| Citation: | Liu Z X, Zhang C Y, Cao M, Chen F Y, Liu J, Li Y L. Development and application of electromagnetic loading expansion ring test technology. Advances in Mechanics, 2024, 54(4): 639-668 doi: 10.6052/1000-0992-24-010 | 
	                | [1] | 
					 桂毓林. 2007. 电磁加载下金属膨胀环的动态断裂与碎裂研究. [博士论文]. 中国工程物理研究院  (Gui Y L. 2007. The study on the dynamic fracture and fragmentation of metal freely expanding ring driven by electromagnetically loading. [PhD Thesis] . Beijing: China Academy of Engineering Physics). 
					Gui Y L. 2007. The study on the dynamic fracture and fragmentation of metal freely expanding ring driven by electromagnetically loading. [PhD Thesis] . Beijing: China Academy of Engineering Physics. 
						
					 | 
			
| [2] | 
					 郭昭亮, 范诚, 刘明涛等. 2016. 膨胀环受力历史对应力应变关系的影响. 爆炸与冲击, 36(6): 819-824  (Guo Z L, Fan C, Liu M T, et al. 2016. Effect of loading history on stress-strain relationship of expanding ring. Explosion and Shock Waves, 36(6): 819-824). doi:  10.11883/1001-1455(2016)06-0819-06 
					Guo Z L, Fan C, Liu M T, et al. 2016. Effect of loading history on stress-strain relationship of expanding ring. Explosion and Shock Waves, 36(6): 819-824. doi:  10.11883/1001-1455(2016)06-0819-06 
						
					 | 
			
| [3] | 
					 郭昭亮. 2019. 高应变率加载下金属环与柱壳膨胀变形失稳以断裂研究. [博士论文]. 中国工程物理研究院  (Guo Z L. 2019. Research on expansion deformation instability and fracture of metal rings and cylindrical shells under high strain rate loading. [PhD Thesis]. China Academy of Engineering Physics). 
					Guo Z L. 2019. Research on expansion deformation instability and fracture of metal rings and cylindrical shells under high strain rate loading. [PhD Thesis]. China Academy of Engineering Physics. 
						
					 | 
			
| [4] | 
					 李嘉皓, 徐便, 郑宇轩等. 2023. 液压膨胀环恒应变率加载技术. 爆炸与冲击,   43 (2): 119-127  (Li J H, Xu B, Zheng Y X, et al. 2023. Constant strain-rate loading of liquid-driving expanding ring. Explosion and Shock Waves,   43 (2): 119-127). 
					Li J H, Xu B, Zheng Y X, et al. 2023. Constant strain-rate loading of liquid-driving expanding ring. Explosion and Shock Waves, 43(2): 119-127. 
						
					 | 
			
| [5] | 
					 李天密. 2018. PMMA圆环动态拉伸碎裂特征研究. [硕士论文]. 宁波大学  (Li T M. 2018. Research on dynamic tensile fragmentation characteristics of PMMA ring. [Master Thesis]. Ningbo University). 
					Li T M. 2018. Research on dynamic tensile fragmentation characteristics of PMMA ring. [Master Thesis]. Ningbo University. 
						
					 | 
			
| [6] | 
					 李天密, 张佳, 方继松等. 2018. PMMA膨胀环动态拉伸碎裂实验研究. 力学学报,   50 (4): 820-827  (Li T M, Zhang J, Fang J S, et al. 2018. Experimental study of the high velocity expansion and fragmentation of PMMA rings. Chinese Journal of Theoretical and Applied Mechanics,   50 (4): 820-827). 
					Li T M, Zhang J, Fang J S, et al. 2018. Experimental study of the high velocity expansion and fragmentation of PMMA rings. Chinese Journal of Theoretical and Applied Mechanics, 50(4): 820-827. 
						
					 | 
			
| [7] | 
					 卢思凡, 张佳, 王珠等. 2019. 液压膨胀环动态拉伸碎裂的有限元模拟. 固体力学学报,   40 (4): 372-380  (Lu S F, Zhang J, Wang Z, et al. 2019. FEM simulation of dynamic fragmentation of liquid-driving expanding ring. Chinese Journal of Solid Mechanics,   40 (4): 372-380). 
					Lu S F, Zhang J, Wang Z, et al. 2019. FEM simulation of dynamic fragmentation of liquid-driving expanding ring. Chinese Journal of Solid Mechanics, 40(4): 372-380. 
						
