Citation: | Tang J, Cui P C, Zhang J, Zhou N C, Wu X J, Gong X Q, Zhang Y B. Review of mesh adaptation for fluid numerical simulation. Advances in Mechanics, 2023, 53(3): 661-692 doi: 10.6052/1000-0992-23-013 |
[1] |
陈浩, 华如豪, 袁先旭, 唐志共, 毕林. 2022. 基于自适应笛卡尔网格的飞翼布局流动模拟. 航空学报, 43: 125674 (Chen H, Hua R H, Yuan X X, Tang Z G, Bi L. 2022. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid. Acta Aeronautica et Astronautica Sinica, 43: 125674).
Chen H, Hua R H, Yuan X X, Tang Z G, Bi L. 2022. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid. Acta Aeronautica et Astronautica Sinica, 43: 125674).
|
[2] |
崔鹏程, 邓有奇, 唐静, 李彬. 2016. 基于伴随方程的网格自适应及误差修正. 航空学报, 37: 2992-3002 (Cui P C, Deng Y Q, Tang J, Li B. 2016. Adjoint equations-based grid adaptation and error correction. Acta Aeronautica et Astronautica Sinica, 37: 2992-3002).
(Cui P C, Deng Y Q, Tang J, Li B. 2016. Adjoint equations-based grid adaptation and error correction. Acta Aeronautica et Astronautica Sinica, 37: 2992-3002).
|
[3] |
崔鹏程, 唐静, 李彬, 马明生, 邓有奇. 2018. 基于超网格的重叠网格守恒插值方法. 航空学报, 39: 121569 (Cui P C, Tang J, Li B, Ma M M, Deng Y Q. 2018. A conservative interpolation method for overset mesh. Acta Aeronautica et Astronautica Sinica, 39: 121569).
(Cui P C, Tang J, Li B, Ma M M, Deng Y Q. 2018. A conservative interpolation method for overset mesh. Acta Aeronautica et Astronautica Sinica, 39: 121569).
|
[4] |
龚小权, 吴晓军, 唐静, 李明, 张健. 2022. r型网格自适应在间断Galerkin有限元激波捕捉中的应用. 北京航空航天大学学报, 48: 1889-1898 (Gong X Q, Wu X J, Tang J, Li M, Zhang J. 2022. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method. Journal of Beijing University of Aeronautics and Astronautics, 48: 1889-1898).
(Gong X Q, Wu X J, Tang J, Li M, Zhang J. 2022. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method. Journal of Beijing University of Aeronautics and Astronautics, 48: 1889-1898).
|
[5] |
韩志熔, 陆志良, 郭同庆, 陈迎春. 2012. 一种用于分离流动的网格自适应算法. 空气动力学报, 30: 86-89 (Han Z R, Lu Z L, Guo T Q, Chen Y C. 2012. Grid adaption technique for separation flow. Acta Aerodynamica Sinica, 30: 86-89).
Han Z R, Lu Z L, Guo T Q, Chen Y C. 2012. Grid adaption technique for separation flow. Acta Aerodynamica Sinica, 30: 86-89).
|
[6] |
李立, 白文, 梁益华. 2011. 基于伴随方程方法的非结构网格自适应技术及应用. 空气动力学报, 29: 316-309 (Li L, Bai W, Liang Y H. 2011. An adjoint-based method for unstructured mesh adaptation and its applications. Acta Aerodynamica Sinica, 29: 316-309).
Li L, Bai W, Liang Y H. 2011. An adjoint-based method for unstructured mesh adaptation and its applications, Acta Aerodynamica Sinica, 29: 316-309).
|
[7] |
罗昔联, 顾兆林, 雷康斌, 加濑究. 2009. 一种求解N-S方程的自适应直角网格方法. 西安交通大学学报, 43: 11-17 (Luo X L, Gu Z L, Lei K B, Kase K. 2009. An adaptive Cartesian grid method for the incompressible Navier-Stokes equations. Journal of Xi’an Jiaotong University, 43: 11-17).
Luo X L, Gu Z L, Lei K B, Kase K. 2009. An adaptive Cartesian grid method for the incompressible Navier-Stokes equations. Journal of Xi’an Jiaotong University, 43: 11-17).
|
[8] |
任登凤, 谭俊杰, 张军. 2005. 自适应方法在APFSDS干扰流场模拟中的应用. 弹道学报, 17: 1-6 (Ren D F, Tan J J, Zhang J. 2005. Adaptive mesh generation and simulation of APFSDS and SABOTS. Journal of Ballistics, 17: 1-6).
