Citation: | Gan L, Wu H, Zhong Z. Advances in data-driven models for fatigue life prediction of metallic materials. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-025 |
[1] |
董照钦, 段作祥, 何晋瑞. 1985. 应变能-频率分离法及其应用. 航空学报, 5: 461-466 (Dong Z, Duan Z, He J. 1985. A STRAIN ENERGY FREQUENCU SEPERATION METHOD AND ITS APPLICATION. Acta Aeronautica Et Astronautica Sinica, 5: 461-466).
Dong Z, Duan Z, He J. 1985. A STRAIN ENERGY FREQUENCU SEPERATION METHOD AND ITS APPLICATION. Acta Aeronautica Et Astronautica Sinica, 5: 461-466.
|
[2] |
董志波, 王程程, 李承昆, 等. 2024. 复杂载荷、极端环境下焊接结构疲劳寿命预测研究综述. 中国机械工程, 35(5): 829-839 (Dong Z, Wang C, Li C, et al. 2024. Review for Research of Fatigue Life Prediction of Welded Structures under Complex Loads and Extreme ENVIRONMENTS. Journal of Mechanical Engineering, 35(5): 829-839). doi: 10.3969/j.issn.1004-132X.2024.05.008
Dong Z, Wang C, Li C, et al. 2024. Review for Research of Fatigue Life Prediction of Welded Structures under Complex Loads and Extreme ENVIRONMENTS. Journal of Mechanical Engineering, 35(5): 829-839. doi: 10.3969/j.issn.1004-132X.2024.05.008
|
[3] |
洪友士, 孙成奇, 刘小龙. 2018. 合金材料超高周疲劳的机理与模型综述. 力学进展, 48: 201801 (Hong Y, Sun C, Liu X. 2018. A review on mechanisms and models for very-high-cycle fatigue of metallic materials. Advances in Mechanics, 48: 201801).
Hong Y, Sun C, Liu X. 2018. A review on mechanisms and models for very-high-cycle fatigue of metallic materials. Advances in Mechanics, 48: 201801.
|
[4] |
胡殿印, 潘锦超, 米栋, 等. 2022. 航空发动机增材制造结构强度、寿命评估与设计: 研究现状及展望. 航空动力学报, 37(10): 2112-2126 (Hu D, Pan J, Mi D, et al. 2022. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects. Journal of Aerospace Power, 37(10): 2112-2126).
Hu D, Pan J, Mi D, et al. 2022. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects. Journal of Aerospace Power, 37(10): 2112-2126.
|
[5] |
胡绪腾, 宋迎东. 2007. 总应变-应变能区分法. 机械工程学报, 2: 219-224 (Hu X, Song Y. 2007. TOTAL STRAIN VERSION OF STRAIN ENERGY PARTITIONING. Journal of Mechanical Engineering, 2: 219-224).
Hu X, Song Y. 2007. TOTAL STRAIN VERSION OF STRAIN ENERGY PARTITIONING. Journal of Mechanical Engineering, 2: 219-224.
|
[6] |
李航. 2019. 统计学习方法. 北京: 清华大学出版社. (Li H. 2019, Statistical learning methods, Beijing: Tsinghua University Press).
Li H. 2019, Statistical learning methods, Beijing: Tsinghua University Press.
|
[7] |
郦明, 奥脱·布克斯鲍姆, 哈茨·罗华克. 1987. 结构抗疲劳设计. 北京: 机械工业出版社. (Li M, Buxbaum O, Lowack H. 1987. Structural fatigue resistance design. Beijing: China Machine Press).
Li M, Buxbaum O, Lowack H. 1987. Structural fatigue resistance design. Beijing: China Machine Press
|
[8] |
廉艳平, 王潘丁, 高杰, 等. 2021. 金属增材制造若干关键力学问题研究进展. 力学进展, 51(03): 648-701 (Lian Y, Wang P, Gao J, et al. 2021. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review. Advances in Mechanics, 51(03): 648-701).
Lian Y, Wang P, Gao J, et al. 2021. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review. Advances in Mechanics, 51(03): 648-701.
|
[9] |
廖贞, 杨冰, 秦亚航, 等. 2018. 基于遗传小波神经网络的疲劳短裂纹演变规律研究. 铁道学报, 40(5): 66-72 (Liao Z, Yang B, Qin Y, et al. 2018. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network. Journal of the China Railway Society, 40(5): 66-72).
Liao Z, Yang B, Qin Y, et al. 2018. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network. Journal of the China Railway Society, 40(5): 66-72.
|
[10] |
刘斌超, 鲁嵩嵩, 曾苇鹏, 等. 2023. 从金属材料疲劳性能的力学描述到飞机结构疲劳寿命评定: 现状与展望. 固体力学学报, 4: 417-457 (Liu B, Lu S, Zheng W, et al. 2023. From Mechanical Description for Metal Fatigue Properties to Service Life Evaluation of Aircraft Structural Components: Status and Challenges. Chinese Journal of Solid Mechanics, 4: 417-457).
Liu B, Lu S, Zheng W, et al. 2023. From Mechanical Description for Metal Fatigue Properties to Service Life Evaluation of Aircraft Structural Components: Status and Challenges. Chinese Journal of Solid Mechanics, 4: 417-457.
|
[11] |
刘源, 魏世忠. 2022. 数据驱动的钢铁耐磨材料性能预测研究综述. 机械工程学报, 58(10): 31-50 (Liu Y, Wei S. 2022. Review on Data-driven Method for Property Prediction of Iron and Steel Wear-resistant Materials. Journal of Mechanical Engineering, 58(10): 31-50). doi: 10.3901/JME.2022.10.031
Liu Y, Wei S. 2022. Review on Data-driven Method for Property Prediction of Iron and Steel Wear-resistant Materials. Journal of Mechanical Engineering, 58(10): 31-50. doi: 10.3901/JME.2022.10.031
|
[12] |
秦建兵. 2019. 金属材料疲劳短裂纹扩展研究综述. 航空工程进展, 10(2): 247-254,269 (Qin J. 2019. A Review of Studies on Short Fatigue Crack propagation in Metallic Materials. Advances in Aeronautical Science and Engineering, 10(2): 247-254,269).