					 | 
			
| [8] | 
					 汤佳妮, 徐便, 郑宇轩等. 2021. 脆性膨胀环动态拉伸碎裂实验研究. 爆炸与冲击,   41 (1): 93-101  (Tang J N, Xu B, Zheng Y X, et al. 2021. Experimental study for dynamic fragmentation of brittle expansion rings. Explosion and Shock Waves,   41 (1): 93-101). 
					Tang J N, Xu B, Zheng Y X, et al. 2021. Experimental study for dynamic fragmentation of brittle expansion rings. Explosion and Shock Waves, 41(1): 93-101. 
						
					 | 
			
| [9] | 
					 汤铁钢, 李庆忠, 陈永涛等. 2010a. 爆炸膨胀环一维应力假定的分析与讨论. 爆炸与冲击, 30(6): 577-582  (Tang T G, Li Q Z, Chen Y T, et al. 2010a. Discussion about one-dimensional stress presume for explosion expanding ring test. Explosion and Shock Waves, 30(6): 577-582). 
					Tang T G, Li Q Z, Chen Y T, et al. 2010a. Discussion about one-dimensional stress presume for explosion expanding ring test. Explosion and Shock Waves, 30(6): 577-582. 
						
					 | 
			
| [10] | 
					 汤铁钢, 李庆忠, 刘仓理等. 2010b. 爆炸膨胀环的截面尺寸效应. 爆炸与冲击, 30(1): 39-44  (Tang T G, Li Q Z, Liu C L, et al. 2010b. Size effects of expanding ring by explosive loading. Explosion and Shock Waves, 30(1): 39-44). 
					Tang T G, Li Q Z, Liu C L, et al. 2010b. Size effects of expanding ring by explosive loading. Explosion and Shock Waves, 30(1): 39-44. 
						
					 | 
			
| [11] | 
					 汤铁钢, 刘仓理. 2013a. 一种新型爆炸膨胀环实验装置. 实验力学,   28 (2): 247-254  (Tang T G, Liu C L. 2013a. A novel experimental setup for explosively loaded expanding ring test. Journal of Experimental Mechanics,   28 (2): 247-254). 
					Tang T G, Liu C L. 2013a. A novel experimental setup for explosively loaded expanding ring test. Journal of Experimental Mechanics, 28(2): 247-254. 
						
					 | 
			
| [12] | 
					 杨晨, 刘明涛, 汤铁钢等. 2021. 电磁加载下7075铝环的膨胀断裂模式转变研究. 爆炸与冲击,   41 (3): 100-104  (Yang C, Liu M T, Tang T G, et al. 2021. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading. Explosion and Shock Waves,   41 (3): 100-104). 
					Yang C, Liu M T, Tang T G, et al. 2021. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading. Explosion and Shock Waves, 41(3): 100-104. 
						
					 | 
			
| [13] | 
					 杨晨. 2018. 动态拉伸加载下7075Al环的断裂模式转变现象研究. [硕士论文]. 中国工程物理研究院  (Yang C. 2018. Research on the fracture mode transition phenomenon of 7075Al ring under dynamic tensile loading. [Master Thesis]. China Academy of Engineering Physics). 
					Yang C. 2018. Research on the fracture mode transition phenomenon of 7075Al ring under dynamic tensile loading. [Master Thesis]. China Academy of Engineering Physics. 
						
					 | 
			
| [14] | 
					 俞鑫炉, 付应乾, 董新龙. 2017. 高加载率金属电磁膨胀环实验处理分析. 塑性工程学报,   24 (5): 13-18  (Yu X L, Fu Y Q, Dong X L. 2017. Data processing analysis of high strain-rate metal ring expanding test driven by electromagnetic method. Journal of Plasticity Engineering,   24 (5): 13-18). 
					Yu X L, Fu Y Q, Dong X L. 2017. Data processing analysis of high strain-rate metal ring expanding test driven by electromagnetic method. Journal of Plasticity Engineering, 24(5): 13-18. 
						
