Citation: | Meng Z Y, Lu Z, Xiong S Y, Zhao Y M, Yang Y. Advances in quantum computing for fluid dynamics. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-041 |
[1] |
陈坚强, 袁先旭, 涂国华, 郭启龙. 2023. 计算流体力学 2035 愿景. 科学出版社. (Chen J Q, Yuan X X, Tu G H, Guo Q L. 2023. Computational fluid dynamics 2035 vision in China. Science Press).
Chen J Q, Yuan X X, Tu G H, Guo Q L. 2023. Computational fluid dynamics 2035 vision in China. Science Press.
|
[2] |
Aaronson S. 2015. Read the fine print. Nat. Phys., 11: 291-293. doi: 10.1038/nphys3272
|
[3] |
Aharonov Y, Davidovich L, Zagury N. 1993. Quantum random walks. Phys. Rev. A, 48: 1687-1690. doi: 10.1103/PhysRevA.48.1687
|
[4] |
Albash T, Lidar D A. 2018. Adiabatic quantum computation. Rev. Mod. Phys., 90: 015002. doi: 10.1103/RevModPhys.90.015002
|
[5] |
An D, Lin L. 2022. Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing, 3 .
|
[6] |
An D, Liu J P, Lin L. 2023. Linear combination of Hamiltonian simulation for nonunitary dynamics with optimal state preparation cost. Phys. Rev. Lett., 131: 150603. doi: 10.1103/PhysRevLett.131.150603
|
[7] |
Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F, Buell D A, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature, 574: 505-510. doi: 10.1038/s41586-019-1666-5
|
[8] |
Ashida Y, Gong Z, Ueda M. 2021. Non-Hermitian physics. Adv. Phys., 69: 249-435.
|
[9] |
Asztalos K, Steijl R, Maulik R. 2024. Reduced-order modeling on a near-term quantum computer. J. Comput. Phys., 510: 113070. doi: 10.1016/j.jcp.2024.113070
|
[10] |
Babbush R, Berry D W, Kothari R, Somma R D, Wiebe N. 2023. Exponential quantum speedup in simulating coupled classical oscillators. Phys. Rev. X, 13: 041041.
|
[11] |
Babukhin D V. 2023. Harrow−Hassidim−Lloyd algorithm without ancilla postselection. Phys. Rev. A, 107: 042408. doi: 10.1103/PhysRevA.107.042408
|
[12] |
Barends R, Shabani A, Lamata L, Kelly J, Mezzacapo A, Las Heras U, Babbush R, Fowler A G, Campbell B, Chen Y, et al. 2016. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 534: 222-226. doi: 10.1038/nature17658
|
[13] |
Basheer A, Afham A, Goyal S K. 2020. Quantum k-nearest neighbors algorithm. arXiv preprint arXiv: 2003.09187,
|
[14] |
Begušić T, Gray J, Chan G K L. 2024. Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance. Sci. Adv., 10: eadk4321. doi: 10.1126/sciadv.adk4321
|
[15] |
Benedetti M, Lloyd E, Sack S, Fiorentini M. 2019. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol., 4: 043001. doi: 10.1088/2058-9565/ab4eb5
|
[16] |
Bennett C H, Bernstein E, Brassard G, Vazirani U. 1997. Strengths and weaknesses of quantum computing. SIAM J. Comput., 26: 1510-1523. doi: 10.1137/S0097539796300933
|
[17] |
Bernstein D, Lange T. 2017. Post-quantum cryptography. Nature, 549: 188-194. doi: 10.1038/nature23461
|
[18] |
Bharadwaj S S, Sreenivasan K R. 2020. Quantum computation of fluid dynamics. Indian Acad. Sci. Conf. Ser., 3: 77.
|
[19] |
Bharadwaj S S, Sreenivasan K R. 2023. Hybrid quantum algorithms for flow problems. Proc. Natl. Acad. Sci. U.S.A., 120: e2311014120. doi: 10.1073/pnas.2311014120
|
[20] |
Bharadwaj S S, Sreenivasan K R. 2024a. Compact quantum algorithms that can potentially maintain quantum advantage for solving time-dependent differential equations. arXiv: 2405.09767.
|
[21] |
Bharadwaj S S, Sreenivasan K R. 2024b. Simulating fluid flows with quantum computing. arXiv: 2409.09736.
