Citation: | Chen H, Gan Y C, Peng J X, Yu Y Y, Hu J B. Progress, Applications, and Challenges of Interface Instability in Solids. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-014 |
[1] |
陈永涛, 洪仁楷, 汤铁钢, 等. 2016. 熔化状态下锡样品微喷射现象的诊断. 高压物理学报, 30(4): 323-327. doi: 10.11858/gywlxb.2016.04.009
|
[2] |
陈永涛, 任国武, 汤铁钢, 等. 2013. 爆轰加载下金属样品的熔化破碎现象诊断. 物理学报, 62(11): 116202. doi: 10.7498/aps.62.116202
|
[3] |
郝鹏程, 冯其京, 胡晓棉. 2016. 内爆加载金属界面不稳定性的数值分析. 爆炸与冲击, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
|
[4] |
经福谦, 胡思得. 1991. 核武器研制中的若干物理问题. 20 (8): 0-0.
|
[5] |
李碧勇, 彭建祥, 谷岩, 等. 2020. 爆轰加载下高纯铜界面 Rayleigh-Taylor 不稳定性实验研究. 物理学报, .
|
[6] |
罗喜胜, 翟志刚, 司廷, 等. 2014. 激波诱导下的气体界面不稳定性实验研究. 力学进展, 44(1): 260-290. doi: 10.6052/1000-0992-14-028
|
[7] |
刘军, 冯其京, 周海兵. 2014. 柱面内爆驱动金属界面不稳定性的数值模拟研究. 物理学报, 63(15): 155201. doi: 10.7498/aps.63.155201
|
[8] |
叶雁, 李军, 朱鹏飞, 等. 2013. 脉冲X光照相在微物质喷射诊断中的应用. 高压物理学报, 27(3): 398-402. doi: 10.11858/gywlxb.2013.03.013
|
[9] |
陆逸然, 王晋军. 2024. 高效合成射流激励器研究进展及展望. 力学进展, 54(1): 61-85. doi: 10.6052/1000-0992-23-038
|
[10] |
潘昊, 胡晓棉, 吴子辉, 等. 2012. 铈低压冲击相变数值模拟研究. 物理学报, 61(20): 351-357. doi: 10.7498/aps.61.206401
|
[11] |
任九生, 程昌钧. 2009. 超弹性材料的不稳定性问题. 力学进展, 39(5): 566-575. doi: 10.3321/j.issn:1000-0992.2009.05.006
|
[12] |
汤文辉, 张若棋. 2008. 物态方程理论及计算概论(第二版). 北京: 高等教育出版社.
|
[13] |
谭华. 2007. 实验冲击波物理导引. 国防工业出版社.
|
[14] |
王洪建, 冯永祯, 罗笔瀚, 等. 2023. 强激光加载下金属材料微喷诊断实验研究进展. 强激光与粒子束, 35(10): 5-16. doi: 10.11884/HPLPB202335.230225
|
[15] |
王立锋, 叶文华, 陈竹, 等. 2021. 激光聚变内爆流体不稳定性基础问题研究进展, 33 (1): 012001-012001.
|
[16] |
王涛, 汪兵, 林健宇, 等. 2020. 柱形汇聚几何中内爆驱动金属界面不稳定性. 爆炸与冲击, 40(5): 1-12. doi: 10.11883/bzycj-2019-0150
|
[17] |
殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 2017. 爆轰驱动Cu界面的Richtmyer-Meshkov 扰动增长稳定性. 物理学报, 66(20): 204701 doi: 10.7498/aps.66.204701
|
[18] |
殷建伟. 2018. 强度介质界面的 Richtmyer-Meshkov 扰动增长规律研究. 北京理工大学博士论文.