					 | 
			
| [15] | 
					 张佳, 郑宇轩, 周风华. 2017. 立式液压膨胀环实验技术研究. 宁波大学学报(理工版),   30 (2): 35-38  (Zhang J, Zheng Y X, Zhou F H. 2017. Experimental technique for fragmentation of liquid-driven expanding ring. Journal of Ningbo University: Natural Science and Engineering Edition,   30 (2): 35-38). 
					Zhang J, Zheng Y X, Zhou F H. 2017. Experimental technique for fragmentation of liquid-driven expanding ring. Journal of Ningbo University: Natural Science and Engineering Edition, 30(2): 35-38. 
						
					 | 
			
| [16] | 
					 郑宇轩. 2013. 韧性材料的动态碎裂特性研究. [博士论文]. 中国科学技术大学  (Zheng Y X. 2013. Research on dynamic fragmentation of ductile metals. [PhD Thesis]. University of Science and Technology of China). 
					Zheng Y X. 2013. Research on dynamic fragmentation of ductile metals. [PhD Thesis]. University of Science and Technology of China 
						
					 | 
			
| [17] | 
					 郑宇轩, 周风华, 胡时胜. 2014. 一种基于SHPB的冲击膨胀环实验技术. 爆炸与冲击,   4 : 483-488  (Zheng Y X, Zhou F H, Hu S S. 2014. An SHPB-based experimental technique for dynamic fragmentations of expanding rings. Explosion and Shock Waves,   4 : 483-488). 
					Zheng Y X, Zhou F H, Hu S S. 2014. An SHPB-based experimental technique for dynamic fragmentations of expanding rings. Explosion and Shock Waves, 4: 483-488. 
						
					 | 
			
| [18] | 
					 Altynova M, Hu X, Daehn G S. 1996. Increased ductility in high velocity electromagnetic ring expansion. Metallurgical and Materials Transactions, 27: 1837-1844. doi:  10.1007/BF02651933 
						
					 | 
			
| [19] | 
					 Asay J R. 1997. The use of shock-structure methods for evaluating high-pressure material properties. International Journal of Impact Engineering, 20: 27-61. doi:  10.1016/S0734-743X(97)87478-7 
						
					 | 
			
| [20] | 
					 Challita A, Hanlin G A. 1995. Strength of aluminum under pulsed heating conditions. IEEE Transactions on Magnetics, 31(1): 684-688. doi:  10.1109/20.364611 
						
					 | 
			
| [21] | 
					 Chen Y, Guo H, Sun M Q, et al. 2022. Tensile mechanical properties and dynamic constitutive model of polyurea elastomer under different strain rates. Polymers, 14(17): 3579. doi:  10.3390/polym14173579 
						
					 | 
			
| [22] | 
					 Chen L, Yue C J, Zhou Y K, et al. 2021. Experimental and mesoscopic study of dynamic tensile properties of concrete using direct-tension technique. International Journal of Impact Engineering, 155: 103895. doi:  10.1016/j.ijimpeng.2021.103895 
						
					 | 
			
| [23] | 
					 Clark D S, Wood D S. 1950. The tensile impact properties of some metals and alloys. Transactions of the American Society for Metals, 42: 45-74. 
						
					 | 
			
| [24] | 
					 Dan J K, Guo Z L, Chen Y, et al. 2020. Preliminary investigations on dynamic fracture of ductile metals by using electromagnetically driven expanding ring. AIP Advances, 10(10): 105001. doi:  10.1063/5.0016527 
						
					 | 
			
| [25] | 
					 Duffey T A, Karpp R R, Warnes R H, et al. 1981. Dynamic material property measurements using an improvement of the freely expanding ring technique. Society for Experimental Stress Analysis meeting, Dearborn, MI, USA. 
						
					 | 
			
| [26] | 
					 Fanny G, Gabriel S, Patrice L, et al. 2021. Plate-impact-driven ring expansion test (PIDRET) for dynamic fragmentation. In: Proceedings of the 13th International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading (DYMAT) in Madrid. 
						
