Citation: | Gao P L, Gong L Y, Wang G X, Luo Y, Zhu J Z, Gao H, Ma H B, Qu Y G. Review on the dynamics and wave control in nonlinear periodic structures. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-047 |
[1] |
Akbari-Farahani F, Ebrahimi-Nejad S 2024. From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting. Sensors and Actuators A: Physical, 365: 114871.
|
[2] |
Alfahmi O, Erturk A 2024. Programmable hardening and softening cubic inductive shunts for piezoelectric structures: Harmonic balance analysis and experiments. Journal of Sound and Vibration, 571: 118029.
|
[3] |
Alfahmi O, Sugino C, Erturk A 2022. Duffing-type digitally programmable nonlinear synthetic inductance for piezoelectric structures. Smart Materials and Structures, 31: 095044.
|
[4] |
Allein F, Tournat V, Gusev V, et al. 2020. Linear and nonlinear elastic waves in magnetogranular chains. Physical Review Applied, 13: 024023. doi: 10.1103/PhysRevApplied.13.024023
|
[5] |
Allein F, Tournat V, Gusev V E, et al. 2016. Tunable magneto-granular phononic crystals. Applied Physics Letters, 108: 161903. doi: 10.1063/1.4947192
|
[6] |
Alleyne D, Cawley P 1991. A two-dimensional fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89: 1159-1168.
|
[7] |
Alshaqaq M, Sugino C, Erturk A 2023. Digital programming of reciprocity breaking in resonant piezoelectric metamaterials. Physical Review Research, 5: 043003.
|
[8] |
Bae M H, Oh J H 2020. Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 139: 103930.
|
[9] |
Bae M H, Oh J H 2022. Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mechanical Systems and Signal Processing, 170: 108832.
|
[10] |
Banerjee A, Adhikari S, Hussein M I 2021. Inertial amplification band-gap generation by coupling a levered mass with a locally resonant mass. International Journal of Mechanical Sciences, 207: 106630.
|
[11] |
Banerjee A, Calius E P, Das R 2018a. An impact based mass-in-mass unit as a building block of wideband nonlinear resonating metamaterial. International Journal of Non-Linear Mechanics, 101: 8-15.
|
[12] |
Banerjee A, Calius E P, Das R 2018b. Impact based wideband nonlinear resonating metamaterial chain. International Journal of Non-Linear Mechanics, 103: 138-144.
|
[13] |
Bao B, Guyomar D, Lallart M 2017. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks. Mechanical Systems and Signal Processing, 82: 230-259.
|
[14] |
Bertoldi K, Vitelli V, Christensen J, et al. 2017. Flexible mechanical metamaterials. Nature Reviews Materials, 2: 17066. doi: 10.1038/natrevmats.2017.66
|
[15] |
Bickham S R, Kiselev S A, Sievers A J 1993. Stationary and moving intrinsic localized modes in one-dimensional monatomic lattices with cubic and quartic anharmonicity. Physical Review B, 47: 14206-14211.
|
[16] |
Bilal O R, Foehr A, Daraio C 2017. Bistable metamaterial for switching and cascading elastic vibrations. Proceedings of the National Academy of Sciences, 114: 4603-4606.
|
[17] |
Boechler N, Theocharis G, Daraio C 2011. Bifurcation-based acoustic switching and rectification. Nature materials, 10: 665-668.
|
[18] |
Boechler N, Theocharis G, Job S, et al. 2010. Discrete breathers in one-dimensional diatomic granular crystals. Physical Review Letters, 104: 244302. doi: 10.1103/PhysRevLett.104.244302
|
[19] |
Bordiga G, Medina E, Jafarzadeh S, et al. 2024. Automated discovery of reprogrammable nonlinear dynamic metamaterials. Nature Materials, 23: 1486-1494. doi: 10.1038/s41563-024-02008-6
|
[20] |
Bosia F, Dal Poggetto V F, Gliozzi A S, et al. 2022. Optimized structures for vibration attenuation and sound control in nature: A review. Matter, 5: 3311-3340. doi: 10.1016/j.matt.2022.07.023
|
[21] |
Brooke D C, Umnova O, Leclaire P, et al. 2020. Acoustic metamaterial for low frequency sound absorption in linear and nonlinear regimes. Journal of Sound and Vibration, 485: 115585. doi: 10.1016/j.jsv.2020.115585
|
[22] |
Bukhari M, Barry O 2020. Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dynamics, 99: 1539-1560.
|
[23] |
Buryak A V, Trapani P D, Skryabin D V, et al. 2002. Optical solitons due to quadratic nonlinearities: From basic physics to futuristic applications. Physics Reports, 370: 63-235. doi: 10.1016/S0370-1573(02)00196-5
|
[24] |
Cabaret J, Tournat V, Béquin P 2012. Amplitude-dependent phononic processes in a diatomic granular chain in the weakly nonlinear regime. Physical Review E, 86: 041305.
|
[25] |
Cai C, Guo X, Yan B, et al. 2024. Modelling and analysis of the quasi-zero-stiffness metamaterial cylindrical shell for low-frequency band gap. Applied Mathematical Modelling, 135: 90-108. doi: 10.1016/j.apm.2024.06.031
|
[26] |
Cai C, Zhou J, Wang K, et al. 2022. Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap. Journal of Sound and Vibration, 540: 117297. doi: 10.1016/j.jsv.2022.117297
|
[27] |
Casalotti A, El-Borgi S, Lacarbonara W 2018. Metamaterial beam with embedded nonlinear vibration absorbers. International Journal of Non-Linear Mechanics, 98: 32-42.
|
[28] |
Cha J, Daraio C 2018. Electrical tuning of elastic wave propagation in nanomechanical lattices at mhz frequencies. Nature Nanotechnology, 13: 1016-1020.
|
[29] |
Chakraborty G, Mallik A K 2001. Dynamics of a weakly non-linear periodic chain. International Journal of Non-Linear Mechanics, 36: 375-389.
|
[30] |
Chaunsali R, Theocharis G 2019. Self-induced topological transition in phononic crystals by nonlinearity management. Physical Review B, 100: 014302.
|
[31] |
Chaunsali R, Xu H, Yang J, et al. 2021. Stability of topological edge states under strong nonlinear effects. Physical Review B, 103: 024106. doi: 10.1103/PhysRevB.103.024106
|
[32] |
Chen B, Zheng Y, Dai S, et al. 2024a. Bandgap enhancement of a piezoelectric metamaterial beam shunted with circuits incorporating fractional and cubic nonlinearities. Mechanical Systems and Signal Processing, 212: 111262. doi: 10.1016/j.ymssp.2024.111262
|
[33] |
Chen C, Li X D 2020. Microscopic fluid dynamics of a wire screen bound to a slit resonator excited by acoustic waves. Physics of Fluids, 32: 116107.
|
[34] |
Chen W, Hao Y X, Zhang W, et al. 2024b. Vibration isolation performance of a novel metamaterials sandwich cylindrical panel by locally resonant band gap. Journal of Vibration Engineering & Technologies, 12: 6121-6136.
|
[35] |
Chen Y, Li X, Nassar H, et al. 2019. Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Physical Review Applied, 11: 064052. doi: 10.1103/PhysRevApplied.11.064052
|
[36] |
Chen Y, Wu B, Su Y, et al. 2020. Effects of strain stiffening and electrostriction on tunable elastic waves in compressible dielectric elastomer laminates. International Journal of Mechanical Sciences, 176: 105572. doi: 10.1016/j.ijmecsci.2020.105572
|
[37] |
Chong C, Kim B, Wallace E, et al. 2024. Modulation instability and wavenumber bandgap breathers in a time layered phononic lattice. Physical Review Research, 6: 023045. doi: 10.1103/PhysRevResearch.6.023045
|
[38] |
Cui J-G, Yang T, Chen L-Q 2018. Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Applied Physics Letters, 112: 181904.
|
[39] |
Cummings A 1984. Acoustic nonlinearities and power losses at orifices. AIAA Journal, 22: 786-792.
|
[40] |
Darabi A, Leamy M J 2019. Tunable nonlinear topological insulator for acoustic waves. Physical Review Applied, 12: 044030.
|
[41] |
Darabi A, Ni X, Leamy M, et al. 2020. Reconfigurable floquet elastodynamic topological insulator based on synthetic angular momentum bias. Science Advances, 6: eaba8656. doi: 10.1126/sciadv.aba8656
|
[42] |
De Marqui Junior C, Erturk A, Inman D J 2009. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327: 9-25.