|
[19] |
叶雁, 李军, 朱鹏飞, 等. 2013. 脉冲X光照相在微物质喷射诊断中的应用. 高压物理学报, 27(3): 398-402. doi: 10.11858/gywlxb.2013.03.013
|
[20] |
朱建士, 胡晓棉, 王裴, 等. 2010. 爆炸与冲击动力学若干问题研究进展. 力学进展, 40(4): 400-423. doi: 10.6052/1000-0992-2010-4-J2009-144
|
[21] |
郑宇轩, 周风华, 胡时胜, 等. 2016. 固体的冲击拉伸碎裂. 力学进展, 46(1): 506-540. doi: 10.6052/1000-0992-16-004
|
[22] |
张维岩, 叶文华, 吴俊峰, 等. 2014. 激光间接驱动聚变内爆流体不稳定性研究. 中国科学: 物理学力学天文学, 1-23.
|
[23] |
章征伟. 2020. 磁驱动固体套筒内爆理论与实验研究. 中国工程物理研究院.
|
[24] |
章征伟, 魏懿, 孙奇志, 等. 2016. 材料强度对电磁驱动固体套筒内爆过程的影响. 强激光与粒子束, 28(4): 156-160. doi: 10.11884/HPLPB201628.125017
|
[25] |
Aglitskiy Y, Velikovich A L, Karasik M, et al. 2010. Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusionrelevant conditions. Phil TransR Soc A, 368: 1739-1768. doi: 10.1098/rsta.2009.0131
|
[26] |
Al’tshuler L V, Il’kaev R I, Fortov V E. 2021. Use of powerful shock and detonation waves to study extreme states of matter. Physics-Uspekhi, 64(11): 1167.
|
[27] |
Arinin V A, Baltakov F N, Burenkov O M. 2004. A series of joint VNIIEF/LANL experiments on radiographic studies of perturbation growth at the interface of a polyethylene liner with polyethylene or water. Proc. MG-X, 348-353.
|
[28] |
Atchison W L, Zocher M A, Kaul A M. 2008. Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems. Russian Journal of Physical Chemistry B, 2(3): 387-401. doi: 10.1134/S199079310803010X
|
[29] |
Avdeev P A, Artamonov M V, Bakhrakh S M. 2001. LEGAK program complex aimed to compute nonsteady-state flows of multi-component continuum media and the principles for realization of this complex on the distributed-memory multiprocessor computer. Ser. : Math. modeling physical processes, 3: 14.
|
[30] |
Bakhrakh S M, Drennov O B, Kovalev N P, et al. 1997. Hydrodynamic instability in strong media. UCRL-CR-126710.
|
[31] |
Bakhrakh S M, Velichko S V, Spiridonov V F, et al. 2004. LEGAK-3D technique aimed to compute 3D nonsteady-state flows of multi-component continuum media and the principles for its realization on the distributed-memory multiprocessor computer. Ser. : Math. modeling physical processes, 4: 41.
|
[32] |
Barnes J F, Blewett P J, Mc Queen R G, el al. 1974. Taylor instability in solids. Journal of Applied Physics, 45(2): 727-732. doi: 10.1063/1.1663310
|
[33] |
Bell G I. 1951. Taylor instability on cylinders and spheres in the small amplitude approximation. Report No. LA-1321, LANL,1321: 91873-9.
|
[34] |
Bellman R, Pennington R H. 1954. Effects of surface tension and viscosity on Taylor instability. Quarterly of Applied Mathematics, 12(2): 151-162. doi: 10.1090/qam/63198
|
[35] |
Betti R, Hurricane O A. 2016. Inertial-confinement fusion with lasers. Nature Physics, 12(5): 435-448.
|
[36] |
Buttler W T, Oró D M, Preston D L, et al. 2012. Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. Journal of Fluid Mechanics, 703: 60-84. doi: 10.1017/jfm.2012.190
|
[37] |
Buyko A M, Zmushko V V, Mokhov V N, et al. 2005. Dynamic copper and polyethylene strengths in shockless loading to 15 GPa according to the data of explosive magnetic experiments with cylindrical three-layer liner systems//2005 IEEE Pulsed Power Conference. IEEE, : 1242-1245.
|
[38] |
Buyko A M, Gorbachev Y N, Zmushko V V, et al. 2002. Study of dynamic strength of copper in joint VNIIEF/LANL liner experiments on capacitor bank ATLAS (RUS-6 7). Proc. Int. Conf. Megagauss-9. 718-724.