					 | 
			
| [27] | 
					 Fanny G, Gabriel S, Patrice L, et al. 2024. High strain rate responses of some metals and alloys using a plate impact driven ring expansion test (PIDRET). International Journal of Impact Engineering, 184: 104829. doi:  10.1016/j.ijimpeng.2023.104829 
						
					 | 
			
| [28] | 
					 Forrestal M J, Walling H C. 1972. Axisymmetric plastic response of rings to short-duration pressure pulses. American Institute of Aeronautics and Astronautics, 10(10): 1382-1384. doi:  10.2514/3.6634 
						
					 | 
			
| [29] | 
					 Gourdin W H. 1989a. VISAR analysis in the presence of large intensity changes: Application to the expanding ring. Review of Scientific Instruments, 60(4): 754-759. doi:  10.1063/1.1141015 
						
					 | 
			
| [30] | 
					 Gourdin W H, Weinland S L, Boling R M. 1989b. Development of the electromagnetically launched expanding ring as a high-strain-rate test technique. Review of Scientific Instruments, 60(3): 427-432. doi:  10.1063/1.1140395 
						
					 | 
			
| [31] | 
					 Gourdin W H. 1989c. Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test. Journal of Applied Physics, 65(2): 411-422. doi:  10.1063/1.343121 
						
					 | 
			
| [32] | 
					 Gourdin W H, Lassila D H. 1991. Flow-stress of OFE copper at strain rates from 10−3 to 104 s−1 grain-size effects and comparison to the mechanical threshold stress model. Acta Metallurgica et Materialia, 10(39): 2337-2348. 
						
					 | 
			
| [33] | 
					 Grady D E, Benson D A. 1983. Fragmentation of metal rings by electromagnetic loading. Experimental Mechanics, 23(4): 393-400. doi:  10.1007/BF02330054 
						
					 | 
			
| [34] | 
					 Grady D E, Olsen M L. 2003. A statistics and energy based theory of dynamic fragmentation. International Journal of Impact Engineering, 29: 293-306. doi:  10.1016/j.ijimpeng.2003.09.026 
						
					 | 
			
| [35] | 
					 Han Z B, Qu W J, Zhu P. 2023. Tensile behavior of GFRP bar at quasi-static and high strain rate. Construction and Building Materials, 364: 129915. doi:  10.1016/j.conbuildmat.2022.129915 
						
					 | 
			
| [36] | 
					 Hoggatt C R, Recht R F. 1969. Stress-strain data obtained at high rates using an expanding ring. Experimental Mechanics, 9: 441-448. doi:  10.1007/BF02410405 
						
					 | 
			
| [37] | 
					 Huang L T, Han X T, Chen Q, et al. 2014. Effect of electromagnetic ring expansion on the mechanical property of A5083 aluminum alloy. IEEE Transactions on Applied Superconductivity, 24(3): 7100104. 
						
					 | 
			
| [38] | 
					 Ivanov A G. 1976. Explosive deformation and destruction of tubes. Strength of Materials, 11(8): 1303-1306. 
						
					 | 
			
| [39] | 
					 Ivanov A G, Kleshchevnikov O A, Tsypkin V I, et al. 1976. Experimental study of the explosive expansion of thin rings of annealed aluminum alloy. Combustion, Explosion and Shock Waves, 12(1): 105-109. doi:  10.1007/BF00740880 
						
					 | 
			
| [40] | 
					 Jia S G, Tan Q H, Ye J Y, et al. 2021. Experiments on dynamic mechanical properties of austenitic stainless steel S30408 and S31608. Journal of Constructional Steel Research, 179: 106556. doi:  10.1016/j.jcsr.2021.106556 
						
					 | 
			
| [41] | 
					 Janiszewski J. 2012a. Measurement procedure of ring motion with the use of high-speed camera during electromagnetic expansion. Metrology and Measurement Systems, 19(4): 797-804. doi:  10.2478/v10178-012-0071-2 
						