|
[43] |
Deng B, Chen L, Wei D, et al. 2020a. Pulse-driven robot: Motion via solitary waves. Science Advances, 6: eaaz1166. doi: 10.1126/sciadv.aaz1166
|
[44] |
Deng B, Mo C, Tournat V, et al. 2019a. Focusing and mode separation of elastic vector solitons in a 2d soft mechanical metamaterial. Physical Review Letters, 123: 024101. doi: 10.1103/PhysRevLett.123.024101
|
[45] |
Deng B, Raney J R, Bertoldi K, et al. 2021. Nonlinear waves in flexible mechanical metamaterials. Journal of Applied Physics, 130: 040901. doi: 10.1063/5.0050271
|
[46] |
Deng B, Tournat V, Wang P, et al. 2019b. Anomalous collisions of elastic vector solitons in mechanical metamaterials. Physical Review Letters, 122: 044101. doi: 10.1103/PhysRevLett.122.044101
|
[47] |
Deng B, Wang P, He Q, et al. 2018. Metamaterials with amplitude gaps for elastic solitons. Nature Communications, 9: 3410. doi: 10.1038/s41467-018-05908-9
|
[48] |
Deng B, Yu S, Forte A E, et al. 2020b. Characterization, stability, and application of domain walls in flexible mechanical metamaterials. Proceedings of the National Academy of Sciences, 117: 31002-31009. doi: 10.1073/pnas.2015847117
|
[49] |
Deng B, Zanaty M, Forte A E, et al. 2022a. Topological solitons make metamaterials crawl. Physical Review Applied, 17: 014004. doi: 10.1103/PhysRevApplied.17.014004
|
[50] |
Deng B, Zareei A, Ding X, et al. 2022b. Inverse design of mechanical metamaterials with target nonlinear response via a neural accelerated evolution strategy. Advanced Materials, 34: 2206238. doi: 10.1002/adma.202206238
|
[51] |
Devaux T, Tournat V, Richoux O, et al. 2015. Asymmetric acoustic propagation of wave packets via the self-demodulation effect. Physical Review Letters, 115: 234301. doi: 10.1103/PhysRevLett.115.234301
|
[52] |
Deymier P A. Acoustic metamaterials and phononic crystals//: Springer Science & Business Media, 2013
|
[53] |
Donahue C M, Anzel P W J, Bonanomi L, et al. 2014. Experimental realization of a nonlinear acoustic lens with a tunable focus. Applied Physics Letters, 104: 014103. doi: 10.1063/1.4857635
|
[54] |
Dong E, Cao P, Zhang J, et al. 2022. Underwater acoustic metamaterials. National Science Review, 10: nwac246.
|
[55] |
Dong H-W, Shen C, Liu Z, et al. 2024. Inverse design of phononic meta-structured materials. Materials Today, 80: 824-855. doi: 10.1016/j.mattod.2024.09.012
|
[56] |
Fan L, Ge H, Zhang S-y, et al. 2013. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes. The Journal of the Acoustical Society of America, 133: 3846-3852. doi: 10.1121/1.4803904
|
[57] |
Fang X, Lacarbonara W, Cheng L 2024. Advances in nonlinear acoustic/elastic metamaterials and metastructures. Nonlinear Dynamics.
|
[58] |
Fang X, Sheng P, Wen J, et al. 2022. A nonlinear metamaterial plate for suppressing vibration and sound radiation. International Journal of Mechanical Sciences, 228: 107473. doi: 10.1016/j.ijmecsci.2022.107473
|
[59] |
Fang X, Wen J, Benisty H, et al. 2020. Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect. Physical Review B, 101: 104304. doi: 10.1103/PhysRevB.101.104304
|
[60] |
Fang X, Wen J, Bonello B, et al. 2017a. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 8: 1288. doi: 10.1038/s41467-017-00671-9
|
[61] |
Fang X, Wen J, Bonello B, et al. 2017b. Wave propagation in one-dimensional nonlinear acoustic metamaterials. New Journal of Physics, 19: 053007. doi: 10.1088/1367-2630/aa6d49
|
[62] |
Fang X, Wen J, Yin J, et al. 2016. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study. Physical Review E, 94: 052206. doi: 10.1103/PhysRevE.94.052206
|
[63] |
Fang X, Wen J, Yu D, et al. 2018. Bridging-coupling band gaps in nonlinear acoustic metamaterials. Physical Review Applied, 10: 054049. doi: 10.1103/PhysRevApplied.10.054049
|
[64] |
Fermi E, Pasta P, Ulam S, et al. 1955. Studies of the nonlinear problems. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States).
|
[65] |
Flach S, Gorbach A V 2008. Discrete breathers — advances in theory and applications. Physics Reports, 467: 1-116.
|
[66] |
Fleury R, Khanikaev A B, Alù A 2016. Floquet topological insulators for sound. Nature Communications, 7: 11744.
|
[67] |
Florijn B, Coulais C, van Hecke M 2014. Programmable mechanical metamaterials. Physical Review Letters, 113: 175503.
|
[68] |
Frandsen N M M, Bilal O R, Jensen J S, et al. 2016. Inertial amplification of continuous structures: Large band gaps from small masses. Journal of Applied Physics, 119.
|
[69] |
Frandsen N M M, Jensen J S 2017. Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass–spring chain. Wave Motion, 68: 149-161.
|
[70] |
Fraternali F, Carpentieri G, Amendola A, et al. 2014. Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Applied Physics Letters, 105: 201903. doi: 10.1063/1.4902071
|
[71] |
Fraternali F, Senatore L, Daraio C 2012. Solitary waves on tensegrity lattices. Journal of the Mechanics and Physics of Solids, 60: 1137-1144.
|
[72] |
Frazier M J, Kochmann D M 2017. Band gap transmission in periodic bistable mechanical systems. Journal of Sound and Vibration, 388: 315-326.
|
[73] |
Fronk M D, Fang L, Packo P, et al. 2023. Elastic wave propagation in weakly nonlinear media and metamaterials: A review of recent developments. Nonlinear Dynamics, 111: 10709-10741. doi: 10.1007/s11071-023-08399-6
|
[74] |
Fronk M D, Leamy M J 2017. Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. Journal of Vibration and Acoustics, 139: 051003.
|
[75] |
Ganesh R, Gonella S 2015. From modal mixing to tunable functional switches in nonlinear phononic crystals. Physical Review Letters, 114: 054302.
|
[76] |
Ganeshan S, Sun K, Das Sarma S 2013. Topological zero-energy modes in gapless commensurate Aubry-André-Harper models. Physical Review Letters, 110: 180403.
|
[77] |
Gao L, Mak C M, Ma K W, et al. 2024. Mechanisms of multi-bandgap inertial amplification applied in metamaterial sandwich plates. International Journal of Mechanical Sciences, 277: 109424. doi: 10.1016/j.ijmecsci.2024.109424
|
[78] |
Gao N, Zhang Z, Deng J, et al. 2022a. Acoustic metamaterials for noise reduction: A review. Advanced Materials Technologies, 7: 2100698. doi: 10.1002/admt.202100698
|
[79] |
Gao P, Climente A, Sánchez-Dehesa J, et al. 2017. Theoretical study of platonic crystals with periodically structured N-beam resonators. Journal of Applied Physics, 123: 091707.
|
[80] |
Gao P, Climente A, Sánchez-Dehesa J, et al. 2019a. Single-phase metamaterial plates for broadband vibration suppression at low frequencies. Journal of Sound and Vibration, 444: 108-126. doi: 10.1016/j.jsv.2018.12.022
|
[81] |
Gao P, Qu Y, Christensen J 2022b. Non-Hermitian elastodynamics in gyro-odd continuum media. Communications Materials, 3: 74.
|
[82] |
Gao P, Torrent D, Cervera F, et al. 2019b. Majorana-like zero modes in Kekulé distorted sonic lattices. Physical Review Letters, 123: 196601. doi: 10.1103/PhysRevLett.123.196601
|
[83] |
Gao P, Willatzen M, Christensen J 2020. Anomalous topological edge states in non-Hermitian piezophononic media. Physical Review Letters, 125: 206402.
|
[84] |
Gao Y, Wang L 2022. Nonlocal active metamaterial with feedback control for tunable bandgap and broadband nonreciprocity. International Journal of Mechanical Sciences, 219: 107131.
|
[85] |
Gao Y, Wang L 2023. Broad bandgap active metamaterials with optimal time-delayed control. International Journal of Mechanical Sciences, 254: 108449.
|
[86] |
Gao Y, Wang L 2024. An active tunable piezoelectric metamaterial beam for broadband vibration suppression by optimization. Acta Mechanica Sinica, 40: 523235.
|
[87] |
Geniet F, Leon J 2002. Energy transmission in the forbidden band gap of a nonlinear chain. Physical Review Letters, 89: 134102.