|
[22] |
Bharti K, Cervera-Lierta A, Kyaw T H, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann J S, Menke T, et al. 2022. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94: 015004. doi: 10.1103/RevModPhys.94.015004
|
[23] |
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. 2017. Quantum machine learning. Nature, 549: 195-202. doi: 10.1038/nature23474
|
[24] |
Bishwas A K, Mani A, Palade V. 2020. An investigation on support vector clustering for big data in quantum paradigm. Quantum Inf. Process., 19: 108. doi: 10.1007/s11128-020-2606-x
|
[25] |
Borle A, Lomonaco S J. 2022. How viable is quantum annealing for solving linear algebra problems? arXiv: 2206.10576.
|
[26] |
Brearley P, Laizet S. 2024. Quantum algorithm for solving the advection equation using Hamiltonian simulation. Phys. Rev. A, 110: 012430. doi: 10.1103/PhysRevA.110.012430
|
[27] |
Brunton S L, Noack B R, Koumoutsakos P. 2020. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech., 52: 477-508. doi: 10.1146/annurev-fluid-010719-060214
|
[28] |
Brüstle N, Wiebe N. 2024. Quantum and classical algorithms for nonlinear unitary dynamics. arXiv: 2407.07685.
|
[29] |
Budinski L. 2021. Quantum algorithm for the advection-diffusion equation simulated with the lattice Boltzmann method. Quantum Inf. Process., 20: 57. doi: 10.1007/s11128-021-02996-3
|
[30] |
Budinski L. 2022. Quantum algorithm for the Navier−Stokes equations by using the stream function vorticity formulation and the lattice Boltzmann method. Int. J. Quantum Inf., 20: 2150039. doi: 10.1142/S0219749921500398
|
[31] |
Buluta I, Nori F. 2009. Quantum simulators. Science, 326: 108-111. doi: 10.1126/science.1177838
|
[32] |
Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L, et al. 2021. Variational quantum algorithms. Nat. Rev. Phys., 3: 625-644. doi: 10.1038/s42254-021-00348-9
|
[33] |
Cerezo M, Verdon G, Huang H Y, Cincio L, Coles P J. 2022. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci., 2: 567-576. doi: 10.1038/s43588-022-00311-3
|
[34] |
Chen Z Y, Ma T Y, Ye C C, Xu L, Bai W, Zhou L, Tan M Y, Zhuang X N, Xu X F, Wang Y J, et al. 2024. Enabling large-scale and high-precision fluid simulations on near-term quantum computers. Comput. Methods Appl. Mech. Eng., 432: 117428. doi: 10.1016/j.cma.2024.117428
|
[35] |
Chen Z Y, Xue C, Chen S M, Lu B H, Wu Y C, Ding J C, Huang S H, Guo G P. 2022. Quantum approach to accelerate finite volume method on steady computational fluid dynamics problems. Quantum Inf. Process., 21: 137. doi: 10.1007/s11128-022-03478-w
|
[36] |
Cheng B, Deng X H, Gu X, He Y, Hu G, Huang P, Li J, Lin B C, Lu D, Lu Y, et al. 2023. Noisy intermediate-scale quantum computers. Front. Phys., 18: 21308. doi: 10.1007/s11467-022-1249-z
|
[37] |
Chern A, Knöppel F, Pinkall U, Schröder P. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graphics, 36: 1-11.
|
[38] |
Childs A M, Maslov D, Nam Y, Ross N J, Su Y. 2018. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. U.S.A., 115: 9456-9461. doi: 10.1073/pnas.1801723115
|
[39] |
Chiribella G, D’Ariano G M, Perinotti P. 2008. Quantum circuit architecture. Phys. Rev. Lett., 101: 060401. doi: 10.1103/PhysRevLett.101.060401
|
[40] |
Cirac J I, Zoller P. 2012. Goals and opportunities in quantum simulation. Nat. Phys., 8: 264-266. doi: 10.1038/nphys2275
|
[41] |
Costa P C S, An D, Sanders Y R, Su Y, Babbush R, Berry D W. 2022. Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3: 040303. doi: 10.1103/PRXQuantum.3.040303
|
[42] |
Cottet G H, Koumoutsakos P. 2000. Vortex methods: Theory and practice. Cambridge University Press.