					 | 
			
| [42] | 
					 Janiszewski J. 2012b. Ductility of selected metals under electromagnetic ring test loading conditions. International Journal of Solids and Structures, 49: 1001-1008. doi:  10.1016/j.ijsolstr.2012.01.005 
						
					 | 
			
| [43] | 
					 Janiszewski J, Panowicz R. 2013. Development and validation of numerical model for predicting electromagnetic expansion of composite rings. Solid State Phenomena, 198: 627-632. doi:  10.4028/www.scientific.net/SSP.198.627 
						
					 | 
			
| [44] | 
					 Janiszewski J, Pichola W. 2009. Development of electromagnetic ring expansion apparatus for high-strain- rate test. Solid State Phenomena, 147-149: 645-650. doi:  10.4028/www.scientific.net/SSP.147-149.645 
						
					 | 
			
| [45] | 
					 Jiang F, Sun Q Q, Lai Z P, et al. 2016. Electromagnetically driven expanding ring test for the strength study of the Zylon/epoxy composite. IEEE Transactions on Applied Superconductivity, 26: 9000106. 
						
					 | 
			
| [46] | 
					 Johnson J R, Taber G, Vivek A, et al. 2009. Coupling experiment and simulation in electromagnetic forming using photon Doppler velocimetry. Steel Research International, 80(5): 359-365. 
						
					 | 
			
| [47] | 
					 Johnson J R, Taber G A, Daehn G S. 2010. Constitutive relation development through the FIRE test. Proceedings of 4th International Conference on High Speed Forming, Columbus. 295-306. 
						
					 | 
			
| [48] | 
					 Johnson P C, Stein B A, Davis R S. 1963. Measurement of dynamic plastic flow properties under uniform stress. Symposium on the dynamic behavior of materials. ASTM Special Publication, 336: 195-198. 
						
					 | 
			
| [49] | 
					 Kahana E, Ben-Artzy A, Sadot O, et al. 2015. Microstructural evolution of AZ31 magnesium alloy after high strain rate expanding rings tests. Materials Science and Engineering: A, 12(641): 274-280. 
						
					 | 
			
| [50] | 
					 Landen D, Satapathy S, Suris D, et al. 2005. Electromagnetically driven expanding ring experiments for strength studies. 2005 IEEE Pulsed Power Conference. 
						
					 | 
			
| [51] | 
					 Landen D, Satapathy S, Surls D. 2007. Measurement of high-strain-rate adiabatic strength of conductors. IEEE Transactions on Magnetics, 43(1): 349-354. doi:  10.1109/TMAG.2006.887677 
						
					 | 
			
| [52] | 
					 Landen D, Wetz D, Satapathy S, et al. 2008. Electromagnetically driven expanding ring with pre-heating. 14th Symposium on Electromagnetic Launch Technology. 
						
					 | 
			
| [53] | 
					 Li M, Yu H, Zhang J Z, et al. 2023. Dynamic tensile mechanical properties of thermally damaged sandstone under impact loads and the influence mechanism of composition. Engineering Fracture Mechanics, 289: 109388. doi:  10.1016/j.engfracmech.2023.109388 
						
					 | 
			
| [54] | 
					 Li W, Chen H. 2023. Tensile performance of normal and high-strength structural steels at high strain rates. Thin-Walled Structures, 184: 110457. doi:  10.1016/j.tws.2022.110457 
						
					 | 
			
| [55] | 
					 Liang M Z, Li X Y, Qin J G, et al. 2013. Improved expanding ring technique for determining dynamic material properties. Review of Scientific Instruments, 84: 065114. doi:  10.1063/1.4811658 
						
					 | 
			
| [56] | 
					 Lipkin J, Swearengen J C, Karnes C H. 1973. Mechanical properties of 6061 Al-Mg-Si alloy after very rapid heating. Journal of the Mechanics and Physics of Solids, 21(2): 91-112. doi:  10.1016/0022-5096(73)90032-X 
						
					 | 
			
| [57] | 
					 Ma H J, Mao W J, Su H L, et al. 2021. Rate-related study on mechanical properties and fracture characteristics in aluminium alloy via electromagnetic ring expansion test. International Journal of Mechanical Sciences, 209: 106712. doi:  10.1016/j.ijmecsci.2021.106712 
						
					 | 
			
| [58] | 
					 Mocko W, Brodecki A, Kruszka L. 2016. Mechanical response of dual phase steel at quasi-static and dynamic tensile loadings after initial fatigue loading. Mechanics of Materials, 92: 18-27. doi:  10.1016/j.mechmat.2015.07.015 
						
					 | 
			
| [59] | 
					 Mott N F. 1947. Fragmentation of shell cases. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 189(1018): 300-308. 
						