Qin J. 2019. A Review of Studies on Short Fatigue Crack propagation in Metallic Materials. Advances in Aeronautical Science and Engineering, 10(2): 247-254,269.
|
[13] |
施惠基, 马显锋, 于涛. 2010. 高温结构材料的蠕变和疲劳研究的一些新进展. 固体力学学报, 31(06): 696-715 (Shi H, Ma X, Yu T. 2010. SOME NEW PROGRESSES ON THE RESEARCH OF CREEP AND FATIGUE BEHAVIORS OF HIGH TEMPERATURE STRUCTURAL MATERIALS. Chinese Journal of Solid Mechanics, 31(06): 696-715).
Shi H, Ma X, Yu T. 2010. SOME NEW PROGRESSES ON THE RESEARCH OF CREEP AND FATIGUE BEHAVIORS OF HIGH TEMPERATURE STRUCTURAL MATERIALS. Chinese Journal of Solid Mechanics, 31(06): 696-715.
|
[14] |
王润梓. 2019. 基于能量密度耗散准则的蠕变—疲劳寿命预测模型及应用. 华东理工大学. (Wang R-Z. 2019. A Creep-Fatigue Life Prediction Model Based on Strain Energy Density Exhaustion Criterion and Its Application on Aero-Engine Turbine. East China University Of Science and Technology).
Wang R-Z. 2019. A Creep-Fatigue Life Prediction Model Based on Strain Energy Density Exhaustion Criterion and Its Application on Aero-Engine Turbine. East China University Of Science and Technology.
|
[15] |
王润梓, 廖鼎, 张显程, 等. 2021. 高温结构蠕变疲劳寿命设计方法: 从材料到结构. 机械工程学报, 57(16): 66-86 (Wang R-Z, Liao D, Zhang X-C, et al. 2021. Creep-fatigue Life Design Methods in High-temperature Structures: From Materials to Components. Journal of Mechanical Engineering, 57(16): 66-86). doi: 10.3901/JME.2021.16.066
Wang R-Z, Liao D, Zhang X-C, et al. 2021. Creep-fatigue Life Design Methods in High-temperature Structures: From Materials to Components. Journal of Mechanical Engineering, 57(16): 66-86. doi: 10.3901/JME.2021.16.066
|
[16] |
吴富民. 1985. 结构疲劳强度. 西安: 西北工业大学出版社. (WU F. 1985. Fatigue strength of structure. Xi 'an: Northwestern Polytechnical University Press).
WU F. 1985. Fatigue strength of structure. Xi 'an: Northwestern Polytechnical University Press.
|
[17] |
吴昊, 仲政. 2016. 金属材料多轴非比例低周疲劳寿命预测概述. 力学季刊, 32(2): 201-213 (Wu H, Zhong Z. 2016. Low Cycle Fatigue Life Prediction of Metallic Materials Under Multi-Axial Nonproportional Loading: An Overview. Chinese Quarterly of Mechanic, 32(2): 201-213).
Wu H, Zhong Z. 2016. Low Cycle Fatigue Life Prediction of Metallic Materials Under Multi-Axial Nonproportional Loading: An Overview. Chinese Quarterly of Mechanic, 32(2): 201-213.
|
[18] |
吴圣川, 李存海, 张文, 等. 2019. 金属材料疲劳裂纹扩展机制及模型的研究进展. 固体力学学报, 40(6): 489-538 (Wu S, Li C, Zhang W, et al. 2019. Recent Progress on Mechanisms and Models of Fatigue Crack Growth for Metallic Materials. Chinese Journal of Solid Mechanics, 40(6): 489-538).
Wu S, Li C, Zhang W, et al. 2019. Recent Progress on Mechanisms and Models of Fatigue Crack Growth for Metallic Materials. Chinese Journal of Solid Mechanics, 40(6): 489-538.
|
[19] |
许金泉. 2017. 疲劳力学. 北京: 科学出版社. (Xu J. 2017. Mechanics of Fatigue. Beijing: Science Press).
Xu J. 2017. Mechanics of Fatigue. Beijing: Science Press.
|
[20] |
轩福贞, 朱明亮, 王国彪, 等. 2021. 结构疲劳百年研究的回顾与展望. 机械工程学报, 57(6): 26-51 (Xuan F-Z, Zhu M, Wang G, et al. 2021. Retrospect and Prospect on Century-long Research of Structural Fatigue. Journal of Mechanical Engineering, 57(6): 26-51). doi: 10.3901/JME.2021.06.026
Xuan F-Z, Zhu M, Wang G, et al. 2021. Retrospect and Prospect on Century-long Research of Structural Fatigue. Journal of Mechanical Engineering, 57(6): 26-51. doi: 10.3901/JME.2021.06.026
|
[21] |
杨强, 孟松鹤, 仲政, 等. 2020. 力学研究中“大数据”的启示、应用与挑战. 力学进展, 50: 406-449 (Yang Q, Meng S, Zhong Z, et al. 2020. Big Data in mechanical research: Potentials, applications and challenges. Advances in Mechanics, 50: 406-449).
Yang Q, Meng S, Zhong Z, et al. 2020. Big Data in mechanical research: Potentials, applications and challenges. Advances in Mechanics, 50: 406-449.
|
[22] |
杨旭锋, 刘泽清, 张懿. 2023. 基于贝叶斯神经网络的金属材料P-S-N曲线估计. 华南理工大学学报(自然科学版), 51(11): 82-92 (Yang X, Liu Z, Zhang Y. 2023. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network. Journal of South China University of Technology (Natural Science Edition), 51(11): 82-92).
Yang X, Liu Z, Zhang Y. 2023. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network. Journal of South China University of Technology (Natural Science Edition), 51(11): 82-92.
|
[23] |
杨晓光, 谭龙, 郝文琦, 等. 2023. 数据驱动的高温结构强度与寿命评估: 进展与挑战. 推进技术, 44(05): 8-25 (Yang X, Tan L, Hao W, et al. 2023. Data-Driven Structural Strength and Life Assessment of High Temperature Structure: Progresses and Challenges. Journal of Propulsion Technology, 44(05): 8-25).
Yang X, Tan L, Hao W, et al. 2023. Data-Driven Structural Strength and Life Assessment of High Temperature Structure: Progresses and Challenges. Journal of Propulsion Technology, 44(05): 8-25.
|
[24] |
Zhang T. 2022. An Introduction to Materials Informatics(I), Beijing: Science Press.