|
[43] |
Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P. 2022. Practical quantum advantage in quantum simulation. Nature, 607: 667-676. doi: 10.1038/s41586-022-04940-6
|
[44] |
Das A, Chakrabarti B K. 2008. Colloquium: Quantum annealing and analog quantum computation. Rev. Mod. Phys., 80: 1061-1081. doi: 10.1103/RevModPhys.80.1061
|
[45] |
Deutsch D. 1985. Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 400: 97-117.
|
[46] |
Esmaeilifar E, Ahn D, Myong R S. 2024. Quantum algorithm for nonlinear Burgers’ equation for high-speed compressible flows. Phys. Fluids, 36: 106110. doi: 10.1063/5.0231994
|
[47] |
Ferreira G J, Loss D. 2013. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett., 111: 106802. doi: 10.1103/PhysRevLett.111.106802
|
[48] |
Feynman R P. 1982. Simulating physics with computers. Int. J. Theor. Phys., 21: 467-488. doi: 10.1007/BF02650179
|
[49] |
Feynman R, Leighton R, Sands M. 2015. The Feynman lectures on physics, Vol. II: The new millennium edition: Mainly electromagnetism and matter. Basic Books.
|
[50] |
Frisch U, Hasslacher B, Pomeau Y. 1986. Lattice-gas automata for the Navier−Stokes equation. Phys. Rev. Lett., 56: 1505-1508. doi: 10.1103/PhysRevLett.56.1505
|
[51] |
Fukagata K. 2022. Towards quantum computing of turbulence. Nat. Comput. Sci., 2: 68-69. doi: 10.1038/s43588-022-00189-1
|
[52] |
Georgescu I M, Ashhab S, Nori F. 2014. Quantum simulation. Rev. Mod. Phys., 86: 153-185. doi: 10.1103/RevModPhys.86.153
|
[53] |
Gilyén A, Su Y, Low G H, Wiebe N. 2019. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 193–204.
|
[54] |
Giovannetti V, Lloyd S, Maccone L. 2008. Quantum random access memory. Phys. Rev. Lett., 100: 160501. doi: 10.1103/PhysRevLett.100.160501
|
[55] |
Gourianov N, Lubasch M, Dolgov S, van den Berg Q Y, Babaee H, Givi P, Kiffner M, Jaksch D. 2022. A quantum-inspired approach to exploit turbulence structures. Nat. Comput. Sci., 2: 30-37. doi: 10.1038/s43588-021-00181-1
|
[56] |
Grant E, Wossnig L, Ostaszewski M, Benedetti M. 2019. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum, 3: 214. doi: 10.22331/q-2019-12-09-214
|
[57] |
Großardt A. 2024. Nonlinear-ancilla aided quantum algorithm for nonlinear Schrödinger equations. arXiv: 2403.10102.
|
[58] |
Grover L K. 1996. A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on Theory of Computing. 212–219.
|
[59] |
Gupta S, Zia R. 2001. Quantum neural networks. J. Comput. System Sci., 63: 355-383. doi: 10.1006/jcss.2001.1769
|
[60] |
Han Z, Yang Y. 2025. Quantum-enriched large-eddy simulation with the incompressible Schrödinger flow. Acta Sin. Mech., 41: 324054. doi: 10.1007/s10409-024-24054-x
|
[61] |
Hangleiter D, Eisert J. 2023. Computational advantage of quantum random sampling. Rev. Mod. Phys., 95: 035001. doi: 10.1103/RevModPhys.95.035001
|
[62] |
Harrow A W, Hassidim A, Lloyd S. 2009. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103: 150502. doi: 10.1103/PhysRevLett.103.150502
|
[63] |
Hibat-Allah M, Mauri M, Carrasquilla J, Perdomo-Ortiz A. 2024. A framework for demonstrating practical quantum advantage: Comparing quantum against classical generative models. Commun. Phys., 7: 68. doi: 10.1038/s42005-024-01552-6
|
[64] |
Hu J, Jin S, Liu N, Zhang L. 2024. Quantum circuits for partial differential equations via Schrödingerisation. arXiv: 2403.10032.
|
[65] |
Ishida S, Wojtan C, Chern A. 2022. Hidden degrees of freedom in implicit vortex filaments. ACM Trans. Graph., 41: 241.
