Citation: | Kang G Z, Chen Y F, Huang W Y. Review on electro-mechanically coupled cyclic deformation and fatigue failure behavior of dielectric elastomers. Advances in Mechanics, 2023, 53(3): 592-625 doi: 10.6052/1000-0992-23-009 |
[1] |
陈花玲, 周进雄. 2017. 介电弹性体智能材料力电耦合性能及其应用. 北京: 科学出版社.
|
[2] |
钟林成, 王永泉, 陈花玲. 2016. 基于介电弹性软体材料的能量收集: 现状、趋势与挑战. 中国科学: 技术科学, 46: 987-1004 (Zhong L C, Wang Y C, Chen H L. 2016. Energy harvesting based on soft material of dielectric elastomers: Status, trends and challenges. Scientia Sinica Technologica, 46: 987-1004). doi: 10.1360/N092016-00020
Zhong C, Wang Y, Chen H. 2016. Energy harvesting based on soft material of dielectric elastomers: Status, trends and challenges. Scientia Sinica Technologica, 46: 987-1004). doi: 10.1360/N092016-00020
|
[3] |
Alkhoury K, Bosnjak N, Wang Y, et al. 2022. Experiments and modeling of the thermo-mechanically coupled behavior of VHB. International Journal of Solids and Structures, 242: 111523. doi: 10.1016/j.ijsolstr.2022.111523
|
[4] |
Anand L. 1996. A constitutive model for compressible elastomeric solids. Computational Mechanics, 18: 339-355. doi: 10.1007/BF00376130
|
[5] |
Anderson I A, Gisby T A, McKay T G, et al. 2012. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. Journal of Applied Physics, 112: 041101. doi: 10.1063/1.4740023
|
[6] |
Arruda E M, Boyce M C. 1993. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41: 389-412. doi: 10.1016/0022-5096(93)90013-6
|
[7] |
Ask A, Menzel A, Ristinmaa M. 2012. Electrostriction in electro-viscoelastic polymers. Mechanics of Materials, 50: 9-21. doi: 10.1016/j.mechmat.2012.01.009
|
[8] |
Ask A, Menzel A, Ristinmaa M. 2015. Modelling of viscoelastic dielectric elastomers with deformation dependent electric properties. Procedia IUTAM, 12: 134-144. doi: 10.1016/j.piutam.2014.12.015
|
[9] |
Bai Y, Jiang Y, Chen B, et al. 2014. Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Applied Physics Letters, 104: 062902. doi: 10.1063/1.4865200
|
[10] |
Basquin O. 1910. The exponential law of endurance tests. Proceedings of the American Society of Testing and Materials, 625-630.
|
[11] |
Bergström J, Boyce M. 1998. Constitutive modeling of the large strain time-dependent behavior of elastomers. Journal of the Mechanics and Physics of Solids, 46: 931-954. doi: 10.1016/S0022-5096(97)00075-6
|
[12] |
Bolzmacher C, Hafez M, Khoudja M B, et al. 2004. Polymer-based actuators for virtual reality devices. Proceedings of the SPIE:Electroactive Polymer Actuators and Devices, 5385: 281-289.
|
[13] |
Bouzidi S, Bechir H, Brémand F. 2016. Phenomenological isotropic visco-hyperelasticity: A differential model based on fractional derivatives. Journal of Engineering Mathematics, 99: 1-28. doi: 10.1007/s10665-015-9818-6
|
[14] |
Boyce M C, Arruda E M. 2000. Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 73: 504-523. doi: 10.5254/1.3547602
|
[15] |
Carpi F, Bauer S, De Rossi D. 2010. Stretching dielectric elastomer performance. Science, 330: 1759-1761. doi: 10.1126/science.1194773
|
[16] |
Chang M, Wang Z, Tong L, et al. 2017. Effect of geometric size on mechanical properties of dielectric elastomers based on an improved visco-hyperelastic film model. Smart Materials and Structures, 26: 035033. doi: 10.1088/1361-665X/aa5491
|
[17] |
Chen K, Kang G, Lu F, et al. 2016. Temperature-dependent uniaxial ratchetting of ultra-high molecular weight polyethylene. Fatigue & Fracture of Engineering Materials & Structures, 39: 839-849.