Zhang T. 2022. An Introduction to Materials Informatics(I), Beijing: Science Press.
|
[25] |
张伟伟, 王旭, 寇家庆. 2023. 面向流体力学的多范式融合研究展望. 力学进展, 53(2): 433-467 (Zhang W, Wang X, Kou J. 2023. Prospects of multi-paradigm fusion methods for fluid mechanics research. Advances in Mechanics, 53(2): 433-467).
Zhang W, Wang X, Kou J. 2023. Prospects of multi-paradigm fusion methods for fluid mechanics research. Advances in Mechanics, 53(2): 433-467.
|
[26] |
赵少汴. 2000. 常用累积损伤理论疲劳寿命估算精度的试验研究. 机械强度, 22(3): 206-209 (Zhao S. 2000. STUDY ON THE ACCURACY OF FATIGUE LIFE PREDICTIONS BY THE GENERALLY USED DAMAGE ACCUMLATION THROYR. Journal of Mechanical Strength, 22(3): 206-209).
Zhao S. 2000. STUDY ON THE ACCURACY OF FATIGUE LIFE PREDICTIONS BY THE GENERALLY USED DAMAGE ACCUMLATION THROYR. Journal of Mechanical Strength, 22(3): 206-209.
|
[27] |
郑修麟, 王泓, 鄢君辉, 等. 2013. 材料疲劳理论与工程应用. 北京: 科学出版社. (Zhen X, Wang H, Yan J, et al. 2013. Theory of Material Fatigue and Engineering Application. Beijing: Science Press).
Zhen X, Wang H, Yan J, et al. 2013. Theory of Material Fatigue and Engineering Application. Beijing: Science Press.
|
[28] |
朱顺鹏. 2011. 高温复杂结构的混合概率故障物理建模与疲劳寿命预测. 电子科技大学. (Zhu S-P. 2011. Research on Hybrid Probabilistic Physics of Failure Modeling and Fatigue Life Estimation of High-Temperature Structures. University of Electronic Science and Technology of China).
Zhu S-P. 2011. Research on Hybrid Probabilistic Physics of Failure Modeling and Fatigue Life Estimation of High-Temperature Structures. University of Electronic Science and Technology of China.
|
[29] |
Acharya R, Caputo A N, Neu R W. 2023. Predicting creep‐fatigue and thermomechanical fatigue life of Ni‐base superalloys using a probabilistic physics‐guided neural network. Fatigue & Fracture of Engineering Materials & Structures, 46(4): 1554-1571.
|
[30] |
Antunes F V, Ferreira M S C, Branco R, et al. 2019. Fatigue crack growth versus plastic CTOD in the 304L stainless steel. Engineering Fracture Mechanics, 214: 487-503. doi: 10.1016/j.engfracmech.2019.04.013
|
[31] |
Aoyagi K, Wang H, Sudo H, et al. 2019. Simple method to construct process maps for additive manufacturing using a support vector machine. Additive Manufacturing, 27: 353-362. doi: 10.1016/j.addma.2019.03.013
|
[32] |
Artymiak P, Bukowski L, Feliks J, et al. 1999. Determination of S-N curves with the application of artificial neural networks. Fatigue & Fracture of Engineering Materials & Structures, 22(8): 723-728.
|
[33] |
Awd M, Awd M, Münstermann S, Walther F. 2022. Effect of microstructural heterogeneity on fatigue strength predicted by reinforcement machine learning. Fatigue & Fracture of Engineering Materials & Structures, 45(11): 3267-3287.
|
[34] |
Bao H, Wu S, Wu Z, et al. 2021. A machine-learning fatigue life prediction approach of additively manufactured metals. Engineering Fracture Mechanics, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508
|
[35] |
Barat K, Sivaprasad S, Kar S K, et al. 2020. A novel rate-based methodology for creep fatigue life estimation of superalloys. International Journal of Pressure Vessels and Piping, 182: 104064. doi: 10.1016/j.ijpvp.2020.104064
|
[36] |
Bartošák M. 2022. Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading. International Journal of Fatigue, 163: 107067. doi: 10.1016/j.ijfatigue.2022.107067
|
[37] |
Bergstra J, Bardenet R, Bengio Y, et al. 2011. Algorithms for Hyper-Parameter Optimization. Advances in Neural Information Processing Systems, 24: 2546-2554.
|
[38] |
Borodii M V, Strizhalo V A. 2000. Analysis of the experimental data on a low cycle fatigue under nonproportional straining. International Journal of Fatigue, 22: 275-282. doi: 10.1016/S0142-1123(00)00005-0
|
[39] |
Braun M, Kellner L. 2022. Comparison of machine learning and stress concentration factors‐based fatigue failure prediction in small‐scale butt‐welded joints. Fatigue & Fracture of Engineering Materials & Structures, 45(11): 3403-3417.
|
[40] |
Brito Oliveira G A, Freire Júnior R C S, Conte Mendes Veloso L A, et al. 2022. A hybrid ANN-multiaxial fatigue nonlocal model to estimate fretting fatigue life for aeronautical Al alloys. International Journal of Fatigue, 162: 107011. doi: 10.1016/j.ijfatigue.2022.107011
|
[41] |
Bucar T, Nagode M, Fajdiga M. 2006. A neural network approach to describing the scatter of S–N curves. International Journal of Fatigue, 28(4): 311-323. doi: 10.1016/j.ijfatigue.2005.08.002
|
[42] |
Chaboche J L, Lesne P M. 1988. A non-linear continuous fatigue damage model. Fatigue & Fracture of Engineering Materials & Structures, 11(1): 1-17.
|
[43] |
Chen D, Li Y, Liu K, et al. 2023. A physics-informed neural network approach to fatigue life prediction using small quantity of samples. International Journal of Fatigue, 166: 107270. doi: 10.1016/j.ijfatigue.2022.107270
|
[44] |
Chen J, Liu Y. 2021. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning. Additive Manufacturing, 39: 101876. doi: 10.1016/j.addma.2021.101876
|
[45] |
Chen J, Liu Y. 2022. Fatigue modeling using neural networks: A comprehensive review. Fatigue & Fracture of Engineering Materials & Structures, 45(4): 945-979.