|
[39] |
Buyko A M, Zmushko V V, Atchison W L, et al. 2008. Results and prospects of material strength studies on electrophysical facilities based on perturbation growth in liner systems. IEEE transactions on plasma science, 36(1): 104-111.
|
[40] |
Casner A, Masse L, Delorme B, et al. 2014. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front. Phys Plasmas, 21: 122702. doi: 10.1063/1.4903331
|
[41] |
Casner A, Smalyuk V A, Masse L. 2012. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility. Physics of Plasmas, 19(08): 2708-2717.
|
[42] |
Casner A, Galmiche D, Huser G, et al. 2009. Indirect drive ablative Rayleight-Taylor experiments with rugby hohlraums on OMEGA. Phys Plasmas, 16: 092701. doi: 10.1063/1.3224027
|
[43] |
Casey D T, Woods D T, Smalyuk V A, et al. 2015. Performance and mix measurements of indirect drive Cu-doped Be implosions. Physical Review Letters, 114(20): 205002. doi: 10.1103/PhysRevLett.114.205002
|
[44] |
Chandrasekhar S. 2013. Hydrodynamic and hydromagnetic Stability. Courier Corporation.
|
[45] |
Chen Q, Li L, Zhang Y, et al. 2019. Effects of the Atwood number on the Richtmyer-Meshkov instability in elastic-plastic media. Physical Review E, 99(5): 053102.
|
[46] |
Collins B D, Jacobs J W. 2002. PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface. Journal of Fluid Mechanics, 464: 113-136. doi: 10.1017/S0022112002008844
|
[47] |
Colvin J D, Legrand M, Remington B A, et al. 2003. A model for instability growth in accelerated solid metals. Journal of applied physics, 93(9): 5287-5301. doi: 10.1063/1.1565188
|
[48] |
De Resseguier T, Prudhomme G, Roland C, et al. 2020. Material ejection from surface defects in laser shock-loaded metallic foils. AIP Conference Proceedings, 2272 (1).
|
[49] |
Dimonte G, Gore R, Schneider M. 1998. Rayleigh-Taylor instability in elastic-plastic materials. Physical review letters, 80(6): 1212. doi: 10.1103/PhysRevLett.80.1212
|
[50] |
Dimonte G, Terrones G, Cherne F J, et al. 2011. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Physical review letters, 107(26): 264502.
|
[51] |
Dimonte G, Remington B. 1993. Richtmyer-Meshkov experiments on the Nova laser at high compression. Physical review letters, 70(12): 1806. doi: 10.1103/PhysRevLett.70.1806
|
[52] |
Drucker D C. 1980. Taylor instability of the surface of an elasticplastic plate, Mechanics Today.
|
[53] |
Fermi E. 1962. The Collected Papers of Enrico Fermi, edited by E. Amaldi et al.
|
[54] |
Frachet V, Geleznikoff F, Guix R, et al. 1989. Rayleigh Taylor instability in cylindrical configuration. Proceedings of 2nd International Workshop on the Physics of Compressible Turbulent Mixing. : 862−849.
|
[55] |
Gao C Y, Zhang L C. 2012. Constitutive modelling of plasticity of fcc metals under extremely high strain rates. International Journal of Plasticity, 32: 121-133.
|
[56] |
Goldstein W, Rosner R. 2012. Workshop on the science of fusion ignition on NIF. LLNL-TR-570412,
|
[57] |
Goncharov V N, McKenty P, Skupsky S, et al. 2000. Modeling hydrodynamic instabilities in inertial confinement fusion targets. Physics of Plasmas, 7(12): 5118-5139. doi: 10.1063/1.1321016
|
[58] |
Grady D. 2007. Fragmentation of rings and shells: the legacy of NF Mott. Springer Science & Business Media.
|
[59] |
Grigoryev S Y, Dyachkov S A, Parshikov A N, et al. 2022. Limited and unlimited spike growth from grooved free surface of shocked solid. Journal of Applied Physics, 131 (6).
