Citation: | Qin W, Kou Z P, Liu X F, Zhang Z H. Mechanical behaviors of micro-nano systems associated with van der Waals interaction. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-019 |
[1] |
朗道, 栗弗希兹. 2012. 流体动力学. 李植, 译. 第5版. 北京: 高等教育出版社, 1-608 (Landau, Lifshitz. 2012. Fluid mechanics. Li Z, translate. 5th edition. Beijing: Higher Education Press, 1-608 (in Chinese).
Landau, Lifshitz. 2012. Fluid mechanics. Li Z, translate. 5th edition. Beijing: Higher Education Press, 1-608 (in Chinese.
|
[2] |
商克栋, 郑韶先, 鞠鹏飞, 等. 2018. 南海海洋大气环境二硫化钼纳米多层薄膜摩擦学行为研究. 摩擦学学报, 38 (4): 417-429 (Shang K D, Zheng S X, Ju P F, et al. 2018. Tribological performance of MoS2/Pb-Ti nano-multilayer coating applied in marine atmospheric environment of South China Sea. Tribology, 38 (4): 417-429 (in Chinese).
Shang K D, Zheng S X, Ju P F, et al. 2018. Tribological performance of MoS2/Pb-Ti nano-multilayer coating applied in marine atmospheric environment of South China Sea. Tribology, 38(4): 417-429 (in Chinese.
|
[3] |
温诗铸. 2018. 摩擦学原理. 第5版. 北京: 清华大学出版社, 1-484 (Wen S Z. 2018. Principles of tribology. 5th edition. Beijing: Tsinghua University Press, 1-484 (in Chinese)).
Wen S Z. 2018. Principles of tribology. 5th edition. Beijing: Tsinghua University Press, 1-484 (in Chinese).
|
[4] |
Ambrosetti A, Ferri N, DiStasio J R A, et al. 2016. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science, 351(6278): 1171-1176. doi: 10.1126/science.aae0509
|
[5] |
Ambrosetti A, Silvestrelli P L. 2019. Faraday-like screening by two-dimensional nanomaterials: A scale-dependent tunable effect. J. Phys. Chem. Lett., 10(9): 2044-2050. doi: 10.1021/acs.jpclett.9b00860
|
[6] |
Antezza M, Chan H B, Guizal B, et al. 2020. Giant Casimir torque between rotated gratings and the
|
[7] |
Aykol M, Hou B, Dhall R, et al. 2014. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Nano Lett., 14(5): 2426-2430. doi: 10.1021/nl500096p
|
[8] |
Barash Y S. 1978. Moment of van der Waals forces between anisotropic bodies. Radiophys. Quantum Electron., 21(11): 1138-1143. doi: 10.1007/BF02121382
|
[9] |
Bixon M, Zwanzig R. 1971. Brownian motion of a nonlinear oscillator. J. Stat. Phys., 3(3): 245-260. doi: 10.1007/BF01011383
|
[10] |
Björkman T, Gulans A, Krasheninnikov A, et al. 2012a. Are we van der Waals ready. J. Phys.: Condens. Matter, 24(42): 424218. doi: 10.1088/0953-8984/24/42/424218
|
[11] |
Björkman T, Gulans A, Krasheninnikov A, et al. 2012b. van der waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett., 108(23): 235502. doi: 10.1103/PhysRevLett.108.235502
|
[12] |
Boyer T H. 1974. Penetration of the electric and magnetic velocity fields of a nonrelativistic point charge into a conducting plane. Phys. Rev. A, 9(1): 68. doi: 10.1103/PhysRevA.9.68
|
[13] |
Broer W, Lu B S, Podgornik R. 2021. Qualitative chirality effects on the Casimir-Lifshitz torque with liquid crystals. Phys. Rev. Res., 3: 033238.
|
[14] |
Buks E, Roukes M L. 2001. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B, 63(3): 033402.
|
[15] |
Canaguier-Durand A, Maia N P A, Cavero-Pelaez I, et al. 2009. Casimir interaction between plane and spherical metallic surfaces. Phys. Rev. Lett., 102(23): 230404. doi: 10.1103/PhysRevLett.102.230404
|
[16] |
Casimir, Hendrick B G. 1948. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet., 51: 793-796.