|
[46] |
Chen X, Song J, Kim K S. 2006. Low cycle fatigue life prediction of 63Sn–37Pb solder under proportional and non-proportional loading. International Journal of Fatigue, 28(7): 757-766. doi: 10.1016/j.ijfatigue.2005.08.006
|
[47] |
Ciampaglia A, Tridello A, Paolino D S, et al. 2023. Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts. International Journal of Fatigue, 170: 107500. doi: 10.1016/j.ijfatigue.2023.107500
|
[48] |
Conduit B D, Illston T, Baker S, et al. 2019. Probabilistic neural network identification of an alloy for direct laser deposition. Materials & Design, 168: 107644.
|
[49] |
Corten H T, Dolan T J. 1956. Cumulative fatigue damage, Proceedings of the International Conference on Fatigue of Metals. Institute of Mechanical Engineering, London: 235-246.
|
[50] |
Cui C, Chen A, Ma R. 2020. An improved continuum damage mechanics model for evaluating corrosion–fatigue life of high-strength steel wires in the real service environment. International Journal of Fatigue, 135: 105540. doi: 10.1016/j.ijfatigue.2020.105540
|
[51] |
Deng Q-Y, Zhu S-P, Niu X, et al. 2023. Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings. International Journal of Fatigue, 166: 107281. doi: 10.1016/j.ijfatigue.2022.107281
|
[52] |
Durodola J F, Li N, Ramachandra S, et al. 2017. A pattern recognition artificial neural network method for random fatigue loading life prediction. International Journal of Fatigue, 99: 55-67. doi: 10.1016/j.ijfatigue.2017.02.003
|
[53] |
El Haddad M H, Topper T H, Smith K N. 1979. Prediction of non-propagating cracks. Engineering Fracture Mechanics, 11(3): 573-584. doi: 10.1016/0013-7944(79)90081-X
|
[54] |
Elber W. 1970. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2(1): 37-45. doi: 10.1016/0013-7944(70)90028-7
|
[55] |
Ellyin F, Golos K. 1988. Multiaxial Fatigue Damage Criterion. Journal of Engineering Materials & Technology, 110(1): 63-68.
|
[56] |
Fan Y S, Yang X G, Shi D Q, et al. 2021. Quantitative Mapping of Service Process-Microstructural Degradation Property Deterioration for a Ni-Based Superalloy Based on Chord Length Distribution Imaging Process. Materials & Design, 203: 109561.
|
[57] |
Fatemi A, Socie D F. 1988. A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING. Fatigue and Fracture of Engineering Materials and Structures, 11(3): 149-165. doi: 10.1111/j.1460-2695.1988.tb01169.x
|
[58] |
Fatemi A, Yang L. 1998. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1): 9-34. doi: 10.1016/S0142-1123(97)00081-9
|
[59] |
Feng C, Su M, Xu L, et al. 2023. Estimation of fatigue life of welded structures incorporating importance analysis of influence factors: A data-driven approach. Engineering Fracture Mechanics, 281: 109103. doi: 10.1016/j.engfracmech.2023.109103
|
[60] |
Feng E, Wang X, Jiang C. 2022. Multiaxial fatigue evaluation of type 316L stainless steel based on critical plane and energy dissipation. Fatigue and Fracture of Engineering Materials and Structures, 45(12): 3486-3499. doi: 10.1111/ffe.13822
|
[61] |
Findley W N. 1959. Fatigue of metals under combinations of stresses. Journal of Engineering Materials & Technology ASME, 79: 1337-1348.
|
[62] |
Forman R G. 1972. Study of fatigue crack initiation from flaws using fracture mechanics theory. Engineering Fracture Mechanics, 4(2): 333-345. doi: 10.1016/0013-7944(72)90048-3
|
[63] |
Foti P, Razavi N, Fatemi A, et al. 2023. Multiaxial fatigue of additively manufactured metallic components: A review of the failure mechanisms and fatigue life prediction methodologies. Progress in Materials Science, 137: 101126. doi: 10.1016/j.pmatsci.2023.101126
|
[64] |
Freudenthal A M, Heller R A. 1959. On stress interaction in fatigue and a cumulative damage rule. Journal of the Aerospace Sciences, 26(7): 431-442. doi: 10.2514/8.8131
|
[65] |
Fujii H, Mackay D J C, Bhadeshia H K D H. 1996. Bayesian Neural Network Analysis of Fatigue Crack Growth Rate In Nickel Base Superalloys. ISIJ International, 36(11): 1373-1382. doi: 10.2355/isijinternational.36.1373
|
[66] |
Gan L, Wu H, Zhong Z. 2022a. Fatigue life prediction in presence of mean stresses using domain knowledge‐integrated ensemble of extreme learning machines. Fatigue & Fracture of Engineering Materials & Structures, 45(9): 2748-2766.
|
[67] |
Gan L, Wu H, Zhong Z. 2022b. Integration of symbolic regression and domain knowledge for interpretable modeling of remaining fatigue life under multistep loading. International Journal of Fatigue, 161: 106889. doi: 10.1016/j.ijfatigue.2022.106889
|
[68] |
Gan L, Wu H, Zhong Z. 2022c. On the use of data-driven machine learning for remaining life estimation of metallic materials based on Ye-Wang damage theory. International Journal of Fatigue, 156: 106666. doi: 10.1016/j.ijfatigue.2021.106666
|
[69] |
Gan L, Wu H, Zhong Z. 2023. On the integration of domain knowledge and branching neural network for fatigue life prediction with small samples. International Journal of Fatigue, 172: 107648. doi: 10.1016/j.ijfatigue.2023.107648
|
[70] |
Gan L, Zhao X, Wu H, et al. 2021. Estimation of remaining fatigue life under two-step loading based on kernel-extreme learning machine. International Journal of Fatigue, 148: 106190. doi: 10.1016/j.ijfatigue.2021.106190
|
[71] |
Garud Y S. 1981. A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings. Journal of Engineering Materials & Technology Transactions ASME, 103(2): 118-125.