|
[60] |
Guo H Y, Wang L F, Ye W H, et al. 2018. Weakly nonlinear Rayleigh–Taylor instability in cylindrically convergent geometry. Chinese Physics Letters, 35(5): 055201. doi: 10.1088/0256-307X/35/5/055201
|
[61] |
Haan S W, Huang H, Johnson M A, et al. 2015. Instability growth seeded by oxygen in CH shells on the National Ignition Facility. Physics of Plasmas, 22 (3).
|
[62] |
Hao P C, Feng Q J, Hu X M. 2016. A numerical study of the instability of the metal shell in the implosion. Explosion and Shock Waves, 36(6): 739-744.
|
[63] |
Henry de Frahan M T, Belof J L, Cavallo R M, et al. 2015. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability. Journal of Applied Physics, 117 (22).
|
[64] |
Hide R. 1955. The character of the equilibrium of an incompressible heavy viscous fluid of variable density: an approximate theory. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 51(1): 179-201.
|
[65] |
Huntington C M, Belof J L, Blobaum K J M, et al. 2017. Investigating iron material strength up to 1 Mbar using Rayleigh-Taylor growth measurements. AIP Conference Proceedings. AIP Publishing, 1793 (1).
|
[66] |
Jensen B J, Cherne F J, Prime M B, et al. 2015. Jet formation in cerium metal to examine material strength. Journal of Applied Physics, 118 (19).
|
[67] |
Karkhanis V, Ramaprabhu P, Cherne F J, et al. 2018. A numerical study of bubble and spike velocities in shock-driven liquid metals. Journal of Applied Physics, 123 (2).
|
[68] |
Kozlov E A, Ol'Khov O V, Shuvalova E V. 2014. Numerical 3D-modeling of spall and shear fractures in shells of austenitic 12Kh18N10T steel and 30KhGSA steel under their spherical and quasi-spherical explosive loading. Journal of Physics: Conference Series (см. в книгах). Institute of Physics and IOP Publishing Limited, 490 (1): 012192-012192.
|
[69] |
Kozlov E A, Petrovtsev A V. 2014. Cumulation of a spherically converging shock wave in metals and its dependence on elastic-plastic properties, phase transitions, spall and shear fractures. Journal of Physics: Conference Series. IOP Publishing, 490 (1): 012191.
|
[70] |
Kozlov E A. 2012. 2D-and 3D-explosive experiments for verification of spall and shear strength models for some steels. AIP Conference Proceedings. American Institute of Physics, 1426(1): 945-948.
|
[71] |
Krygier A, Powell P D, McNaney J M, et al. 2019. Extreme hardening of Pb at high pressure and strain rate. Physical Review Letters, 123(20): 205701. doi: 10.1103/PhysRevLett.123.205701
|
[72] |
Landau L D, Lifshitz E M. 1987. Fluid Mechanics.
|
[73] |
Lebedev A I, Nisovtsev P N, Rayevsky V A. 1993. Rayleigh-Taylor Instability in Solids. Proceedings of the 4th International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, UK, Cambridge University Press: 81-93.
|
[74] |
Lebedev A I, Nizovtsev P N, Raevskii V A, et al. 1996. Rayleigh-Taylor instability in firm substances. Physics-Doklady, 41(7): 328-330.
|
[75] |
Lim H, Battaile C C, Brown J L, et al. 2016. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure. Modelling and Simulation in Materials Science and Engineering, 24(5): 055018. doi: 10.1088/0965-0393/24/5/055018
|
[76] |
Linhart J G. 1961. Dynamic stability of a conducting, cylindrical shell in a magnetic field. Journal of Applied Physics, 32(3): 500-505. doi: 10.1063/1.1736032
|
[77] |
Liu J, Feng Q J, Zhou H B. 2014. Simulation study of interface instability in metals driven by cylindrical implosion. Acta Physica Sinica, 63(15): 155201. doi: 10.7498/aps.63.155201
|
[78] |
Lorenz K T, Edwards M J, Glendinning S G, et al. 2005. Accessing ultrahigh-pressure, quasi-isentropic states of matter. Physics of plasmas, 12 (5).
|
[79] |
Marsh S P. 1980. LASL shock Hugoniot data. Univ of California Press.
