Volume 53 Issue 3
Sep.  2023
Turn off MathJax
Article Contents
Wang B. Thermodynamic strength theory (TST). Advances in Mechanics, 2023, 53(3): 693-712 doi: 10.6052/1000-0992-23-017
Citation: Wang B. Thermodynamic strength theory (TST). Advances in Mechanics, 2023, 53(3): 693-712 doi: 10.6052/1000-0992-23-017

Thermodynamic strength theory (TST)

doi: 10.6052/1000-0992-23-017
More Information
  • Corresponding author: wangbiao@mail.sysu.edu.cn
  • Received Date: 2023-04-25
  • Accepted Date: 2023-06-03
  • Available Online: 2023-06-04
  • Publish Date: 2023-09-30
  • The accurate prediction of structural strength of materials is the key issue to the design and optimization of engineering structures and is one of the core problems in solid mechanics. Traditional strength theories mainly rely on empirical formulas, which are largely limited by the applicable materials and working conditions. To ensure safety, engineering structural design often adopts large safety factors, resulting in a significant waste of materials and still can not eliminate the occurrence of catastrophic accidents. How to break through the empirical shackles of traditional strength theories and develop a new theory of structural strength assessment of materials from universal principles is an urgent scientific and engineering problem to be solved. This article briefly summarizes the problems with traditional strength theories, outlines some methods for predicting the failure behavior of the material structures based on the energy theory, and highlights the thermodynamic strength theory proposed by the author. In this theory we treat the material structure as a thermodynamic systems and establish the relationship between the prediction of the failure strength of a material structure with the thermodynamic stability analysis. In principle, this theory has no restrictions on the failure modes of material structures and is applicable to strength prediction for a wide range of failure modes. Several representative examples are used to demonstrate the correctness and wide applicability of the theory, which reflects excellent prospects for engineering applications.

     