|
[66] |
Itani W, Sreenivasan K R, Succi S. 2024. Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term. Phys. Fluids, 36: 017112. doi: 10.1063/5.0176569
|
[67] |
Itani W, Succi S. 2022. Analysis of carleman linearization of lattice Boltzmann. Fluids, 7: 24. doi: 10.3390/fluids7010024
|
[68] |
Jain N, Landman J, Mathur N, Kerenidis I. 2024. Quantum fourier networks for solving parametric PDEs. Quantum Sci. Technol., 9: 35026. doi: 10.1088/2058-9565/ad42ce
|
[69] |
Jaksch D, Givi P, Daley A J, Rung T. 2023. Variational quantum algorithms for computational fluid dynamics. AIAA J., 61: 1885-1894. doi: 10.2514/1.J062426
|
[70] |
Jin S, Liu N, Ma C. 2023a. Quantum simulation of Maxwell’s equations via Schrödingerisation. arXiv: 2308.08408.
|
[71] |
Jin S, Liu N, Yu Y. 2023b. Quantum simulation of partial differential equations: Applications and detailed analysis. Phys. Rev. A, 108: 032603. doi: 10.1103/PhysRevA.108.032603
|
[72] |
Jin S, Liu N, Yu Y. 2023c. Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations. J. Comput. Phys., 487: 112149. doi: 10.1016/j.jcp.2023.112149
|
[73] |
Jin S, Liu N, Yu Y. 2024a. Quantum simulation of partial differential equations via Schrödingerization. Phys. Rev. Lett., 133: 230602. doi: 10.1103/PhysRevLett.133.230602
|
[74] |
Jin S, Liu N, Yu Y. 2024b. Quantum simulation of the Fokker−Planck equation via Schrödingerization. arXiv: 2404.13585.
|
[75] |
Jin S, Liu N. 2024. Quantum algorithms for nonlinear partial differential equations. Bull. Sci. Math., 194: 103457. doi: 10.1016/j.bulsci.2024.103457
|
[76] |
Joseph I. 2020. Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics. Phys. Rev. Res., 2: 043102. doi: 10.1103/PhysRevResearch.2.043102
|
[77] |
Kempe J. 2003. Quantum random walks: An introductory overview. Contemp. Phys., 44: 307-327. doi: 10.1080/00107151031000110776
|
[78] |
Kim Y, Eddins A, Anand S, Wei K X, van den Berg E, Rosenblatt S, Nayfeh H, Wu Y, Zaletel M, Temme K, et al. 2023. Evidence for the utility of quantum computing before fault tolerance. Nature, 618: 500-505. doi: 10.1038/s41586-023-06096-3
|
[79] |
Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D. 2020. Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys., 11: 369-395. doi: 10.1146/annurev-conmatphys-031119-050605
|
[80] |
Kocherla S, Song Z, Chrit F E, Gard B, Dumitrescu E F, Alexeev A, Bryngelson S H. 2024. Fully quantum algorithm for mesoscale fluid simulations with application to partial differential equations. AVS Quantum Sci., 6: 033806. doi: 10.1116/5.0217675
|
[81] |
Kuang Z, Xu Y, Huang Q, Yang J, Kihal C E, Hu H. 2025. Quantum computing with error mitigation for data-driven computational homogenization. Compos. Struct., 351: 118625. doi: 10.1016/j.compstruct.2024.118625
|
[82] |
Kumar E D, Frankel S H. 2024. Decomposition of nonlinear collision operator in quantum lattice Boltzmann algorithm. arXiv: 2408.00387.
|
[83] |
Kumar E D, Frankel S H. 2025. Quantum unitary matrix representation of the lattice Boltzmann model for low Reynolds fluid flow simulation. AVS Quantum Sci., 7: 013802. doi: 10.1116/5.0245082
|
[84] |
Kuya Y, Komatsu K, Yonaga K, Kobayashi H. 2024. Quantum annealing-based algorithm for lattice gas automata. Comput. Fluids, 274: 106238. doi: 10.1016/j.compfluid.2024.106238
|
[85] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L. 2010. Quantum computers. Nature, 464: 45-53. doi: 10.1038/nature08812
|
[86] |
Lapworth L. 2022. A hybrid quantum-classical CFD methodology with benchmark HHL solutions. arXiv: 2206.00419.