Ren D F, Tan J J, Zhang J. 2005. Adaptive mesh generation and simulation of APFSDS and SABOTS. Journal of Ballistics, 17: 1-6).
|
[9] |
苏欣荣, 袁新. 2016. 用于叶轮机械复杂流动的网格自适应方法. 工程热物理学报, 37: 259-263 (Su X R, Yuan X. 2016. Adaptive mesh refinement for complex turbomachinery flow. Journal of Engineering Thermophysics, 37: 259-263).
Su X R, Yuan X. 2016. Adaptive mesh refinement for complex turbomachinery flow. Journal of Engineering Thermophysics, 37: 259-263).
|
[10] |
唐静, 郑鸣, 邓有奇, 李彬. 2015. 网格自适应技术在复杂外形流场模拟中的应用. 计算力学学报, 32: 752-757 (Tang J, Zheng M, Deng Y Q, Li B. 2015. Grid adaptation for flow simulation of complicated configuration. Chinese Journal of Computational Mechanics, 32: 752-757). doi: 10.7511/jslx201506007
(Tang J, Zheng M, Deng Y Q, Li B. 2015. Grid adaptation for flow simulation of complicated configuration. Chinese Journal of Computational Mechanics, 32: 752-757). doi: 10.7511/jslx201506007
|
[11] |
唐静, 崔鹏程, 贾洪印, 李彬. 2019. 非结构混合网格鲁棒自适应技术. 航空学报, 40: 122894 (Tang J, Cui P C, Jia H Y, Li B. 2019. Robust adaptation techniques for unstructured hybrid mesh. Acta Aeronautica et Astronautica Sinica, 40: 122894).
(Tang J, Cui P C, Jia H Y, Li B. 2019. Robust adaptation techniques for unstructured hybrid mesh. Acta Aeronautica et Astronautica Sinica, 40: 122894).
|
[12] |
唐静, 张健, 李彬, 崔鹏程, 周乃春. 2020. 非结构混合网格自适应并行技术. 航空学报, 41: 123202 (Tang J, Zhang J, Li B, Cui P C, Zhou N C. 2020. Parallel algorithms for unstructured hybrid mesh adaptation. Acta Aeronautica et Astronautica Sinica, 41: 123202).
(Tang J, Zhang J, Li B, Cui P C, Zhou N C. 2020. Parallel algorithms for unstructured hybrid mesh adaptation. Acta Aeronautica et Astronautica Sinica, 41: 123202).
|
[13] |
唐静, 张健, 张耀冰, 周乃春, 刘刚. 2022. 一种用于TSTO级间分离CFD计算的网格动态优化技术. 空气动力学学报, 41 (Tang J, Zhang J, Zhang Y B, Zhou N C, Liu Gang. 2022. A mesh adaptation method for TSTO stages separation CFD simulation. Acta Aerodynamica Sinica, 41). doi: 10.7638/kqdlxxb-2022.0028
Tang J, Zhang J, Zhang Y B, Zhou N C, Liu Gang. A mesh adaptation method for TSTO stages separation CFD simulation. Acta Aerodynamica Sinica, 2022, 41 doi: 10.7638/kqdlxxb-2022.0028
|
[14] |
王利, 周伟江. 2017. 基于伴随方法的网格自适应DG方法. 中国科学:技术科学, 47: 1214-1224 (Wang L, Zhou W J. 2017. An adjoint-based grid adaptive discontinuous Galerkin method. Scientia Sinica Technologica, 47: 1214-1224). doi: 10.1360/N092016-00441
Wang L, Zhou W J. 2017. An adjoint-based grid adaptive discontinuous Galerkin method. Scientia Sinica Technologica, 47: 1214-1224) doi: 10.1360/N092016-00441
|
[15] |
王俊杰, 高正红. 2006. 基于复合叉树的自适应笛卡尔网格应用研究. 应用力学学报, 23: 623-626 (Wang J J, Gao Z H. 2006. Adaptive Cartesian grid based on an omni-tree. Chinese Journal of Applied Mechanics, 23: 623-626).
Wang J J, Gao Z H. 2006. Adaptive Cartesian grid based on an omni-tree. Chinese Journal of Applied Mechanics, 23: 623-626).
|
[16] |
肖涵山, 陈作斌, 刘刚, 江雄. 2003. 基于Euler方程的三维自适应笛卡尔网格应用研究. 空气动力学学报, 21: 202-210 (Xiao H S, Chen Z B, Liu G, Jiang X. 2003. Application of 3-D adaptive Cartesian grid algorithm based on the Euler equations. Acta Aerodynamica Sinica, 21: 202-210).
Xiao H S, Chen Z B, Liu G, Jiang X. 2003. Application of 3-D adaptive Cartesian grid algorithm based on the Euler equations. Acta Aerodynamica Sinica, 21: 202-210).
|
[17] |
许和勇, 叶正寅. 2011. 三维非结构自适应多重网格技术. 空气动力学学报, 29: 365-369 (Xu H Y, Ye Z Y. 2011. A technique of three dimensional unstructured adaptive multigrid. Acta Aerodynamica Sinica, 29: 365-369).
