Citation: | Wang B. Thermodynamic strength theory (TST). Advances in Mechanics, 2023, 53(3): 693-712 doi: 10.6052/1000-0992-23-017 |
[1] |
AlAjarmeh O, Manalo A, Benmokrane B, et al. 2019. Novel testing and characterization of GFRP bars in compression. Construction and Building Materials, 225: 1112-1126. doi: 10.1016/j.conbuildmat.2019.07.280
|
[2] |
Anderson T L. Fracture mechanics: Fundamentals and applications. CRC Press, 2007.
|
[3] |
Audoly B, Hutchinson J W. 2016. Analysis of necking based on a one-dimensional model. Journal of the Mechanics and Physics of Solids, 97: 68-91. doi: 10.1016/j.jmps.2015.12.018
|
[4] |
Born M. 1939. Thermodynamics of crystals and melting. The Journal of Chemical Physics, 7: 591-603. doi: 10.1063/1.1750497
|
[5] |
Born M. On the stability of crystal lattices: I. Cambridge University Press, 1940.
|
[6] |
Born M, Fürth R. The stability of crystal lattices. III: An attempt to calculate the tensile strength of a cubic lattice by purely static considerations. Cambridge University Press, 1940.
|
[7] |
Carter B. 1992. Size and stress gradient effects on fracture around cavities. Rock Mechanics and Rock Engineering, 25: 167-186. doi: 10.1007/BF01019710
|
[8] |
Chaboche J L. 1981. Continuous damage mechanics: a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64: 233-247. doi: 10.1016/0029-5493(81)90007-8
|
[9] |
Chaboche J L. 1988. Continuum damage mechanics: Part I:General concepts. Journal of Applied Mechanics, 55: 59-64. doi: 10.1115/1.3173661
|
[10] |
Chen B, Chen J, Li R, Wang B. 2023. Experimental validation of the thermodynamic theory for predicting the strength of 6061 Al alloy with complex loadings. Engineering Fracture Mechanics, 277: 109006. doi: 10.1016/j.engfracmech.2022.109006
|
[11] |
Chen J, Liu W, Wang B. 2021. Prediction of theoretical strength of diamond under complex loadings. Extreme Mechanics Letters, 44: 101233. doi: 10.1016/j.eml.2021.101233
|
[12] |
Griffith A A. 1921. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221: 163-198. doi: 10.1098/rsta.1921.0006
|
[13] |
Gurson A L. 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I: Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99: 297-300.
|
[14] |
Hill R. 1975. On the elasticity and stability of perfect crystals at finite strain. Mathematical Proceedings of the Cambridge Philosophical Society, 77: 225-240. doi: 10.1017/S0305004100049549
|
[15] |
Hu Y, Chen J, Wang B. 2022. Global nonequilibrium energy criterion for predicting strength of 316L stainless steel under complex loadings: Theoretical modeling and experimental validation. Science China Physics, Mechanics & Astronomy, 65: 244611.
|
[16] |
Hutchinson J. 1968. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 16: 13-31. doi: 10.1016/0022-5096(68)90014-8
|
[17] |
Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 1957: 24.
|
[18] |
Kachanov L. 1958. Rupture time under creep conditions. Izv. Akad. Nauk SSSR, 8, 26-31.
|
[19] |
Kaddour A S, Hinton M J. 2013. Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II. Journal of Composite Materials, 47: 925-966. doi: 10.1177/0021998313478710
|
[20] |
Kaddour A, Hinton M. 2012. Benchmarking of triaxial failure criteria for composite laminates: Comparison between models of ‘Part (A)’of ‘WWFE-II’. Journal of Composite Materials, 46: 2595-2634. doi: 10.1177/0021998312449887
|
[21] |
Karki B, Ackland G, Crain J. 1997. Elastic instabilities in crystals from ab initio stress-strain relations. Journal of Physics: Condensed Matter, 9: 8579. doi: 10.1088/0953-8984/9/41/005
|
[22] |
Kolupaev V. 2017. Generalized strength criteria as functions of the stress angle. Journal of Engineering Mechanics, 143: 04017095. doi: 10.1061/(ASCE)EM.1943-7889.0001322
|
[23] |
Kondepudi D, Prigogine I. Modern thermodynamics: from heat engines to dissipative structures. John wiley & sons, 2014.