|
[87] |
Leibfried D, Blatt R, Monroe C, Wineland D. 2003. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75: 281-324. doi: 10.1103/RevModPhys.75.281
|
[88] |
Lewis D, Eidenbenz S, Nadiga B, Subaşı Y. 2024. Limitations for quantum algorithms to solve turbulent and chaotic systems. Quantum, 8: 1509. doi: 10.22331/q-2024-10-24-1509
|
[89] |
Liao S. 2024. A general frame of quantum simulation for nonlinear partial differential equations. arXiv: 2406.15821.
|
[90] |
Lin L, Tong Y. 2020. Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems. Quantum, 4: 361. doi: 10.22331/q-2020-11-11-361
|
[91] |
Liu B, Zhu L, Yang Z, He G. 2023. Quantum implementation of numerical methods for convectiondiffusion equations: Toward computational fluid dynamics. Commun. Comput. Phys., 33: 425-451. doi: 10.4208/cicp.OA-2022-0081
|
[92] |
Liu H Y, Lin X, Chen Z Y, Xue C, Sun T P, Li Q S, Zhuang X N, Wang Y J, Wu Y C, Gong M, et al. 2024. Simulation of open quantum systems on universal quantum computers. arXiv: 2405.20712.
|
[93] |
Liu J P, Kolden H O, Krovi H K, Loureiro N F, Trivisa K, Childs A M. 2021. Effcient quantum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci. U.S.A., 118: e2026805118. doi: 10.1073/pnas.2026805118
|
[94] |
Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, Fan D. 2017. Generation of perfect vortex and vector beams based on Pancharatnam−Berry phase elements. Sci. Rep., 7: 44096. doi: 10.1038/srep44096
|
[95] |
Lloyd S, Palma G D, Gokler C, Kiani B, Liu Z W, Marvian M, Tennie F, Palmer T. 2020. Quantum algorithm for nonlinear differential equations. arXiv: 2011.06571.
|
[96] |
Loss D, DiVincenzo D P. 1998. Quantum computation with quantum dots. Phys. Rev. A, 57: 120-126. doi: 10.1103/PhysRevA.57.120
|
[97] |
Louie S G, Chan Y H, da Jornada F H, Li Z, Qiu D Y. 2021. Discovering and understanding materials through computation. Nat. Mater., 20: 728-735. doi: 10.1038/s41563-021-01015-1
|
[98] |
Low G H, Chuang I L. 2017. Optimal hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 118: 010501. doi: 10.1103/PhysRevLett.118.010501
|
[99] |
Low G H, Chuang I L. 2019. Hamiltonian simulation by qubitization. Quantum, 3: 163. doi: 10.22331/q-2019-07-12-163
|
[100] |
Lu Z, Yang Y. 2024. Quantum computing of reacting flows via Hamiltonian simulation. Proc. Combust. Inst., 40: 105440. doi: 10.1016/j.proci.2024.105440
|
[101] |
Lubasch M, Joo J, Moinier P, Kiffner M, Jaksch D. 2020. Variational quantum algorithms for nonlinear problems. Phys. Rev. A, 101: 010301. doi: 10.1103/PhysRevA.101.010301
|
[102] |
Markidis S. 2022. On physics-informed neural networks for quantum computers. Front. Appl. Math. Stat., 8: 1036711. doi: 10.3389/fams.2022.1036711
|
[103] |
McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C, Yuan X. 2020. Quantum computational chemistry. Rev. Mod. Phys., 92: 015003. doi: 10.1103/RevModPhys.92.015003
|
[104] |
Meng Z, Song C, Yang Y. 2025. Challenges of simulating fluid flows on near-term quantum computer. Sci. China-Phys. Mech. Astron. (in press
|
[105] |
Meng Z, Yang Y. 2023. Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation. Phys. Rev. Res., 5: 033182. doi: 10.1103/PhysRevResearch.5.033182
|
[106] |