					 | 
			
| [60] | 
					 Nguyen K, Cheol K H, Hyunho S, et al. 2017. Numerical investigation into the stress wave transmitting characteristics of threads in the split Hopkinson tensile bar test. International Journal of Impact Engineering, 109: 253-263. doi:  10.1016/j.ijimpeng.2017.07.004 
						
					 | 
			
| [61] | 
					 Nicolas C, Krishnaswamy R C. 2018. Dynamic strain localization in magnesium alloy AZ31B-O. Mechanics of Materials, 116: 189-201. doi:  10.1016/j.mechmat.2017.09.008 
						
					 | 
			
| [62] | 
					 Niordson F I. 1965. A unit for testing materials at high strain rates. Experimental Mechanics, 5(1): 29-32. doi:  10.1007/BF02320901 
						
					 | 
			
| [63] | 
					 Perrone N. 1965. On a simplified method for solving impulsively loaded structures of rate-sensitive materials. Journal of Applied Mechanics, 32(3): 489-492. doi:  10.1115/1.3627249 
						
					 | 
			
| [64] | 
					 Perrone N. 1970. Impulsively loaded strain hardened rate-sensitive rings and tubes. International Journal of Solids and Structures, 6(8): 1119-1132. doi:  10.1016/0020-7683(70)90051-X 
						
					 | 
			
| [65] | 
					 Peter J J, Lloyd P B, Dwight L, et al. 2011. Measurement of high-strain-rate strength of a metal-matrix composite conductor. Dynamic Behavior of Materials, Volume 1, Conference Proceedings of the Society for Experimental Mechanics Series, 269-276. 
						
					 | 
			
| [66] | 
					 Pham T N, Choi H S, Kim J B. 2013. A numerical investigation into the tensile split Hopkinson pressure bars test for sheet metals. 4th International Conference on Information Technology for Manufacturing Systems, ITMS. 
						
					 | 
			
| [67] | 
					 Rahmat M. 2019. Dynamic mechanical characterization of aluminum: Analysis of strain-rate-dependent behavior. Mechanics of Time-Dependent Materials, 2(23): 385-405. 
						
					 | 
			
| [68] | 
					 Satapathy S, Landen D. 2006. Expanding ring experiments to measure high-temperature adiabatic properties. International Journal of Impact Engineering, 33: 735-744. doi:  10.1016/j.ijimpeng.2006.09.085 
						
					 | 
			
| [69] | 
					 Serikov S V. 1975. Stability of the flow of metallic rings under the action of an explosion. Combustion, Explosion and Shock Waves, 11(1): 98-104. 
						
					 | 
			
| [70] | 
					 Strand O T, Goosman D R, Martinez C, et al. 2006. Compact system for high-speed velocimetry using heterodyne techniques. Review of Scientific Instruments, 77(8): 295-306. 
						
					 | 
			
| [71] | 
					 Tamhane A A, Altynova M M, Daehn G S. 1996. Effect of sample size on ductility in electromagnetic ring expansion. Scripta Materialia, 34(8): 1345-1350. doi:  10.1016/1359-6462(95)00672-9 
						
					 | 
			
| [72] | 
					 Tang T G, Ren G W, Guo Z L, et al. 2013b. An improved technique of expanding metal ring experiment under high explosive loading. Review of Scientific Instruments, 84(4): 043908. doi:  10.1063/1.4802255 
						
					 | 
			
| [73] | 
					 Thomas D. 1972. An elastic-viscoplastic solution for impulsively loaded rings. International Journal of Solids and Structures, 8(7): 913-921. doi:  10.1016/0020-7683(72)90006-6 
						