Xu H Y, Ye Z Y. 2011. A technique of three dimensional unstructured adaptive multigrid. Acta Aerodynamica Sinica, 29: 365-369).
|
[18] |
阎超, 屈峰, 赵雅甜, 于剑, 武从海, 张树海. 2020. 航空航天CFD物理模型和计算方法的述评与挑战. 空气动力学学报, 38: 829-857 (Yan C, Qu F, Zhao Y T, Yu J, Wu C H, Zhang S H. 2020. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics. Acta Aerodynamica Sinica, 38: 829-857).
(Yan C, Qu F, Zhao Y T, Yu J, Wu C H, Zhang S H. 2020. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics. Acta Aerodynamica Sinica, 38: 829-857
|
[19] |
杨夏勰, 周春华. 2014. 目标函数误差估算及网格自适应处理. 空气动力学报, 32: 688-693 (Yang X X, Zhou C H. 2014. Output-based error estimation and grid adaptation. Acta Aerodynamica Sinica, 32: 688-693).
Yang X X, Zhou C H. Output-based error estimation and grid adaptation. Acta Aerodynamica Sinica, 2014, 32: 688-693.
|
[20] |
张贺, 钟诚文, 宫建, 毕志献, 韩曙光. 2014. 气体动理论BGK格式的网格自适应方法. 航空学报, 35: 687-694 (Zhang H, Zhong C W, Gong J, Bi Z X, Han S G. 2014. Adaptive mesh refinement for gas-kinetic BGK scheme. Acta Aeronautica et Astronautica Sinica, 35: 687-694).
Zhang H, Zhong C W, Gong J, Bi Z X, Han S G. 2014. Adaptive mesh refinement for gas-kinetic BGK scheme. Acta Aeronautica et Astronautica Sinica, 35: 687-694).
|
[21] |
张扬, 张来平, 赫新, 邓小刚. 2016. 基于自适应混合网格的脱体涡模拟. 航空学报, 37: 3605-3614 (Zhang Y, Zhang L P, He H, Deng X G. 2016. Detached eddy simulation based on adaptive hybrid grids. Acta Aeronautica et Astronautica Sinica, 37: 3605-3614). doi: 10.7527/S1000-6893.2016.0175
Detached eddy simulation based on adaptive hybrid grids. 2016. Acta Aeronautica et Astronautica Sinica, 37: 3605-3614). doi: 10.7527/S1000-6893.2016.0175
|
[22] |
邹建锋, 盛东, 方磊, 郑耀. 2015. 各向异性网格自适应计算在超燃模拟中的应用. 航空动力学报, 30: 2140-2150 (Zou J F, Sheng D, Fang L, Zheng Y. 2015. Applications of anisotropic unstructured mesh adaption in supersonic combustion simulations. Journal of Arospace Power, 30: 2140-2150).
Zou J F, Sheng D, Fang L, Zheng Y. 2015. Applications of anisotropic unstructured mesh adaption in supersonic combustion simulations. Journal of Aerospace Power, 30: 2140-2150).
|
[23] |
Alauzet F, Frey P J, George P L, Mohammadi B. 2007. 3D transient fixed point mesh adaptation for time-dependent problems: application to CFD simulations. Journal of Computational Physics, 222: 592-623. doi: 10.1016/j.jcp.2006.08.012
|
[24] |
Alauzet F. 2010. Size gradation control of anisotropic meshes. Finite Elements in Analysis and Design, 46: 181-202. doi: 10.1016/j.finel.2009.06.028
|
[25] |
Alauzet F and Loseille A. 2016. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics. Computer-Aided Design, 72: 13-39. doi: 10.1016/j.cad.2015.09.005
|
[26] |
Alauzet F. 2016. A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 299: 116-142. doi: 10.1016/j.cma.2015.10.012
|
[27] |
Alauzet F, Clerici F, Loseille A, Morisco C T, Vanharen J. Some progress on CFD high lift prediction using metric-based anisotropic mesh adaptation. AIAA Scitech 2022 Forum, 2022, San Diego, CA & Virtual.
|
[28] |
Alauzet F, Frazza L, Papadogiannis D. 2022. Periodic adjoints and anisotropic mesh adaptation in rotating frame for high-fidelity RANS turbomachinery applications. Journal of Computational Physics, 450: 110814. doi: 10.1016/j.jcp.2021.110814
|
[29] |
Alrutz T. 2005. Hybrid grid adaptation in TAU. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 89: 115.