Meng Z, Yang Y. 2024a. Lagrangian dynamics and regularity of the spin Euler equation. J. Fluid Mech., 985: A34. doi: 10.1017/jfm.2024.319
|
[107] |
Meng Z, Yang Y. 2024b. Quantum spin representation for the Navier−Stokes equation. Phys. Rev. Res., 6: 043130. doi: 10.1103/PhysRevResearch.6.043130
|
[108] |
Meng Z, Zhong J, Xu S, Wang K, Chen J, Jin F, Zhu X, Gao Y, Wu Y, Zhang C, et al. 2024. Simulating unsteady flows on a superconducting quantum processor. Commun. Phys., 7: 349. doi: 10.1038/s42005-024-01845-w
|
[109] |
Mujal P, Martínez-Peña R, Nokkala J, García-Beni J, Giorgi G L, Soriano M C, Zambrini R. 2021. Opportunities in quantum reservoir computing and extreme learning machines. Adv. Quantum Technol., 4: 2100027. doi: 10.1002/qute.202100027
|
[110] |
Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S. 2008. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys., 80: 1083-1159. doi: 10.1103/RevModPhys.80.1083
|
[111] |
Nemkov N A, Kiktenko E O, Luchnikov I A, Fedorov A K. 2023. Effcient variational synthesis of quantum circuits with coherent multi-start optimization. Quantum, 7: 993. doi: 10.22331/q-2023-05-04-993
|
[112] |
Novikau I, Joseph I. 2025. Quantum algorithm for the advection-diffusion equation and the Koopmanvon Neumann approach to nonlinear dynamical systems. Comput. Phys. Commun., 309: 109498. doi: 10.1016/j.cpc.2025.109498
|
[113] |
Over P, Bengoechea S, Brearley P, Laizet S, Rung T. 2024. Quantum algorithm for the advectiondiffusion equation with optimal success probability. arXiv: 2410.07909.
|
[114] |
Peddinti R D, Pisoni S, Marini A, Lott P, Argentieri H, Tiunov E, Aolita L. 2024. Quantum-inspired framework for computational fluid dynamics. Commun. Phys., 7: 135. doi: 10.1038/s42005-024-01623-8
|
[115] |
Pfeffer P, Heyder F, Schumacher J. 2022. Hybrid quantum-classical reservoir computing of thermal convection flow. Phys. Rev. Res., 4: 033176. doi: 10.1103/PhysRevResearch.4.033176
|
[116] |
Pfeffer P, Heyder F, Schumacher J. 2023. Reduced-order modeling of two-dimensional turbulent Rayleigh-Bénard flow by hybrid quantum-classical reservoir computing. Phys. Rev. Res., 5: 043242. doi: 10.1103/PhysRevResearch.5.043242
|
[117] |
Pope S B. 2011. Simple models of turbulent flows. Phys. Fluids, 23: 011301. doi: 10.1063/1.3531744
|
[118] |
Prawer S, Greentree A D. 2008. Diamond for quantum computing. Science, 320: 1601-1602. doi: 10.1126/science.1158340
|
[119] |
Rodríguez J D D, Pérez A P, Fernández E I, Valera A J J. 2024. A quantum annealing approach to fluid dynamics problems solving Navier−Stokes equations. 9th International Conference on Smart and Sustainable Technologies (SpliTech).
|
[120] |
Saffman M, Walker T G, Mølmer K. 2010. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82: 2313-2363. doi: 10.1103/RevModPhys.82.2313
|
[121] |
Sajjan M, Li J, Selvarajan R, Sureshbabu S H, Kale S S, Gupta R, Singh V, Kais S. 2022. Quantum machine learning for chemistry and physics. Chem. Soc. Rev., 51: 6475-6573. doi: 10.1039/D2CS00203E
|
[122] |
Salasnich L, Succi S, Tiribocchi A. 2024. Quantum wave representation of dissipative fluids. Int. J. Mod. Phys. C, 35: 2450100. doi: 10.1142/S0129183124501006
|
[123] |
Sanavio C, Mauri E, Succi S. 2024a. Explicit quantum circuit for simulating the advection-diffusionreaction dynamics. arXiv: 2410.05876.