|
[88] |
Gillman A, Fuchi K, Buskohl P R 2018. Truss-based nonlinear mechanical analysis for origami structures exhibiting bifurcation and limit point instabilities. International Journal of Solids and Structures, 147: 80-93.
|
[89] |
Gilpin W, Bull M S, Prakash M 2020. The multiscale physics of cilia and flagella. Nature Reviews Physics, 2: 74-88.
|
[90] |
Gliozzi A S, Miniaci M, Bosia F, et al. 2015. Metamaterials-based sensor to detect and locate nonlinear elastic sources. Applied Physics Letters, 107: 161902. doi: 10.1063/1.4934493
|
[91] |
Gong C, Fang X, Cheng L 2023. Band degeneration and evolution in nonlinear triatomic metamaterials. Nonlinear Dynamics, 111: 97-112.
|
[92] |
Gong L, Zhang G, Gao P, et al. 2025. Tunable nonlinear piezoelectric metabeams for multimode vibration suppression. International Journal of Mechanical Sciences, doi: https://doi.org/10.1016/j.ijmecsci.2025.110238.
|
[93] |
Guddala S, Ramakrishna S A 2016. Optical limiting by nonlinear tuning of resonance in metamaterial absorbers. Optics Letters, 41: 5150-5153.
|
[94] |
Guo X, Gusev V E, Tournat V, et al. 2019. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface. Physical Review E, 99: 052209. doi: 10.1103/PhysRevE.99.052209
|
[95] |
Guo X, Lissek H, Fleury R 2020. Improving sound absorption through nonlinear active electroacoustic resonators. Physical Review Applied, 13: 014018.
|
[96] |
Hatanaka D, Yamaguchi H 2020. Real-space characterization of cavity-coupled waveguide systems in hypersonic phononic crystals. Physical Review Applied, 13: 024005.
|
[97] |
Heckl M A 1964. Investigations on the vibrations of grillages and other simple beam structures. The Journal of the Acoustical Society of America, 36: 1335-1343.
|
[98] |
Herbold E B, Nesterenko V F 2013. Propagation of rarefaction pulses in discrete materials with strain-softening behavior. Physical Review Letters, 110: 144101.
|
[99] |
Hersh A S, Walker B E, Celano J W 2003. Helmholtz resonator impedance model, part 1: Nonlinear behavior. AIAA Journal, 41: 795-808.
|
[100] |
Hsu C W, Zhen B, Stone A D, et al. 2016. Bound states in the continuum. Nature Reviews Materials, 1: 16048. doi: 10.1038/natrevmats.2016.48
|
[101] |
Hu B, Fang X, Cheng L, et al. 2023. Attenuation of impact waves in a nonlinear acoustic metamaterial beam. Nonlinear Dynamics, 111: 15801-15816. doi: 10.1007/s11071-023-08689-z
|
[102] |
Hu G, C. M. Austin A, Sorokin V, et al. 2021. Metamaterial beam with graded local resonators for broadband vibration suppression. Mechanical Systems and Signal Processing, 146: 106982. doi: 10.1016/j.ymssp.2020.106982
|
[103] |
Huang S, Li Y, Zhu J, et al. 2023. Sound-absorbing materials. Physical Review Applied, 20: 010501. doi: 10.1103/PhysRevApplied.20.010501
|
[104] |
Huang S, Zhou Z, Li D, et al. 2020. Compact broadband acoustic sink with coherently coupled weak resonances. Science Bulletin, 65: 373-379. doi: 10.1016/j.scib.2019.11.008
|
[105] |
Hussein M I, Leamy M J, Ruzzene M 2014. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66: 040802.
|
[106] |
Ingard U, Ising H 1967. Acoustic nonlinearity of an orifice. The Journal of the Acoustical Society of America, 42: 6-17.
|
[107] |
Ingård U, Labate S 1950. Acoustic circulation effects and the nonlinear impedance of orifices. The Journal of the Acoustical Society of America, 22: 211-218.
|
[108] |
Jeon G J, Oh J H 2021. Nonlinear acoustic metamaterial for efficient frequency down-conversion. Physical Review E, 103: 012212.
|
[109] |
Jhang K-Y, Kim K-C 1999. Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics, 37: 39-44.
|
[110] |
Jian Y, Tang L, Hu G, et al. 2022. Design of graded piezoelectric metamaterial beam with spatial variation of electrodes. International Journal of Mechanical Sciences, 218: 107068. doi: 10.1016/j.ijmecsci.2022.107068
|
[111] |
Jiao W, Gonella S 2018a. Intermodal and subwavelength energy trapping in nonlinear metamaterial waveguides. Physical Review Applied, 10: 024006.
|
[112] |
Jiao W, Gonella S 2018b. Mechanics of inter-modal tunneling in nonlinear waveguides. Journal of the Mechanics and Physics of Solids, 111: 1-17.
|
[113] |
Jiao W, Gonella S 2021. Wavenumber-space band clipping in nonlinear periodic structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477: 20210052.
|
[114] |
Jiao W, Shu H, Tournat V, et al. 2024. Phase transitions in 2d multistable mechanical metamaterials via collisions of soliton-like pulses. Nature Communications, 15: 333. doi: 10.1038/s41467-023-44293-w
|
[115] |
Jin L, Khajehtourian R, Mueller J, et al. 2020. Guided transition waves in multistable mechanical metamaterials. Proceedings of the National Academy of Sciences, 117: 2319-2325. doi: 10.1073/pnas.1913228117
|
[116] |
Jin Y, Torrent D, Rouhani B D, et al. 2025. The 2024 phononic crystals roadmap. Journal of Physics D: Applied Physics, 58: 113001. doi: 10.1088/1361-6463/ad9ab2
|
[117] |
Jing X, Sun X 2002. Sound-excited flow and acoustic nonlinearity at an orifice. Physics of Fluids, 14: 268-276.
|
[118] |
Job S, Santibanez F, Tapia F, et al. 2009. Wave localization in strongly nonlinear hertzian chains with mass defect. Physical Review E, 80: 025602. doi: 10.1103/PhysRevE.80.025602
|
[119] |
Johnson K L 1982. One hundred years of hertz contact. Proceedings of the Institution of Mechanical Engineers, 196: 363-378.
|
[120] |
Kadic M, Bückmann T, Schittny R, et al. 2013. Metamaterials beyond electromagnetism. Reports on Progress in Physics, 76: 126501. doi: 10.1088/0034-4885/76/12/126501
|
[121] |
Khajehtourian R, Kochmann D M 2021. A continuum description of substrate-free dissipative reconfigurable metamaterials. Journal of the Mechanics and Physics of Solids, 147: 104217.
|
[122] |
Khomeriki R, Lepri S, Ruffo S 2004. Nonlinear supratransmission and bistability in the fermi-pasta-ulam model. Physical Review E, 70: 066626.
|
[123] |
Khoo I C, Wang Y K 1976. Multiple time scale analysis of an anharmonic crystal. Journal of Mathematical Physics, 17: 222-227.
|
[124] |
Kim B L, Chong C, Hajarolasvadi S, et al. 2023. Dynamics of time-modulated, nonlinear phononic lattices. Physical Review E, 107: 034211. doi: 10.1103/PhysRevE.107.034211
|
[125] |
Kim E, Li F, Chong C, et al. 2015. Highly nonlinear wave propagation in elastic woodpile periodic structures. Physical Review Letters, 114: 118002. doi: 10.1103/PhysRevLett.114.118002
|
[126] |
Kim E, Yang J 2019. Review: Wave propagation in granular metamaterials. Functional Composites and Structures, 1: 012002.
|
[127] |
Komkin A, Bykov A, Mironov M 2020. Experimental study of nonlinear acoustic impedance of circular orifices. The Journal of the Acoustical Society of America, 148: 1391-1403.
|
[128] |
Korpas L M, Yin R, Yasuda H, et al. 2021. Temperature-responsive multistable metamaterials. ACS Applied Materials & Interfaces, 13: 31163-31170.
|
[129] |
Krushynska A O, Miniaci M, Bosia F, et al. 2017. Coupling local resonance with bragg band gaps in single-phase mechanical metamaterials. Extreme Mechanics Letters, 12: 30-36. doi: 10.1016/j.eml.2016.10.004
|
[130] |
Kumar R, Ezhilarasi D 2023. A state-of-the-art survey of model order reduction techniques for large-scale coupled dynamical systems. International Journal of Dynamics and Control, 11: 900-916.
|
[131] |
Kushwaha M S, Halevi P, Dobrzynski L, et al. 1993. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71: 2022-2025. doi: 10.1103/PhysRevLett.71.2022
|
[132] |
Laly Z, Atalla N, Meslioui S-A 2018. Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach. Journal of Sound and Vibration, 427: 134-158.