|
[24] |
Krajcinovic. 1983. Constitutive Equations for Damaging Materials. Journal of Applied Mechanics, 50: 355-360. doi: 10.1115/1.3167044
|
[25] |
Lemaitre J. Evalution of dissipation and damage in metals submitted to dynamic loading. Proceedings of International Conference of Mechanical Behavior of Materials, 1971.
|
[26] |
Lemaitre J. A course on damage mechanics. Springer Science & Business Media, 2012.
|
[27] |
Lestringant C, Audoly B. 2020. A one-dimensional model for elasto-capillary necking. Proceedings of the Royal Society A, 476: 20200337. doi: 10.1098/rspa.2020.0337
|
[28] |
Liu M, Gan Y, Hanaor D A, Liu B, Chen C. 2015. An improved semi-analytical solution for stress at round-tip notches. Engineering Fracture Mechanics, 149: 134-143. doi: 10.1016/j.engfracmech.2015.10.004
|
[29] |
Liu Z, Wang B. 2021. Prediction on the theoretical strength of diamond, c-BN, Cu, and CeO2. AIP Advances, 11: 095111. doi: 10.1063/5.0063928
|
[30] |
Liu Z, Wang B. 2023. Prediction of ideal strength by machine learning. Materials Chemistry and Physics, 299: 127476. doi: 10.1016/j.matchemphys.2023.127476
|
[31] |
Milstein F, Hill R. 1979. Divergences among the born and classical stability criteria for cubic crystals under hydrostatic loading. Physical Review Letters, 43: 1411. doi: 10.1103/PhysRevLett.43.1411
|
[32] |
Mizushima K, Yip S, Kaxiras E. 1994. Ideal crystal stability and pressure-induced phase transition in silicon. Physical Review B, 50: 14952. doi: 10.1103/PhysRevB.50.14952
|
[33] |
Mohr O. 1900. Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des Vereins Deutscher Ingenieure, 46: 1572-1577.
|
[34] |
Murakami S. 1988. Mechanical modeling of material damage. Journal of Applied Mechanics, 55: 280-286. doi: 10.1115/1.3173673
|
[35] |
Murakami Y. 1993. Stress intensity factors handbook: vol. 3. Journal of Applied Mechanics, 60: 1063. doi: 10.1115/1.2900983
|
[36] |
Onsager L. 1931. Reciprocal relations in irreversible processes: I. Physical Review, 37: 405. doi: 10.1103/PhysRev.37.405
|
[37] |
Onsager L. 1931. Reciprocal relations in irreversible processes: II. Physical Review, 38: 2265. doi: 10.1103/PhysRev.38.2265
|
[38] |
Rabotnov Y N. 1963. Paper 68: On the equation of state of creep. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 178: 2-117-112-122.
|
[39] |
Rice J R. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35: 379-386. doi: 10.1115/1.3601206
|
[40] |
Timoshenko S. History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation, 1983.
|
[41] |
Wang B. 2020. The intrinsic nature of materials failure and the global non-equilibrium energy criterion. Science China Physics, Mechanics & Astronomy, 63: 124611.
|
[42] |
Wang B. 2021. A general thermodynamic theory for predicting the failure property of material structures with complex loadings. Engineering Fracture Mechanics, 254: 107936. doi: 10.1016/j.engfracmech.2021.107936
|
[43] |
Wang B. Material strength: a rational nonequilibrium energy model for complex loadings. Journal of Applied Mechanics, 2021, 88(2).