|
[17] |
Chan H, Aksyuk V, Kleiman R, et al. 2001a. Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett., 87(21): 211801. doi: 10.1103/PhysRevLett.87.211801
|
[18] |
Chan H, Aksyuk V, Kleiman R, et al. 2001b. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science, 291(5510): 1941-1944. doi: 10.1126/science.1057984
|
[19] |
Chen F, Kou Z, Jiang Z, et al. 2024. Physical limit of nonlinear brownian oscillators in quantum trap. J. Phys. Chem. Lett., 15: 1719-1725. doi: 10.1021/acs.jpclett.3c03334
|
[20] |
Chen L, Chang K. 2020. Chiral-anomaly-driven Casimir-Lifshitz torque between Weyl semimetals. Phys. Rev. Lett., 125: 047402.
|
[21] |
Chu X, Dalgarno A. 2004. Linear response time-dependent density functional theory for van der Waals coefficients. J. Chem. Phys., 121(9): 4083-4088. doi: 10.1063/1.1779576
|
[22] |
Deng Z, Smolyanitsky A, Li Q, et al. 2012. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater., 11(12): 1032-1037. doi: 10.1038/nmat3452
|
[23] |
Dienwiebel M, Verhoeven G S, Pradeep N, et al. 2004. Superlubricity of graphite. Phys. Rev. Lett., 92(12): 126101. doi: 10.1103/PhysRevLett.92.126101
|
[24] |
Dion M, Rydberg H, Schröder E, et al. 2004. van der Waals density functional for general geometries. Phys. Rev. Lett., 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
|
[25] |
Dobson J F, Wang J, Dinte B P, et al. 2005. Soft cohesive forces. Int. J. Quantum Chem., 101(5): 579-598. doi: 10.1002/qua.20314
|
[26] |
Dzyaloshinskii I E, Lifshitz E M, Pitaevskii L P. 1961. The general theory of van der Waals forces. Adv. Phys., 10(38): 165-209. doi: 10.1080/00018736100101281
|
[27] |
Fan L S, Tai Y C, Muller R S. 1988. Integrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron Devices, 35(6): 724-730. doi: 10.1109/16.2523
|
[28] |
Franosch T, Grimm M, Belushkin M, et al. 2011. Resonances arising from hydrodynamic memory in brownian motion. Nature, 478(7367): 85-88. doi: 10.1038/nature10498
|
[29] |
French R H, Parsegian V A, Podgornik R, et al. 2010. Long range interactions in nanoscale science. Rev. Mod. Phys., 82(2): 1887. doi: 10.1103/RevModPhys.82.1887
|
[30] |
Gao H, Yao H. 2004. Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl. Acad. Sci., 101(21): 7851-7856. doi: 10.1073/pnas.0400757101
|
[31] |
Gao W, Tkatchenko A. 2013. Electronic structure and van der Waals interactions in the stability and mobility of point defects in semiconductors. Phys. Rev. Lett., 111(4): 045501. doi: 10.1103/PhysRevLett.111.045501
|
[32] |
Garcia-Sanchez D, Fong K Y, Bhaskaran H, et al. 2012. Casimir force and in situ surface potential measurements on nanomembranes. Phys. Rev. Lett., 109(2): 027202. doi: 10.1103/PhysRevLett.109.027202
|
[33] |
Gies H, Klingmüller K. 2006. Casimir effect for curved geometries: Proximity-force-approximation validity limits. Phys. Rev. Lett., 96(22): 220401. doi: 10.1103/PhysRevLett.96.220401
|
[34] |
Grimme S. 2004. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem., 25(12): 1463-1473. doi: 10.1002/jcc.20078
|
[35] |
Grimme S. 2006. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 27(15): 1787-1799. doi: 10.1002/jcc.20495
|
[36] |
Grimme S, Antony J, Ehrlich S, et al. 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys, 132(15): 154104. doi: 10.1063/1.3382344
|
[37] |
Guo J, Zhao Y. 2004. Influence of van der Waals and Casimir forces on electrostatic torsional actuators. J. Microelectromech. Syst., 13(6): 1027-1035. doi: 10.1109/JMEMS.2004.838390
|
[38] |
Harl J, Kresse G. 2008. Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory. Phys. Rev. B, 77(4): 045136. doi: 10.1103/PhysRevB.77.045136
|
[39] |
Hartmann M, Ingold G L, Neto P A M. 2018. Advancing numerics for the Casimir effect to experimentally relevant aspect ratios. Phys Scr., 93(11): 114003. doi: 10.1088/1402-4896/aae34e
|
[40] |
Hiller U. 1971. Form und funktion der hautsinnesorgane bei gekkoniden. Forma Functio, 4: 240-253.