|
[133] |
Laly Z, Atalla N, Meslioui S-A, et al. 2019. Sensitivity analysis of micro-perforated panel absorber models at high sound pressure levels. Applied Acoustics, 156: 7-20. doi: 10.1016/j.apacoust.2019.06.025
|
[134] |
Lan J, Li Y, Yu H, et al. 2017. Nonlinear effects in acoustic metamaterial based on a cylindrical pipe with ordered helmholtz resonators. Physics Letters A, 381: 1111-1117. doi: 10.1016/j.physleta.2017.01.036
|
[135] |
Larbi W, Deü J-F 2019. Reduced order finite element formulations for vibration reduction using piezoelectric shunt damping. Applied Acoustics, 147: 111-120.
|
[136] |
Lazarov B S, Jensen J S 2007. Low-frequency band gaps in chains with attached non-linear oscillators. International Journal of Non-Linear Mechanics, 42: 1186-1193.
|
[137] |
Leon J 2003. Nonlinear supratransmission as a fundamental instability. Physics Letters A, 319: 130-136.
|
[138] |
Lepri S, Casati G 2011. Asymmetric wave propagation in nonlinear systems. Physical Review Letters, 106: 164101.
|
[139] |
Li F, Anzel P, Yang J, et al. 2014. Granular acoustic switches and logic elements. Nature Communications, 5: 5311. doi: 10.1038/ncomms6311
|
[140] |
Li J, Chan C T 2004. Double-negative acoustic metamaterial. Physical Review E, 70: 055602.
|
[141] |
Li Z-N, Wang Y-Z, Wang Y-S 2020. Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. International Journal of Solids and Structures, 182-183: 218-235.
|
[142] |
Li Z-N, Wang Y-Z, Wang Y-S 2021. Tunable mechanical diode of nonlinear elastic metamaterials induced by imperfect interface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477: 20200357.
|
[143] |
Li Z-N, Yuan B, Wang Y-Z, et al. 2019. Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mechanics of Materials, 133: 85-101. doi: 10.1016/j.mechmat.2019.03.010
|
[144] |
Liang B, Guo X S, Tu J, et al. 2010. An acoustic rectifier. Nature Materials, 9: 989-992. doi: 10.1038/nmat2881
|
[145] |
Librandi G, Tubaldi E, Bertoldi K 2021. Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nature Communications, 12: 3454.
|
[146] |
Liu E, Fang X, Wen J 2022a. Harmonic and shock wave propagation in bistable periodic structure: Regularity, randomness, and tunability. Journal of Vibration and Control, 28: 3332-3343.
|
[147] |
Liu J, Wang Y, Yang S, et al. 2024. Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation. International Journal of Mechanical Sciences, 269: 108958. doi: 10.1016/j.ijmecsci.2024.108958
|
[148] |
Liu Z, Fang H, Xu J, et al. 2023. Discriminative transition sequences of origami metamaterials for mechanologic. Advanced Intelligent Systems, 5: 2200146. doi: 10.1002/aisy.202200146
|
[149] |
Liu Z, Shan S, Cheng L 2022b. Nonlinear-lamb-wave-based plastic damage detection assisted by topologically designed metamaterial filters. Structural Health Monitoring, 22: 1828-1843.
|
[150] |
Liu Z, Zhang X, Mao Y, et al. 2000. Locally resonant sonic materials. Science, 289: 1734-1736. doi: 10.1126/science.289.5485.1734
|
[151] |
Macías-Díaz J E 2008. Numerical study of the transmission of energy in discrete arrays of sine-gordon equations in two space dimensions. Physical Review E, 77: 016602.
|
[152] |
Man Y, Boechler N, Theocharis G, et al. 2012. Defect modes in one-dimensional granular crystals. Physical Review E, 85: 037601. doi: 10.1103/PhysRevE.85.037601
|
[153] |
Manktelow K, Leamy M J, Ruzzene M 2011. Multiple scales analysis of wave–wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dynamics, 63: 193-203.
|
[154] |
Manktelow K, Leamy M J, Ruzzene M 2013a. Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals. Wave Motion, 50: 494-508.
|
[155] |
Manktelow K, Narisetti R K, Leamy M J, et al. 2013b. Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mechanical Systems and Signal Processing, 39: 32-46. doi: 10.1016/j.ymssp.2012.04.015
|
[156] |
Manktelow K L, Leamy M J, Ruzzene M 2013c. Topology design and optimization of nonlinear periodic materials. Journal of the Mechanics and Physics of Solids, 61: 2433-2453.
|
[157] |
Maradudin A A, Mazur P, Montroll E W, et al. 1958. Remarks on the vibrations of diatomic lattices. Reviews of Modern Physics, 30: 175-196. doi: 10.1103/RevModPhys.30.175
|
[158] |
Marathe A, Chatterjee A 2006. Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales. Journal of Sound and Vibration, 289: 871-888.
|
[159] |
Mead D J 1971. Vibration response and wave propagation in periodic structures. Journal of Engineering for Industry, 93: 783-792.
|
[160] |
Meaud J 2020. Nonlinear wave propagation and dynamic reconfiguration in two-dimensional lattices with bistable elements. Journal of Sound and Vibration, 473: 115239.
|
[161] |
Melling T H 1973. The acoustic impendance of perforates at medium and high sound pressure levels. Journal of Sound and Vibration, 29: 1-65.
|
[162] |
Merkel A, Tournat V, Gusev V 2011. Experimental evidence of rotational elastic waves in granular phononic crystals. Physical Review Letters, 107: 225502.
|
[163] |
Miniaci M, Gliozzi A S, Morvan B, et al. 2017. Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals. Physical Review Letters, 118: 214301. doi: 10.1103/PhysRevLett.118.214301
|
[164] |
Mojahed A, Bunyan J, Tawfick S, et al. 2019. Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry. Physical Review Applied, 12: 034033. doi: 10.1103/PhysRevApplied.12.034033
|
[165] |
Mosquera-Sánchez J A, Alfahmi O, Erturk A, et al. 2024. Broadening the frequency response of a duffing-type piezoelectric shunt by means of negative capacitance. Journal of Sound and Vibration, 578: 118344. doi: 10.1016/j.jsv.2024.118344
|
[166] |
Mosquera-Sánchez J A, De Marqui C 2024. Broadband and multimode attenuation in duffing- and nes-type piezoelectric metastructures. International Journal of Mechanical Sciences, 270: 109084.
|
[167] |
Mosquera-Sánchez J A, De Marqui Jr C 2021. Dynamics and wave propagation in nonlinear piezoelectric metastructures. Nonlinear Dynamics, 105: 2995-3023.
|
[168] |
Nadkarni N, Arrieta A F, Chong C, et al. 2016. Unidirectional transition waves in bistable lattices. Physical Review Letters, 116: 244501. doi: 10.1103/PhysRevLett.116.244501
|
[169] |
Nadkarni N, Daraio C, Kochmann D M 2014. Dynamics of periodic mechanical structures containing bistable elastic elements: From elastic to solitary wave propagation. Physical Review E, 90: 023204.
|
[170] |
Narisetti R K, Leamy M J, Ruzzene M 2010. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. Journal of Vibration and Acoustics, 132: 031001.
|
[171] |
Narisetti R K, Ruzzene M, Leamy M J 2011. A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. Journal of Vibration and Acoustics, 133: 061020.
|
[172] |
Narisetti R K, Ruzzene M, Leamy M J 2012. Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion, 49: 394-410.
|
[173] |
Nash L M, Kleckner D, Read A, et al. 2015. Topological mechanics of gyroscopic metamaterials. Proceedings of the National Academy of Sciences, 112: 14495-14500. doi: 10.1073/pnas.1507413112
|
[174] |
Nassar H, Chen H, Norris A N, et al. 2017. Non-reciprocal wave propagation in modulated elastic metamaterials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473: 20170188. doi: 10.1098/rspa.2017.0188
|
[175] |
Nassar H, Yousefzadeh B, Fleury R, et al. 2020. Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials, 5: 667-685. doi: 10.1038/s41578-020-0206-0
|
[176] |
Nesterenko V F 1983. Propagation of nonlinear compression pulses in granular media. Journal of Applied Mechanics and Technical Physics, 24: 733-743.
|
[177] |
Nesterenko V F 2018. Waves in strongly nonlinear discrete systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376: 20170130.