					 | 
			
| [74] | 
					 von Karman T, Duwez P. 1950. The propagation of plastic deformation in solids. Journal of Applied Physics, 21: 987-994. doi:  10.1063/1.1699544 
						
					 | 
			
| [75] | 
					 Walling H C, Forrestal M J. 1973. Elastic-plastic expansion of 6061-T6 aluminum rings. American Institute of Aeronautics and Astronautics, 11(8): 1196-1197. doi:  10.2514/3.6894 
						
					 | 
			
| [76] | 
					 Warnes R H, Duffey T A, Karpp R R, et al. 1981. An improved technique for determining dynamic material properties using the expanding ring. Shock Waves and High-Strain-Rate Phenomena in Metals, 23-36. 
						
					 | 
			
| [77] | 
					 Warnes R H, Duffey T A, Karpp R R, et al. 1982. Development of the freely expanding ring test for measuring dynamic material properties. Experimental mechanics, 22(5): 48. 
						
					 | 
			
| [78] | 
					 Weggel R J, Ratka J O, Spiegelberg W D, et al. 1994. Strength of Hycon 3 HPTM Be-Cu and other copper alloys from 20 ℃ to 200 ℃. IEEE Transactions on Magnetics, 30(4): 2188-2191. doi:  10.1109/20.305706 
						
					 | 
			
| [79] | 
					 Wesenberg D L, Sagartz M J. 1977. Dynamic fracture of 6061-16 aluminum cylinders. Journal of Applied Mechanics, 44(4): 643-646. doi:  10.1115/1.3424150 
						
					 | 
			
| [80] | 
					 Wetz D, Landen D, Satapathy S, et al. 2011. Inductive heating of materials for the study of high temperature mechanical properties. IEEE Transactions on Dielectrics and Electrical Insulation, 18(4): 1452-1351. 
						
					 | 
			
| [81] | 
					 Wood W W. 1967. Experimental mechanics at velocity extremes-very high strain rates: Study covers tensile and compression specimens, spherical bulging and cylindrical bulging for a wide variety of materials. Experimental Mechanics, 7(10): 441-446. doi:  10.1007/BF02326303 
						
					 | 
			
| [82] | 
					 Yang K, Taber G, Sapanathan T, et al. 2016. Suitability of the electromagnetic ring expansion test to characterize materials under high strain rate deformation. MATEC Web of Conferences, 80: 15002. doi:  10.1051/matecconf/20168015002 
						
					 | 
			
| [83] | 
					 Yu J C, Song B, Xia D B, et al. 2020. Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. Journal of Magnesium and Alloys, 8(3): 849-859. doi:  10.1016/j.jma.2020.02.013 
						
					 | 
			
| [84] | 
					 Zhang H, Ravi-Chandar K. 2006. On the dynamics of necking and fragmentation I. Real-time and post-mortem observations in Al 6061-O. International Journal of Fracture, 142(3): 183-217. 
						
					 | 
			
| [85] | 
					 Zhang H, Ravi-Chandar K. 2008. On the dynamics of necking and fragmentation II. Effect of material properties, geometrical constraints and absolute size. International Journal of Fracture, 150: 3-36. doi:  10.1007/s10704-008-9233-3 
						
					 | 
			
| [86] | 
					 Zhang H, Ravi-Chandar K. 2009. On the dynamics of necking and fragmentation III. Effect of cladding with a polymer. International Journal of Fracture, 155: 101-118. doi:  10.1007/s10704-009-9332-9 
						
					 | 
			
| [87] | 
					 Zhang H, Ravi-Chandar K. 2010. On the dynamics of localization and fragmentation-IV. Expansion of Al 6061-O tubes. International Journal of Fracture, 163(1-2): 41-65. doi:  10.1007/s10704-009-9441-5 
						
					 | 
			
| [88] | 
					 Zhang J, Zheng Y X, Zhou F H, et al. 2018. Experimental technique for dynamic fragmentation of liquid-driving expanding ring. EPJ Web of Conferences, 183: 1-5. doi:  10.1051/epjconf/201818300001 
						
					 |