  • loading
  • [1]
    AlAjarmeh O, Manalo A, Benmokrane B, et al. 2019. Novel testing and characterization of GFRP bars in compression. Construction and Building Materials, 225: 1112-1126. doi: 10.1016/j.conbuildmat.2019.07.280
    [2]
    Anderson T L. Fracture mechanics: Fundamentals and applications. CRC Press, 2007.
    [3]
    Audoly B, Hutchinson J W. 2016. Analysis of necking based on a one-dimensional model. Journal of the Mechanics and Physics of Solids, 97: 68-91. doi: 10.1016/j.jmps.2015.12.018
    [4]
    Born M. 1939. Thermodynamics of crystals and melting. The Journal of Chemical Physics, 7: 591-603. doi: 10.1063/1.1750497
    [5]
    Born M. On the stability of crystal lattices: I. Cambridge University Press, 1940.
    [6]
    Born M, Fürth R. The stability of crystal lattices. III: An attempt to calculate the tensile strength of a cubic lattice by purely static considerations. Cambridge University Press, 1940.
    [7]
    Carter B. 1992. Size and stress gradient effects on fracture around cavities. Rock Mechanics and Rock Engineering, 25: 167-186. doi: 10.1007/BF01019710
    [8]
    Chaboche J L. 1981. Continuous damage mechanics: a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64: 233-247. doi: 10.1016/0029-5493(81)90007-8
    [9]
    Chaboche J L. 1988. Continuum damage mechanics: Part I:General concepts. Journal of Applied Mechanics, 55: 59-64. doi: 10.1115/1.3173661
    [10]
    Chen B, Chen J, Li R, Wang B. 2023. Experimental validation of the thermodynamic theory for predicting the strength of 6061 Al alloy with complex loadings. Engineering Fracture Mechanics, 277: 109006. doi: 10.1016/j.engfracmech.2022.109006
    [11]
    Chen J, Liu W, Wang B. 2021. Prediction of theoretical strength of diamond under complex loadings. Extreme Mechanics Letters, 44: 101233. doi: 10.1016/j.eml.2021.101233
    [12]
    Griffith A A. 1921. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221: 163-198. doi: 10.1098/rsta.1921.0006
    [13]
    Gurson A L. 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I: Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99: 297-300.
    [14]
    Hill R. 1975. On the elasticity and stability of perfect crystals at finite strain. Mathematical Proceedings of the Cambridge Philosophical Society, 77: 225-240. doi: 10.1017/S0305004100049549
    [15]
    Hu Y, Chen J, Wang B. 2022. Global nonequilibrium energy criterion for predicting strength of 316L stainless steel under complex loadings: Theoretical modeling and experimental validation. Science China Physics, Mechanics & Astronomy, 65: 244611.
    [16]
    Hutchinson J. 1968. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 16: 13-31. doi: 10.1016/0022-5096(68)90014-8
    [17]
    Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 1957: 24.
    [18]
    Kachanov L. 1958. Rupture time under creep conditions. Izv. Akad. Nauk SSSR, 8, 26-31.
    [19]
    Kaddour A S, Hinton M J. 2013. Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II. Journal of Composite Materials, 47: 925-966. doi: 10.1177/0021998313478710
    [20]
    Kaddour A, Hinton M. 2012. Benchmarking of triaxial failure criteria for composite laminates: Comparison between models of ‘Part (A)’of ‘WWFE-II’. Journal of Composite Materials, 46: 2595-2634. doi: 10.1177/0021998312449887
    [21]
    Karki B, Ackland G, Crain J. 1997. Elastic instabilities in crystals from ab initio stress-strain relations. Journal of Physics: Condensed Matter, 9: 8579. doi: 10.1088/0953-8984/9/41/005
    [22]
    Kolupaev V. 2017. Generalized strength criteria as functions of the stress angle. Journal of Engineering Mechanics, 143: 04017095. doi: 10.1061/(ASCE)EM.1943-7889.0001322
    [23]
    Kondepudi D, Prigogine I. Modern thermodynamics: from heat engines to dissipative structures. John wiley & sons, 2014.
    [24]
    Krajcinovic. 1983. Constitutive Equations for Damaging Materials. Journal of Applied Mechanics, 50: 355-360. doi: 10.1115/1.3167044
    [25]
    Lemaitre J. Evalution of dissipation and damage in metals submitted to dynamic loading. Proceedings of International Conference of Mechanical Behavior of Materials, 1971.
    [26]
    Lemaitre J. A course on damage mechanics. Springer Science & Business Media, 2012.
    [27]
    Lestringant C, Audoly B. 2020. A one-dimensional model for elasto-capillary necking. Proceedings of the Royal Society A, 476: 20200337. doi: 10.1098/rspa.2020.0337
    [28]
    Liu M, Gan Y, Hanaor D A, Liu B, Chen C. 2015. An improved semi-analytical solution for stress at round-tip notches. Engineering Fracture Mechanics, 149: 134-143. doi: 10.1016/j.engfracmech.2015.10.004
    [29]
    Liu Z, Wang B. 2021. Prediction on the theoretical strength of diamond, c-BN, Cu, and CeO2. AIP Advances, 11: 095111. doi: 10.1063/5.0063928
    [30]
    Liu Z, Wang B. 2023. Prediction of ideal strength by machine learning. Materials Chemistry and Physics, 299: 127476. doi: 10.1016/j.matchemphys.2023.127476
    [31]
    Milstein F, Hill R. 1979. Divergences among the born and classical stability criteria for cubic crystals under hydrostatic loading. Physical Review Letters, 43: 1411. doi: 10.1103/PhysRevLett.43.1411
    [32]
    Mizushima K, Yip S, Kaxiras E. 1994. Ideal crystal stability and pressure-induced phase transition in silicon. Physical Review B, 50: 14952. doi: 10.1103/PhysRevB.50.14952
    [33]