|
[80] |
McGlaun J M, Thompson S L, Elrick M G. 1990. CTH: A three-dimensional shock wave physics code. International Journal of Impact Engineering, 10(1-4): 351-360. doi: 10.1016/0734-743X(90)90071-3
|
[81] |
Mikaelian K O. 1996. Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension. Physical Review E, 54(4): 3676. doi: 10.1103/PhysRevE.54.3676
|
[82] |
Meshkov E E. 1969. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 4(5): 101-104.
|
[83] |
Mikaelian K O. 2013. Shock-induced interface instability in viscous fluids and metals. Physical Review E, 87(3): 031003. doi: 10.1103/PhysRevE.87.031003
|
[84] |
Mikaelian K O. 1993. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physical Review E, 47(1): 375.
|
[85] |
Miles J W. 1966. Taylor instability of a flat plate. General Dynamics Report No. GAMD-7335, AD643161. San Diego, CA: General Dynamics.
|
[86] |
Monfared S K, Oró D M, Grover M, et al. 2014. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection. Journal of Applied Physics, 116 (6).
|
[87] |
Nishihara K, Ishizaki R, Wouchuk J G, et al. 1998. Hydrodynamic perturbation growth in start-up phase in laser implosion. Physics of Plasmas, 5(5): 1945-1952. doi: 10.1063/1.872864
|
[88] |
Olles J D, Hudspeth M C, Tilger C F, et al. 2021. The effect of liquid tamping media on the growth of Richtmyer-Meshkov instability in copper. Journal of Dynamic Behavior of Materials, 7(2): 338-351. doi: 10.1007/s40870-021-00305-8
|
[89] |
Olles J D, Hudspeth M, Tilger C F, et al. 2020. Hydrodynamic Richtmyer-Meshkov instability of metallic solids used to assess material deformation at high strain-rates. Dynamic Behavior of Materials, Volume 1: Proceedings of the 2019 Annual Conference on Experimental and Applied Mechanics. Springer International Publishing, : 149-155.
|
[90] |
Opie S, Loomis E, Peralta P, et al. 2017. Strength and viscosity effects on perturbed shock front stability in metals. Physical Review Letters, 118(19): 195501.
|
[91] |
Ortega A L, Hill D J, Pullin D I, et al. 2010. Linearized Richtmyer-Meshkov flow analysis for impulsively accelerated incompressible solids. Physical Review E, 81(6): 066305. doi: 10.1103/PhysRevE.81.066305
|
[92] |
Ortega A L, Lombardini M, Barton P T, et al. 2015. Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries. Journal of the Mechanics and Physics of Solids, 76: 291-324. doi: 10.1016/j.jmps.2014.12.002
|
[93] |
Ortega A L, Lombardini M, Pullin D I, et al. 2014. Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Physical Review E, 89(3): 033018.
|
[94] |
Park H S, Lorenz K T, Cavallo R M. 2010. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate. Physical Review Letter, 104(13): 5504-5507.
|
[95] |
Park H S, Remington B A, Becker R C, et al. 2010. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures. Physics of Plasmas, 17 (5).
|
[96] |
Plesset M S. 1954. On the stability of fluid flows with spherical symmetry. Journal of Applied Physics, 25(1): 96-98. doi: 10.1063/1.1721529
|
[97] |
Plohr J N, Plohr B J. 2005. Linearized analysis of Richtmyer–Meshkov flow for elastic materials. Journal of Fluid Mechanics, 537: 55-89. doi: 10.1017/S0022112005004647
|
[98] |
Plohr B J, Sharp D H. 1998. Instability of accelerated elastic metal plates. Zeitschrift für angewandte Mathematik und Physik ZAMP, 49: 786-804.
|
[99] |
Piriz A R, Cela J J L, Cortazar O D, et al. 2005. Rayleigh-Taylor instability in elastic solids. Physical Review E, 72(5): 056313. doi: 10.1103/PhysRevE.72.056313
|
[100] |
Piriz A R, Cela J J L, Tahir N A, et al. 2006. Richtmyer-Meshkov flow in elastic solids. Physical Review E, 74(3): 037301.