|
[41] |
Hu C, Chen J, Zhou X, et al. 2024. Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation. Nat. Commun., 15(1): 3486. doi: 10.1038/s41467-024-47903-3
|
[42] |
Huang J, Rauscher S, Nawrocki G, et al. 2017. Charmm36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 14(1): 71-73. doi: 10.1038/nmeth.4067
|
[43] |
Jiang Z, Chen F, Kou Z, et al. 2023. Large Casimir flipping torque in quantum trap. J. Phys. Chem. B, 128(1): 350-357.
|
[44] |
Kardar M, Golestanian R. 1999. The “friction” of vacuum, and other fluctuation-induced forces. Rev. Mod. Phys., 71(4): 1233. doi: 10.1103/RevModPhys.71.1233
|
[45] |
Kavokine N, Bocquet M L, Bocquet L. 2002. Fluctuation-induced quantum friction in nanoscale water flows. Nature, 602(7895): 84-90.
|
[46] |
Khestanova E, Guinea F, Fumagalli L, et al. 2016. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun., 7(1): 12587. doi: 10.1038/ncomms12587
|
[47] |
Klimchitskaya G, Mohideen U, Mostepanenko V. 2009. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys., 81(4): 1827. doi: 10.1103/RevModPhys.81.1827
|
[48] |
Kolmogorov A N, Crespi V H. 2005. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B, 71(23): 235415. doi: 10.1103/PhysRevB.71.235415
|
[49] |
Lebègue S, Harl J, Gould T, et al. 2010. Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. Phys. Rev. Lett., 105(19): 196401. doi: 10.1103/PhysRevLett.105.196401
|
[50] |
Lee K, Murray É D, Kong L, et al. 2010. Higher-accuracy van der Waals density functional. Phys. Rev. B, 82(8): 081101. doi: 10.1103/PhysRevB.82.081101
|
[51] |
Lennard-Jones J E. 1931. Cohesion. Proc. Phys. Soc., 43(5): 461. doi: 10.1088/0959-5309/43/5/301
|
[52] |
Leven I, Azuri I, Kronik L, et al. 2014. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys., 140(10): 104106. doi: 10.1063/1.4867272
|
[53] |
Levitov L S. 1989. van der Waals’ friction. Europhys. Lett., 8(6): 499-504. doi: 10.1209/0295-5075/8/6/002
|
[54] |
Lifshitz E M. 1956. The theory of molecular attractive force between solid bodies. J. Exp. Theor. Phys., 29: 83-94.
|
[55] |
Lorentz H A. 1907. Abhandlungen über theoretische physik. Teubner, 2: 1907.
|
[56] |
Li B, Yin J, Liu X, et al. 2019. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat. Nanotechnol., 14(6): 567-572. doi: 10.1038/s41565-019-0405-2
|
[57] |
Li B, Liu X, Guo W. 2021. Probing interactions at two-dimensional heterointerfaces by boron nitride-wrapped tip. Nano Res., 14: 692-698. doi: 10.1007/s12274-020-3098-9
|
[58] |
Li M, Reimers J R, Dobson J F, et al. 2018. Faraday cage screening reveals intrinsic aspects of the van der Waals attraction. Proc. Natl. Acad. Sci., 115(44): 10295-10302.