|
[30] |
Antepara O, Lehmkuhl O, Chiva J, Correll R. 2013. Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re = 22000. Procedia Engineering, 61: 246-250. doi: 10.1016/j.proeng.2013.08.011
|
[31] |
Azarenok B N, Ivanenko S A, Tang T. 2003. Adaptive mesh redistribution methods based on Godunov's scheme. Communications in Mathematical Sciences, 1: 152-179. doi: 10.4310/CMS.2003.v1.n1.a10
|
[32] |
Baker T J. 2005. Mesh generation: art or science. Progress in Aerospace Sciences, 41: 29-63. doi: 10.1016/j.paerosci.2005.02.002
|
[33] |
Balan A, Park M A, Anderson W K. 2019. Adjoint-based anisotropic mesh adaptation for a stabilized finite-element flow solver. AIAA Aviation 2019 Forum. Dallas, Texas, AIAA.
|
[34] |
Balan A, Park M A, Wood S L, Anderson W K. 2020. Verification of anisotropic mesh adaptation for complex aerospace applications. AIAA Scitech 2020 Forum. Orlando, FL.
|
[35] |
Balan A, Park M A, Wood S L, Anderson W K, Rangarajan A, Sanjaya D P, May G. 2022. A review and comparison of error estimators for anisotropic mesh adaptation for flow simulations. Computers and Fluids, 234: 105259. doi: 10.1016/j.compfluid.2021.105259
|
[36] |
Bartels R E, Vatsa V, Carlson J-R, Park M, Mineck R E. FUN3D grid refinement and adaptation studies for the Ares launch vehicle. AIAA Paper, 2010: 4372.
|
[37] |
Bibb K L, Gnoffo P A, Park M A, Jones W T. Parallel, gradient-based anisotropic mesh adaptation for re-entry vehicle configurations. AIAA Paper, 2006: 3579.
|
[38] |
Bonfiglioli A, Paciorri R, Mascio A D. 2012. The Role of mesh generation, adaptation, and refinement on the computation of flows featuring strong shocks. Modelling and Simulation in Engineering, 2012: 1-15.
|
[39] |
Budd C J, Russell R D, Walsh E. 2015. The geometry of r-adaptive meshes generated using optimal transport methods. Journal of Computational Physics, 282: 113-137. doi: 10.1016/j.jcp.2014.11.007
|
[40] |
Buning P G, Pulliam T H. Cartesian off-body grid adaption for viscous time-accurate flow simulation. AIAA Paper, 2011: 3693.
|
[41] |
Campbell R, Carter M. 2008. Efficient unstructured grid adaptation methods for sonic boom prediction. AIAA Paper, 2008: 7327.
|
[42] |
Cavallo P A, Sinha N, Feldman G M. 2005. Parallel unstructured mesh adaptation method for moving body applications. AIAA Journal, 43: 1937-1945. doi: 10.2514/1.7818
|
[43] |
Ceze M A, Fidkowski K J. 2013. Anisotropic hp-adaptation framework for functional prediction. AIAA Journal, 51: 492-509. doi: 10.2514/1.J051845
|
[44] |
Ceze M A, Fidkowski K J. 2014. Drag prediction using adaptive discontinuous finite elements. AIAA Journal of Aircraft, 51: 1284-1294. doi: 10.2514/1.C032622
|
[45] |
Chand K K, Lee K D. Adaptation of structured grids with redistribution and embedding. AIAA Paper, 1999: 36515.
|
[46] |
Chen J, Zheng J, Zheng Y, Si H, Hassan O, Morgan K. 2017. Improved boundary constrained tetrahedral mesh generation by shell transformation. Applied Mathematical Modelling, 51: 764-790. doi: 10.1016/j.apm.2017.07.011
|
[47] |
Chila R J, Kaminski D A. Automated grid independence via unstructured adaptive refinement. AIAA Paper, 2006: 3062.
|
[48] |
Clerici F, Alauzet F, Spalart P R. Coupled adjoint solver and turbulent error estimate for anisotropic mesh adaptation in high-fidelity RANS simulations. AIAA Scitech 2022 Forum. San Diego, 2022, CA & Virtual.
|
[49] |
Copeland S R, Lonkar A K, Palacios F, Alonso J J. Adjoint-based goal-oriented mesh adaptation for nonequilibrium hypersonic flows. AIAA Paper, 2013: 0552.
|
[50] |
Coppeans A W, Fidkowski K J, Martins J R R A. Output-based mesh adaptation using overset methods for structured meshes. AIAA Scitech 2022 Forum. San Diego, 2022, CA & Virtual.
|
[51] |
Cui P C, Chen J T, Li B, Li H, Ma M S, Tang J. 2021. A wide-template and high-accuracy data transfer method for unstructured adjoint-based grid adaptation. Journal of Physics: Conference Series, 012021: 1-8.