|
[72] |
Genel K. 2004. Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests. International Journal of Fatigue, 26(10): 1027-1035. doi: 10.1016/j.ijfatigue.2004.03.009
|
[73] |
Gobert C, Reutzel E W, Petrich J, et al. 2018. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21: 517-528. doi: 10.1016/j.addma.2018.04.005
|
[74] |
Gong J-G, Xuan F-Z. 2017. Notch Behavior of Components Under the Stress-Controlled Creep–Fatigue Condition: Weakening or Strengthening. Journal of Pressure Vessel Technology, 139(1): 011407-011415. doi: 10.1115/1.4033731
|
[75] |
Gu H-H, Wang R-Z, Zhu S-P, et al. 2022. Machine learning assisted probabilistic creep-fatigue damage assessment. International Journal of Fatigue, 156: 106677. doi: 10.1016/j.ijfatigue.2021.106677
|
[76] |
Gu H-H, Zhang X-C, Zhang K, et al. 2024. A novel fatigue and creep-fatigue life prediction model by combining data-driven approach with domain knowledge. International Journal of Fatigue, 186: 108402. doi: 10.1016/j.ijfatigue.2024.108402
|
[77] |
Halamka J, Bartošák M, Španiel M. 2023. Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading. Engineering Fracture Mechanics, 289: 109351. doi: 10.1016/j.engfracmech.2023.109351
|
[78] |
Hales R. 1994. THE ROLE OF CAVITY GROWTH MECHANISMS IN DETERMINING CREEP-RUPTURE UNDER MULTIAXIAL STRESSES. Fatigue & Fracture of Engineering Materials & Structures, 17(5): 579-591.
|
[79] |
He G, Zhao Y, Yan C. 2022. Application of tabular data synthesis using generative adversarial networks on machine learning-based multiaxial fatigue life prediction. International Journal of Pressure Vessels and Piping, 199: 104779. doi: 10.1016/j.ijpvp.2022.104779
|
[80] |
He G, Zhao Y, Yan C. 2023. MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction. European Journal of Mechanics - A/Solids, 98: 104889. doi: 10.1016/j.euromechsol.2022.104889
|
[81] |
Himmiche S, Mortazavi S N S, Ince A. 2021. Comparative Study of Neural Network–Based Models for Fatigue Crack Growth Predictions of Short Cracks. Journal of Peridynamics and Nonlocal Modeling, 4(4): 501-526.
|
[82] |
Hobson P D. 1982. THE FORMULATION OF A CRACK GROWTH EQUATION FOR SHORT CRACKS. Fatigue & Fracture of Engineering Materials & Structures, 5: 323-327.
|
[83] |
Hou Y, Kench S, Wauters T, et al. 2024. Numerical framework for predicting fatigue scatter in additively manufactured parts. International Journal of Mechanical Sciences, 281: 109562. doi: 10.1016/j.ijmecsci.2024.109562
|
[84] |
Hu X, Chu L, Pei J, et al. 2021. Model complexity of deep learning: a survey. Knowledge and Information Systems, 63(10): 2585-2619. doi: 10.1007/s10115-021-01605-0
|
[85] |
Itoh T, Sakane M, Ohnami M. 1995. Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel. Journal of Engineering Materials and Technology, 117(3): 285-292. doi: 10.1115/1.2804541
|
[86] |
Japp S. 2014, Fatigue of Structures and Materials, Netherlands: Kluwer academic publisher.
|
[87] |
Jimenez-Martinez M, Alfaro-Ponce M. 2019. Fatigue damage effect approach by artificial neural network. International Journal of Fatigue, 124: 42-47. doi: 10.1016/j.ijfatigue.2019.02.043
|
[88] |
Jing G, Ma T, Wang Z, et al. 2024. Physical hierarchical neural network for low cycle fatigue life prediction of compacted graphite cast iron based on small data. International Journal of Fatigue, 188: 108509. doi: 10.1016/j.ijfatigue.2024.108509
|
[89] |
Kamal M, Rahman M M. 2018. Advances in fatigue life modeling: A review. Renewable and Sustainable Energy Reviews, 82: 940-949. doi: 10.1016/j.rser.2017.09.047
|
[90] |
Kanazawa K, Miller K J, Brown M W. 1979. Cyclic deformation of 1% Cr–Mo–V steel under out-of-phase loads. Fatigue of Engineering Materials and Structures, 2(2): 217-228. doi: 10.1111/j.1460-2695.1979.tb01357.x
|
[91] |
Kandil, F. A. , Brown, M. W. and Miller, K. J. (1982). "Biaxial low cycle fatigue of 316 stainless steel at elevated temperatures". Book 280, The metals Society, London, pp. 203-210.
|
[92] |
Kankanamge U M H U, Reiner J, Ma X, et al. 2022. Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys. Journal of Materials Science, 57(41): 19447-19465. doi: 10.1007/s10853-022-07793-6
|
[93] |
Karniadakis G E, Kevrekidis I G, Lu L, et al. 2021. Physics-informed machine learning. Nature Reviews Physics, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
|
[94] |
Karolczuk A, Liu Y, Kluger K, et al. 2023. Physics-constrained Gaussian process for life prediction under in-phase multiaxial cyclic loading with superposed static components. International Journal of Fatigue, 175: 107776. doi: 10.1016/j.ijfatigue.2023.107776
|
[95] |
Karpatne A, Atluri G, Faghmous J H, et al. 2017. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Transactions on Knowledge and Data Engineering, 29(10): 2318-2331. doi: 10.1109/TKDE.2017.2720168
|
[96] |
Khanzadeh M, Chowdhury S, Tschopp M A et al. 2019. In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions, 51(5): 437-455. doi: 10.1080/24725854.2017.1417656
|
[97] |
Kiran R, Khandelwal K. 2015. A micromechanical cyclic void growth model for ultra-low cycle fatigue. International Journal of Fatigue, 70: 24-37. doi: 10.1016/j.ijfatigue.2014.08.010
|
[98] |
Koza J R. 1994. Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2): 87-112.
|
[99] |
Kwofie S, Rahbar N. 2013. A fatigue driving stress approach to damage and life prediction under variable amplitude loading. International Journal of Damage Mechanics, 22(3): 393-404. doi: 10.1177/1056789512449638
|
[100] |
Lantegine J, Nguyen-Duy P. 1983. Energy balance approach to low-cycle fatigue. International Journal of Fracture, 23(4): 147-151. doi: 10.1007/BF00020703
|
[101] |
Li H, Tian Z, Zheng J, et al. 2023. A defect-based fatigue life estimation method for laser additive manufactured Ti-6Al-4V alloy at elevated temperature in very high cycle regime. International Journal of Fatigue, 167: 107375. doi: 10.1016/j.ijfatigue.2022.107375
|
[102] |
Li Z, Zhao T, Zhang J, et al. 2024. Fusing image and physical data for fatigue life prediction of nickel-based single crystal superalloys. Engineering Failure Analysis, 162: 108343. doi: 10.1016/j.engfailanal.2024.108343
|
[103] |
Liang Z, Wang X, Cui Y, et al. 2023. A new data-driven probabilistic fatigue life prediction framework informed by experiments and multiscale simulation. International Journal of Fatigue, 174: 107731. doi: 10.1016/j.ijfatigue.2023.107731
|
[104] |
Liao D, Zhu S P, Correia J A F O, et al. 2020. Recent advances on notch effects in metal fatigue: A review. Fatigue & Fracture of Engineering Materials & Structures, 43(4): 637-659.