|
[101] |
Piriz A R, Cela J J L, Tahir N A. 2009. Linear analysis of incompressible Rayleigh-Taylor instability in solids. Physical Review E, 80(4): 046305. doi: 10.1103/PhysRevE.80.046305
|
[102] |
Piriz A R, Cela J J L, Tahir N A, et al. 2008. Richtmyer-Meshkov instability in elastic-plastic media. Physical Review E, 78(5): 056401. doi: 10.1103/PhysRevE.78.056401
|
[103] |
Piriz A R, Cela J J L, Tahir N A. 2010. Comment on“Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate”. Physical review letters, 105(17): 179601. doi: 10.1103/PhysRevLett.105.179601
|
[104] |
Piriz A R, Cortazar O D, Lopez Cela J J, et al. 2006. The rayleigh-taylor instability. American journal of physics, 74(12): 1095-1098.
|
[105] |
Piriz A R, Piriz S A, Tahir N A. 2021. Elastic-plastic Rayleigh-Taylor instability at a cylindrical interface. Physical Review E, 104(3): 035102. doi: 10.1103/PhysRevE.104.035102
|
[106] |
Piriz A R, Sun Y B, Tahir N A. 2013. Rayleigh-Taylor stability boundary at solid-liquid interfaces. Physical Review E, 88(2): 023026. doi: 10.1103/PhysRevE.88.023026
|
[107] |
Piriz A R, Sun Y B, Tahir N A. 2014. Rayleigh-Taylor linear growth at an interface between an elastoplastic solid and a viscous liquid. Physical Review E, 89(6): 063022.
|
[108] |
Piriz S A, Piriz A R, Tahir N A. 2019. Magneto-Rayleigh–Taylor instability in an elastic finite-width medium overlying an ideal fluid. Journal of Fluid Mechanics, 867: 1012-1042. doi: 10.1017/jfm.2019.193
|
[109] |
Preston D L, Tonks D L, Wallace D C. 2003. Model of plastic deformation for extreme loading conditions. Journal of applied physics, 93(1): 211-220. doi: 10.1063/1.1524706
|
[110] |
Prime M B, Buttler W T, Buechler M A, et al. 2017. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov instabilities. Journal of Dynamic Behavior of Materials, 3: 189-202. doi: 10.1007/s40870-017-0103-9
|
[111] |
Prime M B, Buttler W T, Fensin S J, et al. 2019. Tantalum strength at extreme strain rates from impact-driven Richtmyer-Meshkov instabilities. Physical Review E, 100(5): 053002.
|
[112] |
Prudhomme G, De Rességuier T, Roland C, et al. 2020. Velocity and mass density of the ejecta produced from sinusoidal grooves in laser shock-loaded tin. Journal of Applied Physics, 128 (15).
|
[113] |
Remington B A, Bazan G, Belak J et al. 2004. Materials Science Under Extreme Conditions of Pressure and Strain Rate9. Metal lurgical and Materials Transactions A, : 2587-2607.
|
[114] |
Reinovsky R E, Atchison W L, Dimonte G, et al. 2008. Pulsed-power hydrodynamics: An application of pulsed-power and high magnetic fields to the exploration of material properties and problems in experimental hydrodynamics. IEEE transactions on plasma science, 36(1): 112-124. doi: 10.1109/TPS.2007.914708
|
[115] |
Richtmyer R D. 1954. Taylor instability in shock acceleration of compressible fluids. Los Alamos Scientific Lab. , N. Mex.
|
[116] |
Roberts M S. 2012. Experiments and simulations on the incompressible, Rayleigh-Taylor instability with small wavelength initial perturbations. The University of Arizona.
|
[117] |
Robinson A C, Swegle J W. 1989. Acceleration instability in elastic‐plastic solids. II. Analytical techniques. Journal of applied physics, 66(7): 2859-2872. doi: 10.1063/1.344191
|
[118] |
Rousculp C L, Oro D M, Griego J R, et al. 2016. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry. Los Alamos National Lab. (LANL), Los Alamos, NM (United States).