|
[52] |
Digonnet H, Coupez T, Laure P, Silva L. 2019. Massively parallel anisotropic mesh adaptation. International Journal of High Performance Computing Applications, 33: 3-24. doi: 10.1177/1094342017693906
|
[53] |
Farrell P E, Piggott M D, Pain C C, Gorman G J, Wilson C R. 2009. Conservative interpolation between unstructured meshes via supermesh construction. Computer Methods in Applied Mechanics and Engineering, 198: 2632-2642. doi: 10.1016/j.cma.2009.03.004
|
[54] |
Fidkowski K J, Darmofal D L. 2011. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA Journal, 49: 673-694. doi: 10.2514/1.J050073
|
[55] |
Frey P J, Alauzet F. 2005. Anisotropic mesh adaptation for CFD computations. Computer Methods in Applied Mechanics and Engineering, 194: 5068-5082. doi: 10.1016/j.cma.2004.11.025
|
[56] |
Galimov A Y, Sahni O, Jr. R T L, Shephard M S, Drew D A, Jansen K E. 2010. Parallel adaptive simulation of a plunging liquid jet. Acta Mathematica Scientia, 30B: 522-538.
|
[57] |
Gou J, Su X, Yuan X. 2018. Adaptive mesh refinement method-based large eddy simulation for the flow over circular cylinder at ReD = 3900. International Journal of Computational Fluid Dynamics, 32: 1-18. doi: 10.1080/10618562.2018.1461845
|
[58] |
Gunney B T N, Anderson R W. 2016. Advances in patch-based adaptive mesh refinement scalability. Journal of Parallel and Distributed Computing, 89: 65-84. doi: 10.1016/j.jpdc.2015.11.005
|
[59] |
Habashi W G, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet M-G. 2000. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles. International Journal for Numerical Methods in Fluids, 32: 725-744. doi: 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
|
[60] |
Haimes R, Dannenhoffer J F. EGADSlite: a lightweight geometry kernel for HPC. AIAA Paper, 2018: 1401.
|
[61] |
Hartmann R. 2013. Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic turbulent delta wing flow. International Journal for Numerical Methods in Fluids, 72: 883-894. doi: 10.1002/fld.3762
|
[62] |
Hindenlang F, Neudorfer J, Gassner G, Munz C-D. Unstructured three-dimensional high order grids for discontinuous Galerkin schemes. AIAA Paper, 2011: 3853.
|
[63] |
Hunt J C R, Wray A A, Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence using Numerical Simulation Databases: 2. Proceedings of the 1988 Summer Program, NASA, Dec. 1988, 193–208.
|
[64] |
Ibanez D, Barral N, Krakos J, Loseille A, Michal T, Park M. 2017. First benchmark of the unstructured grid adaptation working group. Procedia Engineering, 203: 154-166. doi: 10.1016/j.proeng.2017.09.800
|
[65] |
Ji H, Lien F S, Yee E. 2010. A new adaptive mesh refinement data structure with an application to detonation. Journal of Computational Physics, 229: 8981-8993. doi: 10.1016/j.jcp.2010.08.023
|
[66] |
Jones W T, Nielsen E J, Park M A. Validation of 3D adjoint based error estimation and mesh adaptation for sonic boom prediction. AIAA Paper, 2006: 1150.
|
[67] |
Joubarne E, Guibault F, Braun O, Avellan F. 2009. Numerical capture of wing tip vortex improved by mesh adaptation. International Journal for Numerical Methods in Fluids, 67: 8-32.
|
[68] |
Kamkar S J, Wissink A M, Sankaran V, Jameson A. 2011. Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows. Journal of Computational Physics, 230: 6271-6298. doi: 10.1016/j.jcp.2011.04.024
|
[69] |
Karman S L. Multi-block hierarchical unstructured grid generation with adaptation. AIAA Paper, 2014: 0116.
|
[70] |
Karypis G, Kumar V. 1998. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed Computing, 48: 96-129. doi: 10.1006/jpdc.1997.1404
|
[71] |
Kavouklis C, Kallinderis Y. 2010. Parallel adaptation of general three-dimensional hybrid meshes. Journal of Computational Physics, 229: 3454-3473. doi: 10.1016/j.jcp.2010.01.011
|
[72] |
Kirk B S, Peterson J W, Stogner R H, Carey G F. 2006. libMesh: a C + + library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers, 22: 237-254. doi: 10.1007/s00366-006-0049-3
|
[73] |
Knutson A L, Johnson H B, Candler G V. Adaptive mesh refinement in US3D. AIAA Scitech 2021 Forum, Virtual Event.
|
[74] |
Laflin K R, Klausmeyer S M.A fast and simple solution-resolution assessment for improved CFD predictions. AIAA Paper, 2005: 1218.