|
[105] |
Liu S, Shi W, Zhan Z, et al. 2022a. On the development of error-trained BP-ANN technique with CDM model for the HCF life prediction of aluminum alloy. International Journal of Fatigue, 160: 106836. doi: 10.1016/j.ijfatigue.2022.106836
|
[106] |
Liu X, Hu D, Wang R, et al. 2022b. Calibration and validation of fatigue lifetime model in complex structures based on multi-level data. International Journal of Fatigue, 159: 106783. doi: 10.1016/j.ijfatigue.2022.106783
|
[107] |
Liu Y, Yuan H. 2023. A hierarchical mechanism-informed neural network approach for assessing fretting fatigue of dovetail joints. International Journal of Fatigue, 168: 107453. doi: 10.1016/j.ijfatigue.2022.107453
|
[108] |
Lotfi B, Beiss P. 2013. Application of neural networking for fatigue limit prediction of powder metallurgy steel parts. Materials & Design, 50: 440-445.
|
[109] |
Ma X, He X, Tu Z C. 2021. Prediction of fatigue–crack growth with neural network-based increment learning scheme. Engineering Fracture Mechanics, 241: 107402. doi: 10.1016/j.engfracmech.2020.107402
|
[110] |
Manson S S. 1953. Behavior of materials under conditions of thermal stress, Heat Transfer Symposium. Engineering Research Institute, University of Michigan: Ann Arbor, p. 9–15.
|
[111] |
Mao J-X, Xian Z-F, Wang X, et al. 2025. Fatigue life prediction of cold expansion hole using physics-enhanced data-driven method. International Journal of Fatigue, 190: 108634. doi: 10.1016/j.ijfatigue.2024.108634
|
[112] |
Marco S M, Starkey W L. 1954. A concept of fatigue damage. Transactions of the American Society of Mechanical Engineers, 76(4): 627-632. doi: 10.1115/1.4014922
|
[113] |
Mei J, Dong P. 2017. An equivalent stress parameter for multi-axial fatigue evaluation of welded components including non-proportional loading effects. International Journal of Fatigue, 101: 297-311. doi: 10.1016/j.ijfatigue.2017.01.006
|
[114] |
Miller K J. 1987. THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION PART II-A GENERAL SUMMARY. Fatigue & Fracture of Engineering Materials & Structures, 10(2): 93-113.
|
[115] |
Mohanty J R, Parhi D R K, Ray P K, et al. 2009. Prediction of residual fatigue life under interspersed mixed-mode (I and II) overloads by Artificial Neural Network. Fatigue & Fracture of Engineering Materials & Structures, 32(12): 1020-1031.
|
[116] |
Mortazavi S N S, Ince A. 2023. Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state –monotonic loading. International Journal of Fatigue, 167: 107311. doi: 10.1016/j.ijfatigue.2022.107311
|
[117] |
Murakami Y, Endo M. 2022. The reality of the concept of fatigue damage in multiple step amplitude loadings: Reason for unsuccessful results of existing damage counting models. International Journal of Fatigue, 154: 106529. doi: 10.1016/j.ijfatigue.2021.106529
|
[118] |
Narayanan U, Unnikrishnan A, Paul V, et al. 2017. A survey on various supervised classification algorithms. in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2118-2124.
|
[119] |
Navarro A, De Los Rios E R. 1987. A MODEL FOR SHORT FATIGUE CRACK PROPAGATION WITH AN INTERPRETATION OF THE SHORT-LONG CRACK TRANSITION. Fatigue & Fracture of Engineering Materials & Structures, 10(2): 169-186.
|
[120] |
Niu X, He C, Zhu S -P, et al. 2024. Defect sensitivity and fatigue design: Deterministic and probabilistic aspects in additively manufactured metallic materials. Progress in Materials Science, 144: 101290. doi: 10.1016/j.pmatsci.2024.101290
|
[121] |
Nowell D, Nowell S C. 2019. A comparison of recent models for fatigue crack tip deformation. Theoretical and Applied Fracture Mechanics, 103: 102299. doi: 10.1016/j.tafmec.2019.102299
|
[122] |
Ostergren W J A. 1976. Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue. Journal of Testing and Evaluation, 4(5): 327-339. doi: 10.1520/JTE10520J
|
[123] |
Pałczyński K, Skibicki D, Pejkowski Ł, et al. 2022. Application of machine learning methods in multiaxial fatigue life prediction. Fatigue & Fracture of Engineering Materials & Structures, 46(2): 416-432.
|
[124] |
Pan X, Liu J, Li Y, et al. 2024. Fatigue behavior analysis and life evaluation method of building steel under the influence of multiple factors. Engineering Fracture Mechanics, 303: 110116. doi: 10.1016/j.engfracmech.2024.110116
|
[125] |
Paris P, Erdogan F. 1963. A critical analysis of crack propagation laws. Journal of Basic Engineering, 85: 528-534. doi: 10.1115/1.3656900
|
[126] |
Pei X, Cao Y, Gu T, et al. 2024. Generalizing multiaxial vibration fatigue criteria in the frequency domain: A data-driven approach. International Journal of Fatigue, 186: 108390. doi: 10.1016/j.ijfatigue.2024.108390
|
[127] |
Peng X, Wu S C, Qian W J, et al. 2022. The potency of defects on fatigue of additively manufactured metals. International Journal of Mechanical Sciences, 221: 107185. doi: 10.1016/j.ijmecsci.2022.107185
|
[128] |
Pilania G. 2021. Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science, 193: 110360. doi: 10.1016/j.commatsci.2021.110360
|
[129] |
Plets J, Bouckaert Q, Ahmed B, et al. 2024. Neural network based fatigue lifetime prediction of metals subjected to block loading. International Journal of Fatigue, 183: 108283. doi: 10.1016/j.ijfatigue.2024.108283
|
[130] |
Qian H, Huang Z, Xu Y, et al. 2023. Very high cycle fatigue life prediction of Ti60 alloy based on machine learning with data enhancement. Engineering Fracture Mechanics, 289: 109431. doi: 10.1016/j.engfracmech.2023.109431
|
[131] |
Raissi M, Perdikaris P, Karniadakis G E. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[132] |
Ramachandra S, Durodola J F, Fellows N A, et al. 2019. Experimental validation of an ANN model for random loading fatigue analysis. International Journal of Fatigue, 126: 112-121. doi: 10.1016/j.ijfatigue.2019.04.028
|
[133] |
Rovinelli A, Sangid M D, Proudhon H, et al. 2018. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. npj Computational Materials, 4(35): 1-10.
