. Pp: 10-11.
|
[232] |
Yu J, Liu J H, Wang H K, et al. 2021. Numerical simulation of underwater explosion cavitation characteristics based on phase transition model in compressible multicomponent fluids. Ocean Eng., 240: 109934. doi: 10.1016/j.oceaneng.2021.109934
|
[233] |
Zhang Y N, Guo Z Y, Du X Z. 2018. Wave propagation in liquids with oscillating vapor-gas bubbles. Appl. Thermal Eng., 133: 483-492. doi: 10.1016/j.applthermaleng.2018.01.056
|
[234] |
Zhang H, Liu Y Q, Wang B L. 2021. Spatial-temporal features of the coherent structure of sheet/cloud cavitation flows using a frequency-weighted dynamic mode decomposition approach. Phys. Fluids, 33: 053317. doi: 10.1063/5.0049492
|
[235] |
Zhang H, Liu Y Q, Wang B L, etc. 2022. Phase-resolved characteristics of bubbles in cloud cavitation shedding cycles. Ocean Eng., 256: 111529. doi: 10.1016/j.oceaneng.2022.111529
|
[236] |
Zhang G, Zhang D, Ge M, Petkovsek M, Coutier-Delgosha O. 2022. Experimental investigation of three distinct mechanisms for the transition from sheet to cloud cavitation. Int. J. Heat Mass Transfer, 197: 123372. doi: 10.1016/j.ijheatmasstransfer.2022.123372
|
[237] |
Zhang L X, Zhou Z C, Deng J, Shao X M. 2021. A numerical study on the drag law of a gas bubble using dynamic body force method. Phys. Fluids, 33: 063320. doi: 10.1063/5.0055646
|
[238] |
Zheng Q, Durben D J, Wolf G H, Angell C A. 1991. Liquids at large negative pressures: water at the homogeneous nucleation limit. Science, 254: 829-832. doi: 10.1126/science.254.5033.829
|
[239] |
Zwart P J, Gerber A G, Belamri. 2004. A two-phase flow model for predicting cavitation dynamics. Fifth Int. Conf. Multiphase Flow. Yokohama, Japan.
|