|
[75] |
Lee K D and Loellbach J M. A mapping technique for solution adaptive grid control. AIAA Paper, 1989: 2178.
|
[76] |
Lepage C Y, Suerich-Gulick F, Habashi W G. Anisotropic 3-D mesh adaptation on unstructured hybrid meshes. AIAA Paper, 2002: 0859.
|
[77] |
Lepage C Y, St-Cyr A, Habashi W G. Parallel unstructured mesh adaptation on distributed memory systems. AIAA Paper, 2004: 2532.
|
[78] |
Linn R V, Awruch A M. 2017. Edge-Based Anisotropic Mesh adaptation of unstructured meshes with applications to compressible flows. Engineering with Computers, 33: 1007-1025. doi: 10.1007/s00366-017-0513-2
|
[79] |
Liu Z, Yang Y, Gong A, Zhou W. 2015. Unstructured adaptive grid refinement for flow feature capture. Procedia Engineering, 99: 477-483. doi: 10.1016/j.proeng.2014.12.561
|
[80] |
Loseille A. 2007. Achievement of global second order mesh convergence for discontinuous flows with adapted unstructured meshes. 18th AIAA Computational Fluid Dynamics Conference. Miami, FL.
|
[81] |
Loseille A, Alauzet F. Optimal 3d highly anisotropic mesh adaptation based on the continuous mesh framework. Proceedings of the 18th International Meshing Roundtable, Springer, 2009.
|
[82] |
Loseille A.Unstructured mesh generation and adaptation. Elsevier, 2016, 263-302.
|
[83] |
Luo Y X, Fidkowski K J. Output-based space-time mesh adaptation for unsteady aerodynamics. AIAA Paper, 2011: 491.
|
[84] |
MacNeice P, Olson K M, Mobarry C, Fainchtein R d, Packer C. 2000. PARAMESH: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications, 126: 330-354. doi: 10.1016/S0010-4655(99)00501-9
|
[85] |
Marcum D, Alauzet F. 2017. 3D Metric-aligned and orthogonal solution adaptive mesh generation. Procedia Engineering, 203: 78-90. doi: 10.1016/j.proeng.2017.09.790
|
[86] |
Menier V, Loseilley A, Alauzet F. CFD validation and adaptivity for viscous flow simulations. AIAA Paper, 2014: 2925.
|
[87] |
Michal T, Krakos J, Kamenetskiy D, Galbraith M, Ursachi C I, Park M A, Anderson W K, Alauzet F, Loseille A. 2021. Comparing unstructured adaptive mesh solutions for the high lift common research airfoil. AIAA Journal, 59: 3566-3584. doi: 10.2514/1.J060088
|
[88] |
Moigne Y L. Adaptive mesh refinement sensors for vortex flow simulations. European Congress on Computational Methods in Appied Sciences and Engineering, Jyvaskyla, 2004, 6: 24-28.
|
[89] |
Moxey D, Green M D, Sherwin S J, Peiro J. 2015. An isoparametric approach to high-order curvilinear boundary-layer meshing. Computer Methods in Applied Mechanics and Engineering, 23: 636-650.
|
[90] |
Mozaffari S, Guilmineau E, Visonneau M, Wackers J. 2022. Average-based mesh adaptation for hybrid RANS/LES simulation of complex flows. Computers and Fluids, 232: 105202. doi: 10.1016/j.compfluid.2021.105202
|
[91] |
Nagata T. 2005. Simple local interpolation of surfaces using normal vectors. Computer Aided Geometric Design, 22: 327-347. doi: 10.1016/j.cagd.2005.01.004
|
[92] |
Nemec M, Aftosmis M, Wintzer M. Adjoint-based adaptive mesh refinement for complex geometries. AIAA Paper, 2008: 725.
|
[93] |
Odier N, Thacker A, Harnieh M, Staffelbach G, Gicquel L. 2021. A mesh adaptation strategy for complex wall-modeled turbomachinery LES. Computers and Fluids, 214: 104766. doi: 10.1016/j.compfluid.2020.104766
|
[94] |
Palacios F, Duraisamy K, Alonso J J, Zuazua E. 2012. Robust grid adaptation for efficient uncertainty quantification. AIAA Journal, 50: 1538-1546. doi: 10.2514/1.J051379
|
[95] |
Park M A. Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA Paper, 2002: 3286.
|
[96] |
Park M A, Darmofal D L. Parallel anisotropic tetrahedral adaptation. AIAA Paper, 2008: 917.
|
[97] |
Park M A, Carlson J-R. Turbulent output-based anisotropic adaptation. AIAA Paper, 201: 168.