|
[59] |
Liu X, Hermann J, Tkatchenko A. 2016. Communication: Many-body stabilization of non-covalent interactions: Structure, stability, and mechanics of Ag3Co(Cn)6 framework. J. Chem. Phys., 145(24): 241101. doi: 10.1063/1.4972810
|
[60] |
Liu X, Zhang Z, Guo W. 2018. van der Waals screening by graphenelike monolayers. Phys. Rev. B, 97(24): 241411. doi: 10.1103/PhysRevB.97.241411
|
[61] |
Liu X, Yang J, Guo W. 2020. Semiempirical van der Waals method for two-dimensional materials with incorporated dielectric functions. Phys. Rev. B, 101(4): 045428. doi: 10.1103/PhysRevB.101.045428
|
[62] |
Liu Z, Yang J, Grey F, et al. 2012. Observation of microscale superlubricity in graphite. Phys. Rev. Lett., 108(20): 205503. doi: 10.1103/PhysRevLett.108.205503
|
[63] |
Lim C H Y X, Nesladek M, Loh K P. 2014. Observing high-pressure chemistry in graphene bubbles. Angew. Chem., Int. Ed., 53(1): 215-219. doi: 10.1002/anie.201308682
|
[64] |
Lim C H Y X, Sorkin A, Bao Q, et al. 2013. A hydrothermal anvil made of graphene nanobubbles on diamond. Nat. Commun., 4(1): 1556.
|
[65] |
London F. 1930. Zur theorie und systematik der molekularkräfte. Z. Angew. Phys., 63(3): 245-279.
|
[66] |
Mak K F, Lee C, Hone J, et al. 2010. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805
|
[67] |
Marom N, Bernstein J, Garel J, et al. 2010. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett., 105(4): 046801. doi: 10.1103/PhysRevLett.105.046801
|
[68] |
Mohideen U, Roy A. 1998. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett., 81(21): 4549. doi: 10.1103/PhysRevLett.81.4549
|
[69] |
Munday J N, Capasso F, Parsegian V A. 2009. Measured long-range repulsive Casimir–Lifshitz forces. Nature, 457(7226): 170-173. doi: 10.1038/nature07610
|
[70] |
Munday J N, Iannuzzi D, Barash Y, et al. 2005. Torque on birefringent plates induced by quantum fluctuations. Phys. Rev. A, 71: 042102
|
[71] |
Neto P M, Lambrecht A, Reynaud S. 2005. Roughness correction to the Casimir force: Beyond the proximity force approximation. Europhys. Lett., 69(6): 924. doi: 10.1209/epl/i2004-10433-9
|
[72] |
Neto A C, Guinea F, Peres N M, et al. 2009. The electronic properties of graphene. Rev. Mod. Phys., 81(1): 109. doi: 10.1103/RevModPhys.81.109
|
[73] |
Ouyang W, Mandelli D, Urbakh M, et al. 2018. Nanoserpents: Graphene nanoribbon motion on two-dimensional hexagonal materials. Nano Lett., 18(9): 6009-6016. doi: 10.1021/acs.nanolett.8b02848
|
[74] |
Parsegian V, Weiss G H. 1972. Dielectric anisotropy and the van der Waals interaction between bulk media. J. Adhes., 3(4): 259-267. doi: 10.1080/00218467208072197
|
[75] |
Parsegian V. 2005. Van der Waals forces: A handbook for biologists, chemists, engineers, and physicists. New York: Cambridge University Press, 277-318.
|
[76] |
Pendry J B. 1997. Shearing the vacuum-quantum friction. J. Phys. Condens. Matter, 9(47): 10301. doi: 10.1088/0953-8984/9/47/001
|
[77] |
Persson B, Zhang Z. 1998. Theory of friction: Coulomb drag between two closely spaced solids. Phys. Rev. B, 57(12): 7327. doi: 10.1103/PhysRevB.57.7327
|
[78] |
Ponder J W, Case D A. 2003. Force fields for protein simulations. Adv. Protein. Chem., 66: 27-85.
|
[79] |
Rahi S J, Emig T, Graham N, et al. 2009. Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D, 80(8): 085021. doi: 10.1103/PhysRevD.80.085021
|
[80] |
Rammer J. 2011. Quantum field theory of non-equilibrium states. Cambridge: Cambridge University Press, 79-119.
|
[81] |
Reid M H, Rodriguez A W, White J, et al. 2009. Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett., 103(4): 040401. doi: 10.1103/PhysRevLett.103.040401
|
[82] |
Reid M H, White J, Johnson S G. 2013. Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries. Phys. Rev. A, 88(2): 022514. doi: 10.1103/PhysRevA.88.022514
|
[83] |
Rokni H, Lu W. 2020. Direct measurements of interfacial adhesion in 2d materials and van der Waals heterostructures in ambient air. Nat. Commun., 11(1): 5607. doi: 10.1038/s41467-020-19411-7
|
[84] |
Rytov S. 1959. Theory of electrical fluctuations and thermal radiation. Bedford: Air Force Cambridge Research Center, 1-265.