|
[44] |
Wang H, Li M. 2013. Estimate of the maximum strength of metallic glasses from finite deformation theory. Physical Review Letters, 111: 065507. doi: 10.1103/PhysRevLett.111.065507
|
[45] |
Wang J, Li J, Yip S, Phillpot S, Wolf D. 1995. Mechanical instabilities of homogeneous crystals. Physical Review B, 52: 12627. doi: 10.1103/PhysRevB.52.12627
|
[46] |
Wang J, Li J, Yip S, Wolf D, Phillpot S. 1997. Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals. Physica a: Statistical Mechanics and its Applications, 240: 396-403. doi: 10.1016/S0378-4371(97)00161-1
|
[47] |
Wang J, Yip S, Phillpot S, Wolf D. 1993. Crystal instabilities at finite strain. Physical Review Letters, 71: 4182. doi: 10.1103/PhysRevLett.71.4182
|
[48] |
Wang M, Fu Y. 2021. Necking of a hyperelastic solid cylinder under axial stretching: Evaluation of the infinite-length approximation. International Journal of Engineering Science, 159: 103432. doi: 10.1016/j.ijengsci.2020.103432
|
[49] |
Wells A. Application of fracture mechanics at and beyond general yielding. British Welding Journal, 1963: 10.
|
[50] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J. 2007. Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Physical Review B, 76: 054115. doi: 10.1103/PhysRevB.76.054115
|
[51] |
Yao Y, Hu J, Zhou A, Luo T, Wang N. 2015. Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotechnica, 10: 749-759. doi: 10.1007/s11440-015-0404-x
|
[52] |
Yasnikov I S, Vinogradov A, Estrin Y. 2014. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals. Scripta Materialia, 76: 37-40. doi: 10.1016/j.scriptamat.2013.12.009
|
[53] |
Yip S, Li J, Tang M, Wang J. 2001. Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals. Materials Science and Engineering: A, 317: 236-240. doi: 10.1016/S0921-5093(01)01162-5
|
[54] |
Yu M. 2002. Advances in strength theories for materials under complex stress state in the 20th century. Applied Mechanics Reviews, 55: 169-218.
|
[55] |
Yu M. Unified strength theory and its applications. Springer-Verlag, 2004.
|
[56] |
Yu X, Fu Y. 2022. An analytic derivation of the bifurcation conditions for localization in hyperelastic tubes and sheets. Zeitschrift Für Angewandte Mathematik und Physik, 73: 116.
|
[57] |
Zhang C, Wang B. 2022. Influence of nonlinear spatial distribution of stress and strain on solving problems of solid mechanics. Applied Mathematics and Mechanics, 43: 1355-1366. doi: 10.1007/s10483-022-2899-7
|
[58] |
Zhang Z, Eckert J. 2005. Unified tensile fracture criterion. Physical Review Letters, 94: 094301. doi: 10.1103/PhysRevLett.94.094301
|
[59] |
Zhao Y, Deng S, Liu H, Zhang J, Guo Z, Hou H. 2018. First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A= Al and Si). Computational Materials Science, 154: 365-370. doi: 10.1016/j.commatsci.2018.07.007
|
[60] |
王自强, 段祝平. 1995. 塑性细观力学. 北京: 科学出版社
Wang Z Z, Duan Z P. 1995. Micromechanics of plasticity. Beijing: Science Press
|
[61] |
魏宇杰. 2020. 固体工程科学——工程材料的应用力学理论与实践. 北京: 高等教育出版社
Wei Y J. 2020. Engineering Science of Solids---Applied mechanics theory and applications to engineering materials. Beijing: Reducation Press
|
[62] |
杨卫. 1992. 细观力学和细观损伤力学. 力学进展, 22: 1-9 (Yang W. 1992. Meso-Mechanics and Meso-Damage Mchanics. Advances in Mechanics, 22: 1-9).
Yang W . Meso-Mechanics and Meso-Damage Mchanics[J]. Advances in mechanics, 1992, 22: 1-9
|
[63] |
杨卫. 1995. 宏微观断裂力学. 北京: 国防工业出版社
Yang W. 1995. Macro and micro fracture mechanics. Beijing: National Defence Industry Press
|
[64] |
余寿文, 冯西桥. 1997. 损伤力学. 北京: 清华大学出版社
Yu S W, Feng X Q. 1997. Damage mechanics. Beijing: Tsinghua University Press
|