|
[98] |
Park M A, Krakos J A, Michal T, Loseille A, Alonso J J. 2016. Unstructured grid adaptation: status, potential impacts, and recommended investments toward CFD vision 2030. 46th AIAA Fluid Dynamics Conference. Washington, D. C.
|
[99] |
Park M A, Barral N, Ibanez D, Kamenetskiy D S, Krakos J A, Michal T, Loseille A. 2018. Unstructured grid adaptation and solver technology for turbulent flows. 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida.
|
[100] |
Park M A, Kleb B, Anderson W K, Wood S L, Balan A, Zhou B Y, Gauger N R. 2020. Exploring unstructured mesh adaptation for hybrid Reynolds-averaged Navier-Stokes/large eddy simulation. In AIAA Scitech 2020 Forum. Orlando, FL.
|
[101] |
Pirzadeh S Z. An adaptive unstructured grid method by grid subdivision, local remeshing, and grid movement. AIAA Paper, 1999: 3255.
|
[102] |
Qin N, Zhu Y. Grid adaptation for shock/turbulent boundary layer interaction. AIAA Paper, 1998: 0227.
|
[103] |
Robichaud M, Ait Ali Yahia D, Peeters M, Baruzzi G, Kozel V, Habashi W G. 3-D anisotropic adaptation for external and turbomachinery flows on hybrid unstructured grids. AIAA Paper, 2000: 2248.
|
[104] |
Roy C J. Strategies for driving mesh adaptation in CFD. AIAA Paper, 2009: 1302.
|
[105] |
Sahni O, Ovcharenko A, Chitale K C, Jansen K E. 2017. Parallel anisotropic mesh adaptation with boundary layers for automated viscous flow simulations. Engineering with Computers, 33: 767-795. doi: 10.1007/s00366-016-0437-2
|
[106] |
Schloegel K, Karypis G, and Kumar V. 2001. Wavefront diffusion and LMSR: algorithms for dynamic repartitioning of adaptive meshes. IEEE Transactions on Parallel and Distributed Systems, 12: 451-466. doi: 10.1109/71.926167
|
[107] |
Senguttuvan V, Chalasani S, Luke E A, Thompson D S. Adaptive mesh refinement using general elements. AIAA Paper, 2005: 927.
|
[108] |
Shenoy R, Smith M J, Park M A. 2014. Unstructured overset mesh adaptation with turbulence modeling for unsteady aerodynamic interactions. Journal of Aircraft, 51: 161-174. doi: 10.2514/1.C032195
|
[109] |
Shephard M S, Flaherty J E, Jansen K E, Li X, Luo X, Chevaugeon N, Remacle J F, Beall M W, O’Bara R M. 2005. Adaptive mesh generation for curved domains. Applied Numerical Mathematics, 52: 251-271. doi: 10.1016/j.apnum.2004.08.040
|
[110] |
Sheshadri A, Crabilly J, Jameson A. Mesh deformation and shock capturing techniques for high-order simulation of unsteady compressible flows on dynamic meshes. AIAA Paper, 2015: 1741
|
[111] |
Shih A, Ito Y, Koomullil R. Solution adaptive mesh generation using feature-aligned embedded surface meshes. AIAA Paper, 2007: 558.
|
[112] |
Si H, Gärtner K. 3D boundary recovery by constrained Delaunay tetrahedralization. International Journal for Numerical Methods in Engineering, 2011, 85: 1341–1364.
|
[113] |
Silva L, Coupez T, Digonnet H. 2016. Massively parallel mesh adaptation and linear system solution for multiphase flows. International Journal of Computational Fluid Dynamics, 30: 431-436. doi: 10.1080/10618562.2016.1223066
|
[114] |
Sirois Y, McKenty F, Gravel L, Guibault F. 2012. Hybrid mesh adaptation applied to industrial numerical combustion. International Journal for Numerical Methods in Fluids, 70: 222-245.
|
[115] |
Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D. CFD vision 2030 study: a path to revolutionary computational aeroscience. NASA/CR, 2014: 218178.