|
[119] |
Ruden E L, Bell D E. 1997. Rayleigh–Taylor stability criteria for elastic-plastic solid plates and shells. Journal of applied physics, 82(1): 163-170. doi: 10.1063/1.365795
|
[120] |
Sheppard M G, Atchison W L, Anderson W E, et al. 1997. Rayleigh-Taylor mix experiment on Pegasus. Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36127). IEEE, 2: 1399-1404.
|
[121] |
Smalyuk V A, Weber C R, Landen O L, et al. 2020. Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. Plasma Phys Control Fusion, 62: 014007. doi: 10.1088/1361-6587/ab49f4
|
[122] |
Stebner A P, Wehrenberg C E, Li B, et al. 2018. Strength of tantalum shocked at ultrahigh pressures. Materials Science and Engineering: A, 732 : 220-227.
|
[123] |
Steinberg D J, Cochran S G, Guinan M W. 1980. A constitutive model for metals applicable at high‐strain rate. Journal of applied physics, 51(3): 1498-1504. doi: 10.1063/1.327799
|
[124] |
Sun Q, Jia Y, Zhang Z, et al. 2022. Cylindrical metal liner implosion at extremes of pressure and material velocity on an intense pulsed power facility-FP-2. Review of Scientific Instruments, 93 (1).
|
[125] |
Sun Y B, Zeng R H, Tao J J. 2021. Effects of viscosity and elasticity on Rayleigh-Taylor instability in a cylindrical geometry. Physics of Plasmas, 28 (6).
|
[126] |
Swegle J W, Robinson A C. 1989. Acceleration instability in elastic‐plastic solids. I. Numerical simulations of plate acceleration. Journal of Applied Physics, 66(7): 2838-2858. doi: 10.1063/1.344190
|
[127] |
Taylor G I. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 201(1065): 192-196.
|
[128] |
Terrones G. 2005. Fastest growing linear Rayleigh-Taylor modes at solid/fluid and solid/solid interfaces. Physical Review E, 71(3): 036306.
|
[129] |
Terrones G, Carrara M D. 2015. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface. Physics of Fluids, 27 (5).
|
[130] |
Terrones G, Heberling T. 2020. Rayleigh–Taylor instability at spherical interfaces between viscous fluids: The fluid/fluid interface. Physics of Fluids, 32 (9).
|
[131] |
Velikovich A L. 1996. Analytic theory of Richtmyer–Meshkov instability for the case of reflected rarefaction wave. Physics of Fluids, 8(6): 1666-1679. doi: 10.1063/1.868938
|
[132] |
Vogler T J, Hudspeth M C. 2021. Tamped Richtmyer–Meshkov instability experiments to probe high-pressure material strength. Journal of Dynamic Behavior of Materials, 7: 262-278.
|
[133] |
Wang L F, Ye W H, He X T, et al. 2017. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Sci China Phys Mech Astron, 60: 055201. doi: 10.1007/s11433-017-9016-x
|
[134] |
Wang Pei, He Anmin, Shao Jianli, et al. 2018. Numerical and theoretical investigations of shock-induced material ejection and ejecta-gas mixing. Scientia Sinica, 48(9): 106-116.
|
[135] |
Weinwurm M, Bland S N, Chittenden J P. 2014. Metal liner-driven cylindrically convergent isentropic compression of cryogenic deuterium. Journal of Physics: Conference Series. IOP Publishing, 500(8): 082002. doi: 10.1088/1742-6596/500/8/082002
|
[136] |
White G N. 1973. Los Alamos National Laboratory Report No. LA-5225-MS (unpublished
|
[137] |
Wouchuk J G. 2001. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected. Physical Review E, 63(5): 056303. doi: 10.1103/PhysRevE.63.056303
|
[138] |
Zhang Q, Graham M J. 1997. Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry. Physical review letters, 79(14): 2674. doi: 10.1103/PhysRevLett.79.2674
|
[139] |
Zhang S, Liu W, Wang G, et al. 2019. Investigation of convergent Richtmyer–Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding. Chinese Physics B, 28(4): 044702.
|
[140] |
Zhao Z, Wang P, Liu N, et al. 2020. Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry. Journal of Fluid Mechanics, 900: A24. doi: 10.1017/jfm.2020.526
|