|
[124] |
Sanavio C, Scatamacchia R, de Falco C, Succi S. 2024b. Three Carleman routes to the quantum simulation of classical fluids. Phys. Fluids, 36: 057143. doi: 10.1063/5.0204955
|
[125] |
Santagati R, Aspuru-Guzik A, Babbush R, Degroote M, González L, Kyoseva E, Moll N, Oppel M, Parrish R M, Rubin N C, et al. 2024. Drug design on quantum computers. Nat. Phys., 20: 549-557. doi: 10.1038/s41567-024-02411-5
|
[126] |
Sato Y, Kondo R, Hamamura I, Onodera T, Yamamoto N. 2024. Hamiltonian simulation for hyperbolic partial differential equations by scalable quantum circuits. Phys. Rev. Res., 6: 033246. doi: 10.1103/PhysRevResearch.6.033246
|
[127] |
Schlimgen A W, Head-Marsden K, Sager L M, Narang P, Mazziotti D A. 2021. Quantum simulation of open quantum systems using a unitary decomposition of operators. Phys. Rev. Lett., 127: 270503. doi: 10.1103/PhysRevLett.127.270503
|
[128] |
Schmid P J. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech., 656: 5-28. doi: 10.1017/S0022112010001217
|
[129] |
Shao C. 2018. Quantum algorithms to matrix multiplication. arXiv: 1803.01601.
|
[130] |
Shao H J, Wang Y X, Zhu D Z, Zhu Y S, Sun H N, Chen S Y, Zhang C, Fan Z J, Deng Y, Yao X C, et al. 2024. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature, 632: 267-272. doi: 10.1038/s41586-024-07689-2
|
[131] |
Shor P W. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. 124–134.
|
[132] |
Shor P W. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26: 1484. doi: 10.1137/S0097539795293172
|
[133] |
Singh H, McCulloch E, Gopalakrishnan S, Vasseur R. 2024. Emergence of Navier−Stokes hydrodynamics in chaotic quantum circuits. arXiv: 2405.13892.
|
[134] |
Song Z, Deaton R, Gard B, Bryngelson S H. 2025. Incompressible Navier−Stokes solve on noisy quantum hardware via a hybrid quantum-classical scheme. Comput. Fluids, 288: 106507. doi: 10.1016/j.compfluid.2024.106507
|
[135] |
Steijl R, Barakos G N. 2018. Parallel evaluation of quantum algorithms for computational fluid dynamics. Comput. Fluids, 173: 22-28. doi: 10.1016/j.compfluid.2018.03.080
|
[136] |
Su H, Xiong S, Yang Y. 2024. Quantum state preparation for a velocity field based on the spherical Clebsch wave function. arXiv: 2406.04652.
|
[137] |
Subaşı Y, Somma R D, Orsucci D. 2019. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Phys. Rev. Lett., 122: 060504. doi: 10.1103/PhysRevLett.122.060504
|
[138] |
Succi S, Itani W, Sanavio C, Sreenivasan K R, Steijl R. 2024. Ensemble fluid simulations on quantum computers. Comput. Fluids, 270: 106148. doi: 10.1016/j.compfluid.2023.106148
|
[139] |
Succi S, Itani W, Sreenivasan K, Steijl R. 2023. Quantum computing for fluids: Where do we stand? Europhys. Lett., 144: 10001.
|
[140] |
Tennie F, Laizet S, Lloyd S, Magri L. 2025. Quantum computing for nonlinear differential equations and turbulence. Nat. Rev. Phys., arXiv: 2406.04826.
|
[141] |
Tennie F, Magri L. 2024. Solving nonlinear differential equations on quantum computers: A FokkerPlanck approach. arXiv: 2401.13500.
|
[142] |
Terhal B M. 2015. Quantum error correction for quantum memories. Rev. Mod. Phys., 87: 307-346. doi: 10.1103/RevModPhys.87.307
|
[143] |
Thouless D J, Ao P, Niu Q. 1993. Vortex dynamics in superfluids and the Berry phase. Physica A: Stat. Mech. Appl., 200: 42-49. doi: 10.1016/0378-4371(93)90503-V
|
[144] |
Tilly J, Chen H, Cao S, Picozzi D, Setia K, Li Y, Grant E, Wossnig L, Rungger I, Booth G H, et al. 2022. The variational quantum eigensolver: A review of methods and best practices. Phys. Rep., 986: 1-128. doi: 10.1016/j.physrep.2022.08.003
|
[145] |
Tsemo P B, Jayashankar A, Sugisaki K, Baskaran N, Chakraborty S, Prasannaa V S. 2024. Enhancing the Harrow-Hassidim-Lloyd (HHL) algorithm in systems with large condition numbers. arXiv: 2407.21641.