    Mohr O. 1900. Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des Vereins Deutscher Ingenieure, 46: 1572-1577.
    [34]
    Murakami S. 1988. Mechanical modeling of material damage. Journal of Applied Mechanics, 55: 280-286. doi: 10.1115/1.3173673
    [35]
    Murakami Y. 1993. Stress intensity factors handbook: vol. 3. Journal of Applied Mechanics, 60: 1063. doi: 10.1115/1.2900983
    [36]
    Onsager L. 1931. Reciprocal relations in irreversible processes: I. Physical Review, 37: 405. doi: 10.1103/PhysRev.37.405
    [37]
    Onsager L. 1931. Reciprocal relations in irreversible processes: II. Physical Review, 38: 2265. doi: 10.1103/PhysRev.38.2265
    [38]
    Rabotnov Y N. 1963. Paper 68: On the equation of state of creep. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 178: 2-117-112-122.
    [39]
    Rice J R. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35: 379-386. doi: 10.1115/1.3601206
    [40]
    Timoshenko S. History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation, 1983.
    [41]
    Wang B. 2020. The intrinsic nature of materials failure and the global non-equilibrium energy criterion. Science China Physics, Mechanics & Astronomy, 63: 124611.
    [42]
    Wang B. 2021. A general thermodynamic theory for predicting the failure property of material structures with complex loadings. Engineering Fracture Mechanics, 254: 107936. doi: 10.1016/j.engfracmech.2021.107936
    [43]
    Wang B. Material strength: a rational nonequilibrium energy model for complex loadings. Journal of Applied Mechanics, 2021, 88(2).
    [44]
    Wang H, Li M. 2013. Estimate of the maximum strength of metallic glasses from finite deformation theory. Physical Review Letters, 111: 065507. doi: 10.1103/PhysRevLett.111.065507
    [45]
    Wang J, Li J, Yip S, Phillpot S, Wolf D. 1995. Mechanical instabilities of homogeneous crystals. Physical Review B, 52: 12627. doi: 10.1103/PhysRevB.52.12627
    [46]
    Wang J, Li J, Yip S, Wolf D, Phillpot S. 1997. Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals. Physica a: Statistical Mechanics and its Applications, 240: 396-403. doi: 10.1016/S0378-4371(97)00161-1
    [47]
    Wang J, Yip S, Phillpot S, Wolf D. 1993. Crystal instabilities at finite strain. Physical Review Letters, 71: 4182. doi: 10.1103/PhysRevLett.71.4182
    [48]
    Wang M, Fu Y. 2021. Necking of a hyperelastic solid cylinder under axial stretching: Evaluation of the infinite-length approximation. International Journal of Engineering Science, 159: 103432. doi: 10.1016/j.ijengsci.2020.103432
    [49]
    Wells A. Application of fracture mechanics at and beyond general yielding. British Welding Journal, 1963: 10.
    [50]
    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J. 2007. Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Physical Review B, 76: 054115. doi: 10.1103/PhysRevB.76.054115
    [51]
    Yao Y, Hu J, Zhou A, Luo T, Wang N. 2015. Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotechnica, 10: 749-759. doi: 10.1007/s11440-015-0404-x
    [52]
    Yasnikov I S, Vinogradov A, Estrin Y. 2014. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals. Scripta Materialia, 76: 37-40. doi: 10.1016/j.scriptamat.2013.12.009
    [53]
    Yip S, Li J, Tang M, Wang J. 2001. Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals. Materials Science and Engineering: A, 317: 236-240. doi: 10.1016/S0921-5093(01)01162-5
    [54]
    Yu M. 2002. Advances in strength theories for materials under complex stress state in the 20th century. Applied Mechanics Reviews, 55: 169-218.
    [55]
    Yu M. Unified strength theory and its applications. Springer-Verlag, 2004.
    [56]
    Yu X, Fu Y. 2022. An analytic derivation of the bifurcation conditions for localization in hyperelastic tubes and sheets. Zeitschrift Für Angewandte Mathematik und Physik, 73: 116.
    [57]
    Zhang C, Wang B. 2022. Influence of nonlinear spatial distribution of stress and strain on solving problems of solid mechanics. Applied Mathematics and Mechanics, 43: 1355-1366. doi: 10.1007/s10483-022-2899-7
    [58]
    Zhang Z, Eckert J. 2005. Unified tensile fracture criterion. Physical Review Letters, 94: 094301. doi: 10.1103/PhysRevLett.94.094301
    [59]
    Zhao Y, Deng S, Liu H, Zhang J, Guo Z, Hou H. 2018. First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A= Al and Si). Computational Materials Science, 154: 365-370. doi: 10.1016/j.commatsci.2018.07.007
    [60]
    王自强, 段祝平. 1995. 塑性细观力学. 北京: 科学出版社

    Wang Z Z, Duan Z P. 1995. Micromechanics of plasticity. Beijing: Science Press
    [61]
    魏宇杰. 2020. 固体工程科学——工程材料的应用力学理论与实践. 北京: 高等教育出版社

    Wei Y J. 2020. Engineering Science of Solids---Applied mechanics theory and applications to engineering materials. Beijing: Reducation Press
    [62]
    杨卫. 1992. 细观力学和细观损伤力学. 力学进展, 22: 1-9 (Yang W. 1992. Meso-Mechanics and Meso-Damage Mchanics. Advances in Mechanics, 22: 1-9).

    Yang W . Meso-Mechanics and Meso-Damage Mchanics[J]. Advances in mechanics, 1992, 22: 1-9
    [63]
    杨卫. 1995. 宏微观断裂力学. 北京: 国防工业出版社

    Yang W. 1995. Macro and micro fracture mechanics. Beijing: National Defence Industry Press
    [64]
    余寿文, 冯西桥. 1997. 损伤力学. 北京: 清华大学出版社

    Yu S W, Feng X Q. 1997. Damage mechanics. Beijing: Tsinghua University Press
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1527) PDF downloads(668) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return