|
[178] |
Nesterenko V F, Daraio C, Herbold E B, et al. 2005. Anomalous wave reflection at the interface of two strongly nonlinear granular media. Physical Review Letters, 95: 158702. doi: 10.1103/PhysRevLett.95.158702
|
[179] |
Ni X, Rizzo P, Yang J, et al. 2012. Monitoring the hydration of cement using highly nonlinear solitary waves. NDT & E International, 52: 76-85.
|
[180] |
Norris A N 2008. Acoustic cloaking theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464: 2411-2434.
|
[181] |
Ou H, Hu L, Wang Y, et al. 2024. High-efficient and reusable impact mitigation metamaterial based on compression-torsion coupling mechanism. Journal of the Mechanics Physics of Solids, 186: 105594. doi: 10.1016/j.jmps.2024.105594
|
[182] |
Pal A, Sitti M 2023. Programmable mechanical devices through magnetically tunable bistable elements. Proceedings of the National Academy of Sciences, 120: e2212489120.
|
[183] |
Pal R K, Vila J, Leamy M, et al. 2018. Amplitude-dependent topological edge states in nonlinear phononic lattices. Physical Review E, 97: 032209. doi: 10.1103/PhysRevE.97.032209
|
[184] |
Palermo A, Celli P, Yousefzadeh B, et al. 2020. Surface wave non-reciprocity via time-modulated metamaterials. Journal of the Mechanics and Physics of Solids, 145: 104181. doi: 10.1016/j.jmps.2020.104181
|
[185] |
Panigrahi S R, Feeny B F, Diaz A R 2017. Wave–wave interactions in a periodic chain with quadratic nonlinearity. Wave Motion, 69: 65-80.
|
[186] |
Park S-H 2013a. Acoustic properties of micro-perforated panel absorbers backed by helmholtz resonators for the improvement of low-frequency sound absorption. Journal of Sound and Vibration, 332: 4895-4911.
|
[187] |
Park S-H 2013b. A design method of micro-perforated panel absorber at high sound pressure environment in launcher fairings. Journal of Sound and Vibration, 332: 521-535.
|
[188] |
Patil G U, Matlack K H 2021. Wave self-interactions in continuum phononic materials with periodic contact nonlinearity. Wave Motion, 105: 102763.
|
[189] |
Patil G U, Matlack K H 2022. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 233: 1-46.
|
[190] |
Peng F 2018. Sound absorption of a porous material with a perforated facing at high sound pressure levels. Journal of Sound and Vibration, 425: 1-20.
|
[191] |
Pernas-Salomón R, Shmuel G 2020. Fundamental principles for generalized willis metamaterials. Physical Review Applied, 14: 064005.
|
[192] |
Plattner L 2004. Optical properties of the scales of morpho rhetenor butterflies: Theoretical and experimental investigation of the back-scattering of light in the visible spectrum. Journal of the Royal Society Interface, 1: 49-59.
|
[193] |
Popa B-I, Cummer S A 2014. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nature Communications, 5: 3398.
|
[194] |
Porter M A, Kevrekidis P G, Daraio C 2015. Granular crystals: Nonlinear dynamics meets materials engineering. Physics Today, 68: 44-50.
|
[195] |
Qu R, Guo J, Fang Y, et al. 2023. Broadband quasi-perfect sound absorption by a metasurface with coupled resonators at both low- and high-amplitude excitations. Mechanical Systems and Signal Processing, 204: 110782. doi: 10.1016/j.ymssp.2023.110782
|
[196] |
Qu S, Gao N, Tinel A, et al. 2022. Underwater metamaterial absorber with impedance-matched composite. Science Advances, 8: eabm4206. doi: 10.1126/sciadv.abm4206
|
[197] |
Raney J R, Nadkarni N, Daraio C, et al. 2016. Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences, 113: 9722-9727. doi: 10.1073/pnas.1604838113
|
[198] |
Richoux O, Tournat V, Le Van Suu T 2007. Acoustic wave dispersion in a one-dimensional lattice of nonlinear resonant scatterers. Physical Review E, 75: 026615.
|
[199] |
Rienstra S W, Singh D K 2018. Nonlinear asymptotic impedance model for a helmholtz resonator of finite depth. AIAA Journal, 56: 1792-1802.
|
[200] |
Rosa M I N, Leamy M J, Ruzzene M 2023. Amplitude-dependent edge states and discrete breathers in nonlinear modulated phononic lattices. New Journal of Physics, 25: 103053.
|
[201] |
Rosa M I N, Pal R K, Arruda J R F, et al. 2019. Edge states and topological pumping in spatially modulated elastic lattices. Physical Review Letters, 123: 034301. doi: 10.1103/PhysRevLett.123.034301
|
[202] |
Sadeghi S, Allison S R, Bestill B, et al. 2021. Tmp origami jumping mechanism with nonlinear stiffness. Smart Materials and Structures, 30: 065002. doi: 10.1088/1361-665X/abf5b2
|
[203] |
Scheibner C, Irvine W T M, Vitelli V 2020. Non-hermitian band topology and skin modes in active elastic media. Physical Review Letters, 125: 118001.
|
[204] |
Sen Gupta G 1970. Natural flexural waves and the normal modes of periodically-supported beams and plates. Journal of Sound and Vibration, 13: 89-101.
|
[205] |
Sepehri S, Mashhadi M M, Fakhrabadi M M S 2022. Wave propagation in fractionally damped nonlinear phononic crystals. Nonlinear Dynamics, 110: 1683-1708.
|
[206] |
Serra-Garcia M, Lydon J, Daraio C 2016. Extreme stiffness tunability through the excitation of nonlinear defect modes. Physical Review E, 93: 010901.
|
[207] |
Settimi V, Lepidi M, Bacigalupo A 2021. Nonlinear dispersion properties of one-dimensional mechanical metamaterials with inertia amplification. International Journal of Mechanical Sciences, 201: 106461.
|
[208] |
Shan S, Wen F, Cheng L 2021. Purified nonlinear guided waves through a metamaterial filter for inspection of material microstructural changes. Smart Materials and Structures, 30: 095017.
|
[209] |
Shen H, Wen J, Yu D, et al. 2013. Control of sound and vibration of fluid-filled cylindrical shells via periodic design and active control. Journal of Sound and Vibration, 332: 4193-4209. doi: 10.1016/j.jsv.2013.03.007
|
[210] |
Sheng P, Fang X, Yu D, et al. 2024. Mitigating aeroelastic vibration of strongly nonlinear metamaterial supersonic wings under high temperature. Nonlinear Dynamics.
|
[211] |
Sigalas M M, Economou E N 1992. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158: 377-382.
|
[212] |
Silva P B, Leamy M J, Geers M G D, et al. 2019a. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Physical Review E, 99: 063003. doi: 10.1103/PhysRevE.99.063003
|
[213] |
Silva T, Tan D, De Marqui C, et al. 2019b. Vibration attenuation in a nonlinear flexible structure via nonlinear switching circuits and energy harvesting implications. Journal of Intelligent Material Systems and Structures, 30: 965-976. doi: 10.1177/1045389X19828835
|
[214] |
Silva T M, Clementino M A, De Marqui Jr C, et al. 2018. An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation. Journal of Sound and Vibration, 437: 68-78. doi: 10.1016/j.jsv.2018.08.038
|
[215] |
Singh D K, Rienstra S W 2014. Nonlinear asymptotic impedance model for a helmholtz resonator liner. Journal of Sound and Vibration, 333: 3536-3549.
|
[216] |
Singhal T, Kim E, Kim T-Y, et al. 2017. Weak bond detection in composites using highly nonlinear solitary waves. Smart Materials and Structures, 26: 055011. doi: 10.1088/1361-665X/aa6823
|
[217] |
Sivian L J 1935. Acoustic impedance of small orifices. The Journal of the Acoustical Society of America, 7: 94-101.
|
[218] |
Snee D D J M, Ma Y-P 2019. Edge solitons in a nonlinear mechanical topological insulator. Extreme Mechanics Letters, 30: 100487.
|
[219] |
Spadoni A, Daraio C 2010. Generation and control of sound bullets with a nonlinear acoustic lens. Proceedings of the National Academy of Sciences, 107: 7230-7234.
|
[220] |
Su J, Rupp J, Garmory A, et al. 2015. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices. Journal of Sound and Vibration, 352: 174-191. doi: 10.1016/j.jsv.2015.05.009
|
[221] |
Su W P, Schrieffer J R, Heeger A J 1979. Solitons in polyacetylene. Physical Review Letters, 42: 1698-1701.
|
[222] |
Sugimoto N 1992. Propagation of nonlinear acoustic waves in a tunnel with an array of helmholtz resonators. Journal of Fluid Mechanics, 244: 55-78.