|
[146] |
Vandersypen L M K, Chuang I L. 2005. NMR techniques for quantum control and computation. Rev. Mod. Phys., 76: 1037-1069. doi: 10.1103/RevModPhys.76.1037
|
[147] |
Wang B, Meng Z, Zhao Y, Yang Y. 2025. Quantum lattice Boltzmann method for simulating nonlinear fluid dynamics. arXiv: 2502.16568.
|
[148] |
Wawrzyniak D, Winter J, Schmidt S, Indinger T, Janßen C F, Schramm U, Adams N A. 2025. A quantum algorithm for the lattice-Boltzmann method advection-diffusion equation. Comput. Phys. Commun., 306: 109373. doi: 10.1016/j.cpc.2024.109373
|
[149] |
Weißmann S, Pinkall U, Schröder P. 2014. Smoke rings from smoke. ACM Trans. Graph., 33: 4.
|
[150] |
Williams C A, Gentile A A, Elfving V E, Berger D, Kyriienko O. 2024. Quantum iterative methods for solving differential equations with application to computational fluid dynamics. arXiv: 2404.08605.
|
[151] |
Wootters W K, Zurek W H. 1982. A single quantum cannot be cloned. Nature, 299: 802-803. doi: 10.1038/299802a0
|
[152] |
Wright L, Keever C M, First J T, Johnston R, Tillay J, Chaney S, Rosenkranz M, Lubasch M. 2024. Noisy intermediate-scale quantum simulation of the one-dimensional wave equation. arXiv: 2402.19247.
|
[153] |
Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, et al. 2021. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 127: 180501. doi: 10.1103/PhysRevLett.127.180501
|
[154] |
Xiao P, Zheng M, Jiao A, Yang X, Lu L. 2024a. Quantum DeepONet: Neural operators accelerated by quantum computing. arXiv: 2409.15683.
|
[155] |
Xiao Y, Yang L M, Shu C, Chew S C, Khoo B C, Cui Y D, Liu Y Y. 2024b. Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations. Phys. Fluids, 36 .
|
[156] |
Xiong S, Tong Y, He X, Yang S, Yang C, Zhu B. 2021. Nonseparable symplectic neural networks. International Conference on Learning Representations. arXiv: 2010.12636.
|
[157] |
Xu X, Sun J, Endo S, Li Y, Benjamin S C, Yuan X. 2021. Variational algorithms for linear algebra. Sci. Bull., 66: 2181-2188. doi: 10.1016/j.scib.2021.06.023
|
[158] |
Xu Y, Yang J, Kuang Z, Huang Q, Huang W, Hu H. 2024. Quantum computing enhanced distanceminimizing data-driven computational mechanics. Comput. Meth. Appl. Mech. Eng., 419: 116675. doi: 10.1016/j.cma.2023.116675
|
[159] |
Yadav S. 2023. Qpde: Quantum neural network based stabilization parameter prediction for numerical solvers for partial differential equations. AppliedMath, 3: 552-562. doi: 10.3390/appliedmath3030029
|
[160] |
Ye C C, An N B, Ma T Y, Dou M H, Bai W, Sun D J, Chen Z Y, Guo G P. 2024. A hybrid quantum-classical framework for computational fluid dynamics. Phys. Fluids, 36: 127111. doi: 10.1063/5.0238193
|
[161] |
Yuan X, Chen Z, Liu Y, Xie Z, Liu Y, Jin X, Wen X, Tang H. 2023. Quantum support vector machines for aerodynamic classification. Int. Comput., 2: 0057. doi: 10.34133/icomputing.0057
|
[162] |
Zamora A D B, Budinski L, Niemimäki O, Lahtinen V. 2025. Effcient quantum lattice gas automata. Comput. Fluids, 286: 106476. doi: 10.1016/j.compfluid.2024.106476
|
[163] |
Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H, et al. 2021. Phase-programmable Gaussian Boson sampling using stimulated squeezed light. Phys. Rev. Lett., 127: 180502. doi: 10.1103/PhysRevLett.127.180502
|
[164] |
Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, et al. 2020. Quantum computational advantage using photons. Science, 370: 1460-1463. doi: 10.1126/science.abe8770
|
[165] |
Zylberman J, Di Molfetta G, Brachet M, Loureiro N F, Debbasch F. 2022. Quantum simulations of hydrodynamics via the Madelung transformation. Phys. Rev. A, 106: 032408. doi: 10.1103/PhysRevA.106.032408
|