|
[134] |
Sadananda K, Nani Babu M, Vasudevan A K. 2019. A review of fatigue crack growth resistance in the short crack growth regime. Materials Science and Engineering: A, 754 : 674-701.
|
[135] |
Sakai T. 2023. Historical review and future prospect for researches on very high cycle fatigue of metallic materials. Fatigue & Fracture of Engineering Materials & Structures, 46(4): 1217-1255.
|
[136] |
Salvati E, Tognan A, Laurenti L, et al. 2022. A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing. Materials & Design, 222: 111089.
|
[137] |
Sanaei N, Shang A. 2021. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Engineering Fracture Mechanics, 244: 107541. doi: 10.1016/j.engfracmech.2021.107541
|
[138] |
Sawant V, Deshmukh R, Awati C. 2023. Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review. Journal of Energy Chemistry, 77: 438-451. doi: 10.1016/j.jechem.2022.11.012
|
[139] |
Shen J, Hu X, Mi D, et al. 2022. Thermomechanical fatigue behavior and lifetime modeling of powder metallurgy superalloy considering phase angle effect. International Journal of Fatigue, 164: 107164. doi: 10.1016/j.ijfatigue.2022.107164
|
[140] |
Shen Z, Lv G, Fu D, et al. 2023. A machine learning study on the fatigue crack path of short crack on an α titanium alloy, Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences, 3 81 (2260) : 20220391.
|
[141] |
Shyam A, Allison J, Jones J. 2005. A small fatigue crack growth relationship and its application to cast aluminum. Acta Materialia, 53(5): 1499-1509. doi: 10.1016/j.actamat.2004.12.004
|
[142] |
Skelton R P. 2013. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components. Materials at High Temperatures, 30(3): 183-201. doi: 10.3184/096034013X13757890932442
|
[143] |
Socie D F. 1987. Multiaxial Fatigue Damage Models. Journal of Engineering Materials and Technology, 109(4): 283-298.
|
[144] |
Srinivasan V. 2003. Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach. International Journal of Fatigue, 25(12): 1327-1338. doi: 10.1016/S0142-1123(03)00064-1
|
[145] |
Subramanyan S. 1976. A Cumulative Damage Rule Based on the Knee Point of the S-N Curve. Journal of Engineering Materials & Technology ASME, 98(4): 316-321.
|
[146] |
Sun H, Qiu Y, Li J. 2022a. A novel artificial neural network model for wide-band random fatigue life prediction. International Journal of Fatigue, 157: 106701. doi: 10.1016/j.ijfatigue.2021.106701
|
[147] |
Sun X, Zhou K, Shi S, et al. 2022b. A new cyclical generative adversarial network-based data augmentation method for multiaxial fatigue life prediction. International Journal of Fatigue, 162: 106996. doi: 10.1016/j.ijfatigue.2022.106996
|
[148] |
Sun X, Zhou T, Song K, et al. 2023. An image recognition based multiaxial low-cycle fatigue life prediction method with CNN model. International Journal of Fatigue, 167: 107324. doi: 10.1016/j.ijfatigue.2022.107324
|
[149] |
Tanaka K, Nakai Y, Yamashita M. 1981. Fatigue growth threshold of small cracks. International Journal of Fracture, 17(5): 519-533. doi: 10.1007/BF00033345
|
[150] |
Tian Q, Xie X, Li S. 2021. A model for ultra-low cycle fatigue damage prediction of structural steel. Journal of Constructional Steel Research, 187: 106956. doi: 10.1016/j.jcsr.2021.106956
|
[151] |
Venkatesh V, Rack H J. 1999. A neural network approach to elevated temperature creep-fatigue life prediction. International Journal of Fatigue, 21: 225-234. doi: 10.1016/S0142-1123(98)00071-1
|
[152] |
Wang J, Zhang Y, Wang X, et al. 2023a. Thermodynamics-based method considering orientation and notch effect to predict the high cycle fatigue life of a nickel-based single crystal superalloy. International Journal of Fatigue, 168: 107452. doi: 10.1016/j.ijfatigue.2022.107452
|
[153] |
Wang L, Zhu S-P, Luo C, et al. 2023b. Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials, Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences, 381: 20220386.
|
[154] |
Wang L, Zhu S-P, Luo C, et al. 2023c. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. International Journal of Fatigue, 172: 107658. doi: 10.1016/j.ijfatigue.2023.107658
|
[155] |
Wang Q, Khan M K, Bathias C. 2012. Current understanding of ultra-high cycle fatigue. Theoretical and Applied Mechanics Letters, 2(3): 031002. doi: 10.1063/2.1203102
|
[156] |
Wang R-Z, Gu H-H, Zhu S-P, et al. 2022. A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures. Reliability Engineering & System Safety, 225: 108523.