|
[223] |
Sugimoto N 1996. Acoustic solitary waves in a tunnel with an array of helmholtz resonators. The Journal of the Acoustical Society of America, 99: 1971-1976.
|
[224] |
Sugino C, Ruzzene M, Erturk A 2020. Digitally programmable resonant elastic metamaterials. Physical Review Applied, 13: 061001.
|
[225] |
Sun Y, Zheng H, Han Q, et al. 2024. Non-contact electromagnetic controlled metamaterial beams for low-frequency vibration suppression. International Journal of Solids and Structures, 290: 112667. doi: 10.1016/j.ijsolstr.2024.112667
|
[226] |
Swinteck N Z, Muralidharan K, Deymier P A 2013. Phonon scattering in one-dimensional anharmonic crystals and superlattices: Analytical and numerical study. Journal of Vibration and Acoustics, 135: 041016.
|
[227] |
Talebi Bidhendi M R 2022. Band gap transmission in a periodic network of coupled buckled beams. International Journal of Solids and Structures, 252: 111766.
|
[228] |
Tam C K W, Auriault L 1999. Jet mixing noise from fine-scale turbulence. AIAA Journal, 37: 145-153.
|
[229] |
Tam C K W, Ju H, Jones M G, et al. 2010. A computational and experimental study of resonators in three dimensions. Journal of Sound and Vibration, 329: 5164-5193. doi: 10.1016/j.jsv.2010.06.005
|
[230] |
Tam C K W, Ju H, Walker B E 2008. Numerical simulation of a slit resonator in a grazing flow under acoustic excitation. Journal of Sound and Vibration, 313: 449-471.
|
[231] |
Tam C K W, Kurbatskii K A, Ahuja K K, et al. 2001. A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners. Journal of Sound and Vibration, 245: 545-557. doi: 10.1006/jsvi.2001.3571
|
[232] |
Tam C K W, Pastouchenko N N, Jones M G, et al. 2014. Experimental validation of numerical simulations for an acoustic liner in grazing flow: Self-noise and added drag. Journal of Sound and Vibration, 333: 2831-2854. doi: 10.1016/j.jsv.2014.02.019
|
[233] |
Tamura S, Hurley D C, Wolfe J P 1988. Acoustic-phonon propagation in superlattices. Physical Review B, 38: 1427-1449.
|
[234] |
Tang Y, He W, Xin F, et al. 2020. Nonlinear sound absorption of ultralight hybrid-cored sandwich panels. Mechanical Systems and Signal Processing, 135: 106428. doi: 10.1016/j.ymssp.2019.106428
|
[235] |
Tempelman J R, Matlack K H, Vakakis A F 2021. Topological protection in a strongly nonlinear interface lattice. Physical Review B, 104: 174306.
|
[236] |
Theocharis G, Boechler N, Daraio C. Nonlinear periodic phononic structures and granular crystals//P. A. DEYMIER. Acoustic metamaterials and phononic crystals. Berlin, Heidelberg: Springer, 2013: 217-251.
|
[237] |
Theocharis G, Kavousanakis M, Kevrekidis P G, et al. 2009. Localized breathing modes in granular crystals with defects. Physical Review E, 80: 066601. doi: 10.1103/PhysRevE.80.066601
|
[238] |
Tian W, Yang Z, Li M, et al. 2025. Theoretical modeling and mechanism analysis of nonlinear metastructure for supersonic aeroelastic suppression. Mechanical Systems and Signal Processing, 224: 111931. doi: 10.1016/j.ymssp.2024.111931
|
[239] |
Tian W, Zhao T, Gu Y, et al. 2022a. Nonlinear flutter suppression and performance evaluation of periodically embedded nonlinear vibration absorbers in a supersonic fgm plate. Aerospace Science and Technology, 121: 107198. doi: 10.1016/j.ast.2021.107198
|
[240] |
Tian W, Zhao T, Yang Z 2022b. Supersonic meta-plate with tunable-stiffness nonlinear oscillators for nonlinear flutter suppression. International Journal of Mechanical Sciences, 229: 107533.
|
[241] |
Tian Y, Shen Y, Rao D, et al. 2019. Metamaterial improved nonlinear ultrasonics for fatigue damage detection. Smart Materials and Structures, 28: 075038. doi: 10.1088/1361-665X/ab2566
|
[242] |
Tournat V, Gusev V E, Castagnède B 2004. Self-demodulation of elastic waves in a one-dimensional granular chain. Physical Review E, 70: 056603.
|
[243] |
Trainiti G, Xia Y, Marconi J, et al. 2019. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: Theory and experiment. Physical Review Letters, 122: 124301. doi: 10.1103/PhysRevLett.122.124301
|
[244] |
Vakakis A F, King M E 1998. Resonant oscillations of a weakly coupled, nonlinear layered system. Acta Mechanica, 128: 59-80.
|
[245] |
Vasiliev V V, Barynin V A, Razin A F 2012. Anisogrid composite lattice structures – development and aerospace applications. Composite Structures, 94: 1117-1127.
|
[246] |
Vasios N, Deng B, Gorissen B, et al. 2021. Universally bistable shells with nonzero gaussian curvature for two-way transition waves. Nature Communications, 12: 695. doi: 10.1038/s41467-020-20698-9
|
[247] |
Veenstra J, Gamayun O, Guo X, et al. 2024. Non-reciprocal topological solitons in active metamaterials. Nature, 627: 528-533. doi: 10.1038/s41586-024-07097-6
|
[248] |
Vila J, Paulino G H, Ruzzene M 2019. Role of nonlinearities in topological protection: Testing magnetically coupled fidget spinners. Physical Review B, 99: 125116.
|
[249] |
Wallen S P, Boechler N 2017. Shear to longitudinal mode conversion via second harmonic generation in a two-dimensional microscale granular crystal. Wave Motion, 68: 22-30.
|
[250] |
Wang K, Zhou J, Cai C, et al. 2019. Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Applied Mathematical Modelling, 73: 581-597. doi: 10.1016/j.apm.2019.04.033
|
[251] |
Wang T, Touzé C, Li H, et al. 2024a. Nonlinear dispersion relationships and dissipative properties of damped metamaterials embedding bistable attachments. Nonlinear Dynamics.
|
[252] |
Wang T, ul Islam T, Steur E, et al. 2024b. Programmable metachronal motion of closely packed magnetic artificial cilia. Lab on a Chip, 24: 1573-1585. doi: 10.1039/D3LC00956D
|
[253] |
Wang Y-F, Wang Y-Z, Wu B, et al. 2020. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 72: 040801. doi: 10.1115/1.4046222
|
[254] |
Wang Y, Yousefzadeh B, Chen H, et al. 2018. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Physical Review Letters, 121: 194301. doi: 10.1103/PhysRevLett.121.194301
|
[255] |
Wei L-S, Wang Y-Z, Wang Y-S 2020. Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method. International Journal of Mechanical Sciences, 173: 105433.
|
[256] |
Wen Z, Jin Y, Gao P, et al. 2022. Topological cavities in phononic plates for robust energy harvesting. Mechanical Systems and Signal Processing, 162: 108047. doi: 10.1016/j.ymssp.2021.108047
|
[257] |
Wu B, Destrade M, Chen W 2020. Nonlinear response and axisymmetric wave propagation in functionally graded soft electro-active tubes. International Journal of Mechanical Sciences, 187: 106006.
|
[258] |
Wu B, Jiang W, Jiang J, et al. 2024. Wave manipulation in intelligent metamaterials: Recent progress and prospects. Advanced Functional Materials, 34: 2316745. doi: 10.1002/adfm.202316745
|
[259] |
Wu G, Lu Z, Xu X, et al. 2019. Numerical investigation of aeroacoustics damping performance of a helmholtz resonator: Effects of geometry, grazing and bias flow. Aerospace Science and Technology, 86: 191-203. doi: 10.1016/j.ast.2019.01.007
|
[260] |
Wu Z, Wang K W 2019. On the wave propagation analysis and supratransmission prediction of a metastable modular metastructure for non-reciprocal energy transmission. Journal of Sound and Vibration, 458: 389-406.
|
[261] |
Xia Y, Ruzzene M, Erturk A 2019. Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Applied Physics Letters, 114: 093501.
|
[262] |
Xia Y, Ruzzene M, Erturk A 2020. Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dynamics, 102: 1285-1296.
|
[263] |
Xiao Y, Wen J, Wen X 2012. Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics, 45: 195401.
|
[264] |
Xiao Z, Gao P, He X, et al. 2023. Multifunctional acoustic metamaterial for air ventilation, broadband sound insulation and switchable transmission. Journal of Physics D: Applied Physics, 56: 044006. doi: 10.1088/1361-6463/acaa44
|
[265] |
Xiao Z, Gao P, He X, et al. 2024. Lightweight cellular multifunctional metamaterials with superior low-frequency sound absorption, broadband energy harvesting and high load-bearing capacity. Materials & Design, 241: 112912.