|
[116] |
Soni B K, Koomullil R, Thompson D S, Thornburg H. 2000. Solution adaptive grid strategies based on point redistribution. Computer Methods in Applied Mechanics and Engineering, 189: 1183-1204. doi: 10.1016/S0045-7825(99)00373-4
|
[117] |
Soukov S A. 2022. Parallel CFD-algorithm on unstructured adaptive meshes. Mathematical Models and Computer Simulations, 14: 19-27. doi: 10.1134/S2070048222010197
|
[118] |
Stiller J. 2007. Point-normal interpolation schemes reproducing spheres, cylinders and cones. Computer Aided Geometry Design, 24: 286-301. doi: 10.1016/j.cagd.2007.03.007
|
[119] |
Su X R. 2015. Accurate and robust adaptive mesh refinement for aerodynamic simulation with multi-block structured curvilinear mesh. International Journal for Numerical Methods in Fluids, 77: 747-766. doi: 10.1002/fld.4004
|
[120] |
Tang J, Ma M, Li B, Cui P. 2019. A local and fast interpolation method for mesh deformation. Progress in Computational Fluid Dynamics, 19: 282-292. doi: 10.1504/PCFD.2019.102042
|
[121] |
Tang J, Cui P C, Li B, Zhang Y B, Si H. 2020. Parallel hybrid mesh adaptation by refinement and coarsening. Graphical Models, 111: 101084. doi: 10.1016/j.gmod.2020.101084
|
[122] |
Tang J, Zhang J, Li B, Zhou N C. 2020. Unsteady flow simulation with mesh adaptation. International Journal of Modern Physics B, 34: -2040080.
|
[123] |
Tang J, Zhang J, Wu X J, Zhang Y B, Zhou N. 2022. Parallel implementation for dynamic mesh optimization on distributed computer system. 2022 6th High Performance Computing and Cluster Technologies Conference, Fuzhou, China.
|
[124] |
Vanharen J, Loseille A, Alauzet F. Nearfield anisotropic mesh adaptation for the third AIAA sonic boom workshop. AIAA Paper, 2021: 0347.
|
[125] |
Venditti D A, Darmofal D L. 2002. Grid adaptation for functional outputs: application to two-dimensional inviscid flows. Journal of Computational Physics, 176: 40-69. doi: 10.1006/jcph.2001.6967
|
[126] |
Vivarelli G, Qin N, Shahpar S. Combined Hessian and adjoint error-based anisotropic mesh adaptation for turbomachinery flows. AIAA Paper, 2017: 1946.
|
[127] |
Vivarelli G, Qin N, Shahpar S, Radford D. 2021. Anisotropic adjoint sensitivity-based mesh movement for industrial applications. Computers and Fluids, 221: 104929. doi: 10.1016/j.compfluid.2021.104929
|
[128] |
Waithe K. Application of USM3D for sonic boom prediction by utilizing a hybrid procedure. 46th AIAA Aerospace Sciences Meeting and Exhibit. Savannah, GA, 2008.
|
[129] |
Waltz J. Parallel adaptive refinement for 3d unstructured grids. AIAA Paper, 2003: 1115.
|
[130] |
Wang G, Mian H H, Ye Z Y. 2015. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions. AIAA Journal, 53: 1016-1025. doi: 10.2514/1.J053304
|
[131] |
Woopen M, May G, Schütz J. 2014. Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids, 76: 811-834. doi: 10.1002/fld.3959
|
[132] |
Wu T, Liu X, An W, Huang Z, Lyu H. 2022. A mesh optimization method using machine learning technique and variational mesh adaptation. Chinese Journal of Aeronautics, 35: 27-41. doi: 10.1016/j.cja.2021.05.018
|
[133] |
Xiao Z, Ollivier-Gooch C, Vazquez J D Z. 2022. Anisotropic tetrahedral mesh adaptation with improved metric alignment and orthogonality. Computer Aided Design, 143: 103136. doi: 10.1016/j.cad.2021.103136
|
[134] |
Xie Z Q, Sevilla R, Hassan O, Morgan K. 2013. The generation of arbitrary order curved meshes for 3d finite element analysis. Computational Mechanics, 51: 361-374. doi: 10.1007/s00466-012-0736-4
|
[135] |
Xu J, Chernikov A N. 2014. Automatic curvilinear quality mesh generation driven by smooth boundary and guaranteed fidelity. Procedia Engineering, 82: 200-212. doi: 10.1016/j.proeng.2014.10.384
|
[136] |
Yamahara T, Nakahashi K, Kim H-J. Adaptive mesh refinement using viscous adjoint method for multi-element airfoil computations. AIAA Paper, 200: 416.
|
[137] |
Yang H Q, Chen Z J, Przekwas A. Adaptive Mesh refinement with high-order scheme for an unstructured pressure-based solver. AIAA Paper, 2014: 0077.
|
[138] |
Zaki M, Ruffin S M. Conservation and grid adaptation enhancements to a normal ray refinement technique for Cartesian-grid based Navier-Stokes solvers. AIAA Paper, 2012: 0301.
|
[139] |
Zhang S J, Liu J, Chen Y S. Adaptation for hybrid unstructured grid with hanging node method. AIAA Paper, 2001: 2657.
|
[140] |
Zou J F, Zhou C L, Zhang Y, Zheng Y. 2021. Verification of anisotropic mesh adaptation for unsteady mixing and reacting flow. AIAA Journal, 59: 4071-4085. doi: 10.2514/1.J060098
|