|
[157] |
Wang R-Z, Zhang X-C, Tu S-T, et al. 2016. A modified strain energy density exhaustion model for creep–fatigue life prediction. International Journal of Fatigue, 90: 12-22. doi: 10.1016/j.ijfatigue.2016.03.005
|
[158] |
Wang T, Wen J-F, Liao P-P, et al. 2021. A study of ultra-low cycle fatigue failure based on a fracture strain energy model. International Journal of Fatigue, 146: 106149. doi: 10.1016/j.ijfatigue.2021.106149
|
[159] |
Wei X, Zhang C, Han S, et al. 2022. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network. International Journal of Fatigue, 163: 107050. doi: 10.1016/j.ijfatigue.2022.107050
|
[160] |
Xie R-K, Zhong X-C, Qin S-H, et al. 2023. Predicting multiaxial fatigue life of FGH96 superalloy based on machine learning models by considering failure process and loading paths. International Journal of Fatigue, 175: 107730. doi: 10.1016/j.ijfatigue.2023.107730
|
[161] |
Yan F, Song K, Liu Y, et al. 2020. Predictions and mechanism analyses of the fatigue strength of steel based on machine learning. Journal of Materials Science, 55(31): 15334-15349. doi: 10.1007/s10853-020-05091-7
|
[162] |
Yan J, Zhou J, Zhang J, et al. 2024. AP-GAN-DNN based creep fracture life prediction for 7050 aluminum alloy. Engineering Fracture Mechanics, 303: 110096. doi: 10.1016/j.engfracmech.2024.110096
|
[163] |
Yan X-L, Zhang X-C, Tu S-T, et al. 2015. Review of creep–fatigue endurance and life prediction of 316 stainless steels. International Journal of Pressure Vessels and Piping, 126-127: 17-28. doi: 10.1016/j.ijpvp.2014.12.002
|
[164] |
Yang J, Kang G, Kan Q. 2022a. A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature. International Journal of Fatigue, 162: 106851. doi: 10.1016/j.ijfatigue.2022.106851
|
[165] |
Yang J, Kang G, Kan Q. 2022b. Rate-dependent multiaxial life prediction for polyamide-6 considering ratchetting: Semi-empirical and physics-informed machine learning models. International Journal of Fatigue, 163: 107086. doi: 10.1016/j.ijfatigue.2022.107086
|
[166] |
Yang J, Kang G, Liu Y, et al. 2021. A novel method of multiaxial fatigue life prediction based on deep learning. International Journal of Fatigue, 151: 106356. doi: 10.1016/j.ijfatigue.2021.106356
|
[167] |
Yang S, De Jesus A M P, Meng D, et al. 2024. Very high-cycle fatigue behavior of steel in hydrogen environment: State of the art review and challenges. Engineering Failure Analysis, 166: 108898. doi: 10.1016/j.engfailanal.2024.108898
|
[168] |
Ye D, Wang Z. 2001. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. International Journal of Fatigue, 23: 679-687. doi: 10.1016/S0142-1123(01)00027-5
|
[169] |
Zamrik S, Frishmuth R. 1973. The effects of out-of-phase biaxial-strain cycling on low-cycle fatigue. Experimental Mechanics, 13(5): 204-208. doi: 10.1007/BF02322654
|
[170] |
Zhan Z, Ao N, Hu Y, et al. 2022. Defect‐induced fatigue scattering and assessment of additively manufactured 300M-AerMet100 steel: An investigation based on experiments and machine learning. Engineering Fracture Mechanics, 264: 108352. doi: 10.1016/j.engfracmech.2022.108352
|
[171] |
Zhan Z, He X, Tang D, et al. 2023. Recent developments and future trends in fatigue life assessment of additively manufactured metals with particular emphasis on machine learning modeling. Fatigue & Fracture of Engineering Materials & Structures, 46(12): 4425-4464.
|
[172] |
Zhang M, Sun C-N, Zhang X, et al. 2019. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128: 105194. doi: 10.1016/j.ijfatigue.2019.105194
|
[173] |
Zhang S, Wang L, Zhu S-P, et al. 2024. Physics-informed neural network for creep-fatigue life prediction of Inconel 617 and interpretation of influencing factors. Materials & Design, 245: 106149.
|
[174] |
Zhang X-C, Gong J-G, Xuan F-Z. 2021a. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. International Journal of Fatigue, 148: 106236. doi: 10.1016/j.ijfatigue.2021.106236
|
[175] |
Zhang X-C, Gong J-G, Xuan F-Z. 2021b. A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures. Engineering Fracture Mechanics, 258: 108130. doi: 10.1016/j.engfracmech.2021.108130
|
[176] |
Zhao X, Ru D, Wang P, et al. 2021. Fatigue life prediction of a supercritical steam turbine rotor based on neural networks. Engineering Failure Analysis, 127: 105435. doi: 10.1016/j.engfailanal.2021.105435
|
[177] |
Zhao Y, Xiang Y, Tang K. 2024. Machine learning-based fatigue life prediction of lamellar titanium alloys: A microstructural perspective. Engineering Fracture Mechanics, 303: 110106. doi: 10.1016/j.engfracmech.2024.110106
|
[178] |
Zheng Z, Zhan M, Fu M W. 2022. Microstructural and geometrical size effects on the fatigue of metallic materials. International Journal of Mechanical Sciences, 218: 107058. doi: 10.1016/j.ijmecsci.2021.107058
|
[179] |
Zhong B, Wang Y, Wei D, et al. 2017. A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection. International Journal of Fatigue, 102: 241-251. doi: 10.1016/j.ijfatigue.2017.04.013
|
[180] |
Zhong X-C, Xie R-K, Qin S-H, et al. 2022. A process-data-driven BP neural network model for predicting interval-valued fatigue life of metals. Engineering Fracture Mechanics, 276: 108918. doi: 10.1016/j.engfracmech.2022.108918
|
[181] |
Zhou K, Sun X, Shi S, et al. 2021. Machine learning‐based genetic feature identification and fatigue life prediction. Fatigue & Fracture of Engineering Materials & Structures, 44(9): 2524-2537.
|
[182] |
Zhu S-P, Hao Y Z, de Oliveira Correia J A F, et al. 2019. Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study. Fatigue and Fracture of Engineering Materials and Structures, 42(6): 1271-1282. doi: 10.1111/ffe.12937
|
[183] |
Zhu S-P, Niu X, Keshtegar B, et al. 2023. Machine learning-based probabilistic fatigue assessment of turbine bladed disks under multisource uncertainties. International Journal of Structural Integrity, 14(6): 1000-1024. doi: 10.1108/IJSI-06-2023-0048
|
[184] |
Zhu Y, Hu Z, Luo J, et al. 2024. Probabilistic fatigue life prediction using multi-layer perceptron with maximum entropy algorithm. International Journal of Fatigue, 187: 108445. doi: 10.1016/j.ijfatigue.2024.108445
|
[185] |
Zhou T, Jiang S, Han T, et al. 2023. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network. International Journal of Fatigue, 166: 107234. doi: 10.1016/j.ijfatigue.2022.107234
|