|
[266] |
Xiao Z, Gao P, Wang D, et al. 2021. Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency. Extreme Mechanics Letters, 46: 101348. doi: 10.1016/j.eml.2021.101348
|
[267] |
Xu L, Xiang Z 2024. Chaotic metastructures for frequency self-conversion. Mechanical Systems and Signal Processing, 206: 110927.
|
[268] |
Xu Q, Wang J, Lv Y, et al. 2023. Vibration characteristics of linear and nonlinear dissipative elastic metamaterials rotor with geometrical nonlinearity. International Journal of Non-Linear Mechanics, 157: 104543. doi: 10.1016/j.ijnonlinmec.2023.104543
|
[269] |
Xu X, Barnhart M V, Fang X, et al. 2019. A nonlinear dissipative elastic metamaterial for broadband wave mitigation. International Journal of Mechanical Sciences, 164: 105159. doi: 10.1016/j.ijmecsci.2019.105159
|
[270] |
Xue Y, Li J, Wang Y, et al. 2023. Broadband vibration attenuation in nonlinear meta-structures with magnet coupling mechanism: Theory and experiments. Communications in Nonlinear Science and Numerical Simulation, 127: 107543. doi: 10.1016/j.cnsns.2023.107543
|
[271] |
Xue Y, Li J, Wang Y, et al. 2024. Widely tunable magnetorheological metamaterials with nonlinear amplification mechanism. International Journal of Mechanical Sciences, 264: 108830. doi: 10.1016/j.ijmecsci.2023.108830
|
[272] |
Yablonovitch E 1987. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58: 2059-2062.
|
[273] |
Yang D, Guo X, Zhang W, et al. 2024. Non-linear dynamics and bandgap control in magneto-rheological elastomers metamaterials with inertial amplification. Thin-Walled Structures, 204: 112237. doi: 10.1016/j.tws.2024.112237
|
[274] |
Yao D, Xiong M, Luo J, et al. 2022. Flexural wave mitigation in metamaterial cylindrical curved shells with periodic graded arrays of multi-resonator. Mechanical Systems and Signal Processing, 168: 108721. doi: 10.1016/j.ymssp.2021.108721
|
[275] |
Yao S, Zhou X, Hu G 2010. Investigation of the negative-mass behaviors occurring below a cut-off frequency. New Journal of Physics, 12: 103025.
|
[276] |
Yasuda H, Korpas L M, Raney J R 2020. Transition waves and formation of domain walls in multistable mechanical metamaterials. Physical Review Applied, 13: 054067.
|
[277] |
Yi J, Chen C Q 2024. Delocalization and higher-order topology in a nonlinear elastic lattice. New Journal of Physics, 26: 063004.
|
[278] |
Yi J, Zhang Y, Chen C Q 2023. Tunable mode conversion in a mechanical metamaterial via second harmonic generation. Journal of Sound and Vibration, 565: 117911.
|
[279] |
Yilmaz C, Hulbert G M, Kikuchi N 2007. Phononic band gaps induced by inertial amplification in periodic media. Physical Review B, 76: 054309.
|
[280] |
Yin D, Yi K, Liu Z, et al. 2022. Design of cylindrical metashells with piezoelectric materials and digital circuits for multi-modal vibration control. Frontiers in Physics, 10: 958141. doi: 10.3389/fphy.2022.958141
|
[281] |
Yoon S, Kim A, Cantwell W J, et al. 2023. Defect detection in composites by deep learning using solitary waves. International Journal of Mechanical Sciences, 239: 107882. doi: 10.1016/j.ijmecsci.2022.107882
|
[282] |
Yousefzadeh B, Phani A S 2016. Supratransmission in a disordered nonlinear periodic structure. Journal of Sound and Vibration, 380: 242-266.
|
[283] |
Yu D, Wen J, Shen H, et al. 2012. Propagation of flexural wave in periodic beam on elastic foundations. Physics Letters A, 376: 626-630. doi: 10.1016/j.physleta.2011.11.056
|
[284] |
Yu M, Fang X, Wen J, et al. 2024. Robust nonlinear elastic metamaterial enabled by collision damping. Mechanics of Advanced Materials and Structures, 31: 3630-3637. doi: 10.1080/15376494.2023.2180557
|
[285] |
Yu M, Fang X, Yu D 2021. Combinational design of linear and nonlinear elastic metamaterials. International Journal of Mechanical Sciences, 199: 106422.
|
[286] |
Zareei A, Deng B, Bertoldi K 2020. Harnessing transition waves to realize deployable structures. Proceedings of the National Academy of Sciences, 117: 4015-4020.
|
[287] |
Zhang J, Romero-García V, Theocharis G, et al. 2021a. High-amplitude sound propagation in acoustic transmission-line metamaterial. Applied Physics Letters, 118: 104102. doi: 10.1063/5.0040702
|
[288] |
Zhang Q, Fang H, Xu J 2020. Programmable stopbands and supratransmission effects in a stacked miura-origami metastructure. Physical Review E, 101: 042206.
|
[289] |
Zhang Q, Guo D, Hu G 2021b. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. Advanced Functional Materials, 31: 2101428.
|
[290] |
Zhang Q, Rudykh S 2024. Propagation of solitary waves in origami-inspired metamaterials. Journal of the Mechanics and Physics of Solids, 187: 105626.
|
[291] |
Zhang X, Yu H, He Z, et al. 2021c. A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mechanical Systems and Signal Processing, 159: 107826. doi: 10.1016/j.ymssp.2021.107826
|
[292] |
Zhang Y, Deshmukh A, Wang K-W 2023. Embodying multifunctional mechano-intelligence in and through phononic metastructures harnessing physical reservoir computing. Advanced Science, 10: 2305074.
|
[293] |
Zhang Z, Gao P, Liu W, et al. 2022. Structured sonic tube with carbon nanotube-like topological edge states. Nature Communications, 13: 5096. doi: 10.1038/s41467-022-32777-0
|
[294] |
Zhao B, Thomsen H R, Pu X, et al. 2024. A nonlinear damped metamaterial: Wideband attenuation with nonlinear bandgap and modal dissipation. Mechanical Systems and Signal Processing, 208: 111079. doi: 10.1016/j.ymssp.2023.111079
|
[295] |
Zhao C, Zhang K, Zhao P, et al. 2023a. Finite-amplitude nonlinear waves in inertial amplification metamaterials: Theoretical and numerical analyses. Journal of Sound and Vibration, 560: 117802. doi: 10.1016/j.jsv.2023.117802
|
[296] |
Zhao J, Zhou G, Zhang D, et al. 2023b. Integrated design of a lightweight metastructure for broadband vibration isolation. International Journal of Mechanical Sciences, 244: 108069. doi: 10.1016/j.ijmecsci.2022.108069
|
[297] |
Zhao J, Zhou H, Yi K, et al. 2023c. Ultra-broad bandgap induced by hybrid hardening and softening nonlinearity in metastructure. Nonlinear Dynamics, 111: 17687-17707. doi: 10.1007/s11071-023-08808-w
|
[298] |
Zhao T, Yang Z, Tian W 2023d. Tunable nonlinear metastructure with periodic bi-linear oscillators for broadband vibration suppression. Thin-Walled Structures, 191: 110975.
|
[299] |
Zheng S, Li T, Zhao J, et al. 2022. Deployment impact experiment and dynamic analysis of modular truss antenna. International Journal of Aerospace Engineering, 2022: 2038932.
|
[300] |
Zheng Y, Qu Y, Dai S, et al. 2024. Mitigating vibration and sound radiation with a digital piezoelectric meta-shell in heavy fluids. Journal of Sound and Vibration, 573: 118221. doi: 10.1016/j.jsv.2023.118221
|
[301] |
Zhou J, Dou L, Wang K, et al. 2019. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 96: 647-665. doi: 10.1007/s11071-019-04812-1
|
[302] |
Zhou J, Wang K, Xu D, et al. 2017. Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 121: 044902. doi: 10.1063/1.4974299
|
[303] |
Zhou S, Zhang R, Cheng Y, et al. 2024a. Non-reciprocity and selective wave amplification in nonlinear inertia-induced autoparametric periodic structures. Applied Mathematical Modelling, 130: 457-471. doi: 10.1016/j.apm.2024.03.005
|
[304] |
Zhou W, Li Y, Yan G, et al. 2024b. Quasi-full bandgap generating mechanism by coupling negative stiffness and inertial amplification. European Journal of Mechanics - A/Solids, 103: 105143. doi: 10.1016/j.euromechsol.2023.105143
|
[305] |
Zhou W, Wang Y-Z 2024. Metamaterial robot driven by nonlinear elastic waves with stop band and nonreciprocal crawling. Nonlinear Dynamics, 112: 5825-5845.