|
[85] |
Satterthwaite P F, Zhu W, Jastrzebska-Perfect P, et al. 2024. van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer. Nat. Electron., 7(1): 17-28.
|
[86] |
Schaich W L, Harris J. 1981. Dynamic corrections to van der Waals potentials. J. Phys. F: Met. Phys., 11(1): 65-78. doi: 10.1088/0305-4608/11/1/011
|
[87] |
Somers D A, Garrett J L, Palm K J, et al. 2018. Measurement of the Casimir torque. Nature, 564(7736): 386-389. doi: 10.1038/s41586-018-0777-8
|
[88] |
Somers D A T, Munday J N. 2015. Rotation of a liquid crystal by the Casimir torque. Phys. Rev. A, 91: 032520.
|
[89] |
Somers D A, Munday J N. 2017. Casimir-Lifshitz torque enhancement by retardation and intervening dielectrics. Phys. Rev. Lett., 119: 183001.
|
[90] |
Song Y, Mandelli D, Hod O, et al. 2018. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater., 17(10): 894-899. doi: 10.1038/s41563-018-0144-z
|
[91] |
Sparnaay M J. 1958. Measurements of attractive forces between flat plates. Physica, 24(6-10): 751-764. doi: 10.1016/S0031-8914(58)80090-7
|
[92] |
Stöhr M, Sadhukhan M, Al-Hamdani Y S, et al. 2021. Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials. Nat. Commun., 12(1): 137. doi: 10.1038/s41467-020-20473-w
|
[93] |
Sun H. 1998. Compass: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B, 102(38): 7338-7364. doi: 10.1021/jp980939v
|
[94] |
Tang K, Qi W, Wei Y, et al. 2022. High-throughput calculation of interlayer van der Waals forces validated with experimental measurements. Research, 2022: 9765121.
|
[95] |
Teodorovich E. 1978. On the contribution of macroscopic van der Waals interactions to frictional force. Proc. R. Soc. London A, 362(1708): 71-77. doi: 10.1098/rspa.1978.0121
|
[96] |
Thiyam P, Parashar P, Shajesh K V, et al. 2018. Distance-dependent sign reversal in the Casimir-Lifshitz torque. Phys. Rev. Lett., 120: 131601.
|
[97] |
Tkatchenko A, Scheffler M. 2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett., 102(7): 69-72.
|
[98] |
Tkatchenko A, Rossi M, Blum V, et al. 2011. Unraveling the stability of polypeptide helices: Critical role of van der Waals interactions. Phys. Rev. Lett., 106(11): 118102. doi: 10.1103/PhysRevLett.106.118102
|
[99] |
Tkatchenko A, DiStasio J R A, Car R, et al. 2012. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett., 108(23): 236402. doi: 10.1103/PhysRevLett.108.236402
|
[100] |
Tsoi S, Dev P, Friedman A L, et al. 2014. van der Waals screening by single-layer graphene and molybdenum disulfide. Acs Nano, 8(12): 12410-12417. doi: 10.1021/nn5050905
|
[101] |
van der Waals J D. 1873. On the continuity of the gas and liquid state. [Ph. D. thesis]. Netherlands: University of Leiden, 301.