|
[306] |
Zhou W J, Li X P, Wang Y S, et al. 2018. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. Journal of Sound and Vibration, 413: 250-269. doi: 10.1016/j.jsv.2017.10.023
|
[307] |
Zhou X, Liu X, Hu G 2012. Elastic metamaterials with local resonances: An overview. Theoretical and Applied Mechanics Letters, 2: 041001.
|
[308] |
Zhou X, Zhang W, Geng X, et al. 2025. Broadband sound absorption of micro-perforated sandwich panels with hierarchical honeycomb core at high sound pressure levels. Composite Structures, 354: 118794. doi: 10.1016/j.compstruct.2024.118794
|
[309] |
Zhu J, Gao H, Dai S, et al. 2023a. Multilayer structures for high-intensity sound energy absorption in low-frequency range. International Journal of Mechanical Sciences, 247: 108197. doi: 10.1016/j.ijmecsci.2023.108197
|
[310] |
Zhu J, Qu Y, Gao H, et al. 2022. Nonlinear sound absorption of helmholtz resonators with serrated necks under high-amplitude sound wave excitation. Journal of Sound and Vibration, 537: 117197. doi: 10.1016/j.jsv.2022.117197
|
[311] |
Zhu J, Qu Y, Gao H, et al. 2024. A tunable sound absorber with perfect sound absorption for suppressing acoustic waves of different intensities. Journal of Sound and Vibration, 577: 118306. doi: 10.1016/j.jsv.2024.118306
|
[312] |
Zhu W, Deng W, Liu Y, et al. 2023b. Topological phononic metamaterials. Reports on Progress in Physics, 86: 106501. doi: 10.1088/1361-6633/aceeee
|
[313] |
Zhuang Y, Li Q, Yang D, et al. 2024. Vibration suppression of power cabin for underwater vehicle based on mechanical metamaterial flanges. Ocean Engineering, 310: 118540. doi: 10.1016/j.oceaneng.2024.118540
|
[314] |
陈毅, 刘晓宁, 向平, 等. 2016. 五模材料及其水声调控研究. 力学进展, 46: 201609 (Chen Y, Liu X, Xiang P, et al. 2016. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 46: 201609). doi: 10.6052/1000-0992-16-010
Chen Y, Liu X, Xiang P, et al. 2016. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 46: 201609. doi: 10.6052/1000-0992-16-010
|
[315] |
方鑫 2018. 非线性声学超材料中弹性波传播理论及其减振应用研究. 国防科技大学 (Fang, X. 2018. Nonlinear acoustic metamaterials: theory of elastic wave propagation and applications on vibration reduction. National University of Defense Technology).
Fang, X. 2018. Nonlinear acoustic metamaterials: theory of elastic wave propagation and applications on vibration reduction. National University of Defense Technology.
|
[316] |
耿琳琳, 袁锦波, 程文, 等. 2024. 非厄米力学系统基本原理与研究进展. 力学进展, 54: 1-60 (Geng L L, Yuan J B, Cheng W, et al. 2024. Fundamental principles and research progress of non-Hermitian mechanical systems. Advances in Mechanics, 54: 1-60). doi: 10.6052/1000-0992-23-049
Geng L L, Yuan J B, Cheng W, et al. 2024. Fundamental principles and research progress of non-Hermitian mechanical systems. Advances in Mechanics, 54: 1-60. doi: 10.6052/1000-0992-23-049
|
[317] |
胡更开, 刘晓宁. 弹性超材料设计与波动控制//科学出版社: 科学出版社, 2024.
|
[318] |
胡海岩, 田强, 张伟, 等. 2013. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 43: 390-414 (Hu H, Tian Q, Zhang W, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. 2013. Advances in Mechanics, 43: 390-414).
Hu H, Tian Q, Zhang W, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. 2013. Advances in Mechanics, 43: 390-414.
|
[319] |
马大猷. 1996. 高声强下的微穿孔板. 声学学报, 21: 10-14 (Maa D. 1996. Microperforated panel at high sound intensity. Acta Acustica, 21: 10-14).
Maa D. 1996. Microperforated panel at high sound intensity. Acta Acustica, 21: 10-14.
|
[320] |
孟光, 周徐斌, 苗军. 2016. 航天重大工程中的力学问题. 力学进展, 46: 267-322 (Meng G, Zhou X, Miao J. 2016. Mechanical problems in momentous projects of aerospace engineering. Advances in Mechanics, 46: 201606).
Meng G, Zhou X, Miao J. 2016. Mechanical problems in momentous projects of aerospace engineering. Advances in Mechanics, 46: 201606.
|
[321] |
苏常伟, 梁冉, 王雪仁, 等. 2023. 水下航行器线谱振动噪声研究进展. 舰船科学技术, 45: 1-8 (Su C, Liang R, Wang X, et al. 2023. Research progress of line spectrum vibration and noise of underwater vehicle. Ship Science and Technology, 45: 1-8). doi: 10.3404/j.issn.1672-7649.2023.08.001
Su C, Liang R, Wang X, et al. 2023. Research progress of line spectrum vibration and noise of underwater vehicle. Ship Science and Technology, 45: 1-8 doi: 10.3404/j.issn.1672-7649.2023.08.001
|
[322] |
孙秀婷, 钱佳伟, 齐志凤, 等. 2023. 非线性隔振及时滞消振方法研究进展. 力学进展, 53: 308-356 (Sun X T, Qian J W, Qi Z F, et al. 2023. Review on research progress of nonlinear vibration isolation and time-delayed suppression method. Advances in Mechanics, 53: 308-356). doi: 10.6052/1000-0992-22-048
Sun X T, Qian J W, Qi Z F, et al. 2023. Review on research progress of nonlinear vibration isolation and time-delayed suppression method. Advances in Mechanics, 53: 308-356 doi: 10.6052/1000-0992-22-048
|
[323] |
王凯, 周加喜, 蔡昌琦, 等. 2022. 低频弹性波超材料的若干进展. 力学学报, 54: 2678-2694 (Wang K, Zhou Jia, Cai C, et al. 2022. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 54: 2678-2694). doi: 10.6052/0459-1879-22-108
Wang K, Zhou Jia, Cai C, et al. 2022. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 54: 2678-2694. doi: 10.6052/0459-1879-22-108
|
[324] |
王育人, 缪旭弘, 姜恒, 等. 2017. 水下吸声机理与吸声材料. 力学进展, 47: 92-121 (Wang Y R, Miao X H, Jiang H, et al. 2017. Review on underwater sound absorption materials and mechanisms. Advances in Mechanics, 47: 201703).
Wang Y R, Miao X H, Jiang H, et al. 2017. Review on underwater sound absorption materials and mechanisms. Advances in Mechanics, 47: 201703
|
[325] |
吴林志, 熊健, 马力, 等. 2012. 新型复合材料点阵结构的研究进展. 力学进展, 42: 41-67 (Wu L, Xiong J, Ma L, et al. 2012. Processes in the study of novel composite sandwich panels with lattice truss cores. Advances in Mechanics, 42: 41-67). doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095
Wu L, Xiong J, Ma L, et al. 2012. Processes in the study of novel composite sandwich panels with lattice truss cores. Advances in Mechanics, 42: 41-67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095
|
[326] |
易凯军, 陈洋洋, 朱睿. 2022. 力电耦合主动超材料及其弹性波调控. 科学通报, 67: 1290-1304 (Yi K J, Chen Y Y, Zhu R, et al. 2022. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 67: 1290-1304). doi: 10.1360/TB-2021-0573
Yi K J, Chen Y Y, Zhu R, et al. 2022. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 67: 1290-1304 doi: 10.1360/TB-2021-0573
|
[327] |
尹剑飞, 蔡力, 方鑫, 等. 2022. 力学超材料研究进展与减振降噪应用. 力学进展, 52: 508-586 (Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52: 508-586). doi: 10.6052/1000-0992-22-005
Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52: 508-586 doi: 10.6052/1000-0992-22-005
|
[328] |
袁毅, 游镇宇, 陈伟球. 2021. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 53: 2101-2116 (Yuan Y, You Z, Chen W. 2021. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 53: 2101-2116). doi: 10.6052/0459-1879-21-198
Yuan Y, You Z, Chen W. 2021. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 53: 2101-2116. doi: 10.6052/0459-1879-21-198
|