|
[102] |
Vasu K, Prestat E, Abraham J, et al. 2016. van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun., 7(1): 12168. doi: 10.1038/ncomms12168
|
[103] |
Volokitin A I, Persson B N J. 1999. Theory of friction: The contribution from a fluctuating electromagnetic field. J. Phys. Condens. Matter, 11(2): 345. doi: 10.1088/0953-8984/11/2/003
|
[104] |
Volokitin A I, Persson B N J. 2002. Dissipative van der Waals interaction between a small particle and a metal surface. Phys. Rev. B, 65(11): 115419. doi: 10.1103/PhysRevB.65.115419
|
[105] |
Volokitin A I, Persson B N J. 2006. Quantum field theory of van der Waals friction. Phys. Rev. B, 74(20): 205413. doi: 10.1103/PhysRevB.74.205413
|
[106] |
Volokitin A I, Persson B N J. 2007. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys., 79(4): 1291. doi: 10.1103/RevModPhys.79.1291
|
[107] |
Vydrov O A, Van V T. 2010. Nonlocal van der Waals density functional: The simpler the better. J. Chem. Phys., 133: 244103. doi: 10.1063/1.3521275
|
[108] |
Wang G, Dai Z, Wang Y, et al. 2017. Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett., 119(3): 036101. doi: 10.1103/PhysRevLett.119.036101
|
[109] |
Wang G, Dai Z, Xiao J, et al. 2019. Bending of multilayer van der Waals materials. Phys. Rev. Lett., 123(11): 116101. doi: 10.1103/PhysRevLett.123.116101
|
[110] |
Wang H, Zhang L, Han J, et al. 2018. Deepmd-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun., 228: 178-184. doi: 10.1016/j.cpc.2018.03.016
|
[111] |
Wen J, Li W, Chen S, et al. 2016. Simulations of molecular self-assembled monolayers on surfaces: Packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys. Chem. Chem. Phys., 18(33): 22757-22771. doi: 10.1039/C6CP01049K
|
[112] |
Werder T, Walther J H, Jaffe R, et al. 2003. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B, 107(6): 1345-1352. doi: 10.1021/jp0268112
|
[113] |
Woods L, Dalvit D A R, Tkatchenko A, et al. 2016. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys., 88(4): 045003. doi: 10.1103/RevModPhys.88.045003
|
[114] |
Wu Q, Yang W. 2002. Empirical correction to density functional theory for van der Waals interactions. J. Chem. Phys., 116(2): 515-524. doi: 10.1063/1.1424928
|
[115] |
Xie R, Montanini P, Akarvardar K, et al. 2016. A 7 nm finfet technology featuring euv patterning and dual strained high mobility channels. IEEE, 2016 IEEE international electron devices meeting, San Francisco. San Francisco: IEEE, 2016 : 2-7.
|
[116] |
Yang J, Liu X, Guo W. 2021. Nonmonotonous distance dependence of van der Waals screening by a dielectric layer. J. Phys. Chem. Lett., 12(20): 4993-4999. doi: 10.1021/acs.jpclett.1c00870
|
[117] |
Yang K, Chen Y, Pan F, et al. 2016. Buckling behavior of substrate supported graphene sheets. Materials, 9(1): 32. doi: 10.3390/ma9010032
|
[118] |
Yu H Y, Eckmann D M, Ayyaswamy P S, et al. 2016. Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a brownian nanoparticle. Proc. R. Soc. A, 472(2196): 20160397. doi: 10.1098/rspa.2016.0397
|
[119] |
Yu J, Chary S, Das S, et al. 2011. Gecko-inspired dry adhesive for robotic applications. Adv. Funct. Mater., 21(16): 3010-3018. doi: 10.1002/adfm.201100493
|
[120] |
Yuet P K, Blankschtein D. 2010. Molecular dynamics simulation study of water surfaces: Comparison of flexible water models. J. Phys. Chem. B, 114(43): 13786-13795. doi: 10.1021/jp1067022
|
[121] |
Zhang G X, Tkatchenko A, Paier J, et al. 2011. van der Waals interactions in ionic and semiconductor solids. Phys. Rev. Lett., 107(24): 245501. doi: 10.1103/PhysRevLett.107.245501
|
[122] |
Zhang Y, Wang L. 2020. Effects of the van der Waals force on the vibration of typical multi-layered two-dimensional nanostructures. Sci. Rep., 10(1): 644. doi: 10.1038/s41598-020-57522-9
|
[123] |
Zhang Y, Zhang H, Wang X, et al. 2024. Magnetic-field tuning of the Casimir force. Nat. Phys., 20: 1282-1287. doi: 10.1038/s41567-024-02521-0
|
[124] |
Zhao W, Qiu H, Guo W. 2022. A deep neural network potential for water confined in graphene nanocapillaries. J. Phys. Chem. C, 126(25): 10546-10553. doi: 10.1021/acs.jpcc.2c02423
|
[125] |
Zhao R, Li L, Yang S, et al. 2019. Stable Casimir equilibria and quantum trapping. Science, 364(6444): 984-987. doi: 10.1126/science.aax0916
|
[126] |
Zhong W, Tomanek D. 1990. First-principles theory of atomic-scale friction. Phys. Rev. Lett., 64(25): 3054. doi: 10.1103/PhysRevLett.64.3054
|