|
[18] |
Chen S, Deng L, He Z, et al. 2016. Temperature effect on the performance of a dissipative dielectric elastomer generator with failure modes. Smart Materials and Structures, 25: 055017. doi: 10.1088/0964-1726/25/5/055017
|
[19] |
Chen Y, Kang G, Hu Y, et al. 2021. Low-cycle electro-mechanical fatigue of dielectric elastomers: Pure-shear experiments and life-prediction model. International Journal of Fatigue, 148: 106220. doi: 10.1016/j.ijfatigue.2021.106220
|
[20] |
Chen Y, Kang G, Yuan J, et al. 2018. Uniaxial ratchetting of filled rubber: Experiments and damage-coupled hyper-viscoelastic-plastic constitutive model. Journal of Applied Mechanics, 85: 061013. doi: 10.1115/1.4039814
|
[21] |
Chen Y, Kang G, Yuan J, et al. 2019. Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer. Journal of Polymer Research, 26: 186. doi: 10.1007/s10965-019-1858-6
|
[22] |
Chen Y, Kang G, Yuan J, et al. 2020a. An electro-mechanically coupled visco-hyperelastic-plastic constitutive model for cyclic deformation of dielectric elastomers. Mechanics of Materials, 150: 103575. doi: 10.1016/j.mechmat.2020.103575
|
[23] |
Chen Y, Kang G, Yuan J, et al. 2020b. Experimental investigation on electro-mechanically coupled cyclic deformation of laterally constrained dielectric elastomer. Polymer Testing, 81: 106220. doi: 10.1016/j.polymertesting.2019.106220
|
[24] |
Cheng J, Jia Z, Li T. 2018. Dielectric-elastomer-based capacitive force sensing with tunable and enhanced sensitivity. Extreme Mechanics Letters, 21: 49-56. doi: 10.1016/j.eml.2018.03.004
|
[25] |
de Saint-Aubin C A, Rosset S, Schlatter S, et al. 2018. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes. Smart Materials and Structures, 27: 074002. doi: 10.1088/1361-665X/aa9f45
|
[26] |
Diani J, Brieu M, Gilormini P. 2006. Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. International Journal of Solids and Structures, 43: 3044-3056. doi: 10.1016/j.ijsolstr.2005.06.045
|
[27] |
Diani J, Fayolle B, Gilormini P. 2009. A review on the Mullins effect. European Polymer Journal, 45: 601-612. doi: 10.1016/j.eurpolymj.2008.11.017
|
[28] |
Díaz-Calleja R, Riande E, Sanchis M. 2008. On electromechanical stability of dielectric elastomers. Applied Physics Letters, 93: 101902. doi: 10.1063/1.2972124
|
[29] |
Dickie R A, Smith T L. 1971. Viscoelastic properties of a rubber vulcanizate under large deformations in equal biaxial tension, pure shear, and simple tension. Transactions of the Society of Rheology, 15: 91-110. doi: 10.1122/1.549231
|
[30] |
Dorfmann A, Ogden R. 2003. A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. International Journal of Solids and Structures, 40: 2699-2714. doi: 10.1016/S0020-7683(03)00089-1
|
[31] |
Dorfmann A, Ogden R. 2005. Nonlinear electroelasticity. Acta Mechanica, 174: 167-183. doi: 10.1007/s00707-004-0202-2
|
[32] |
Eshelby J D. 1951. The force on an elastic singularity. Transactions of the Royal Society of London, Series A, 244: 87-112.
|
[33] |
Fan F, Szpunar J. 2015. Characterization of viscoelasticity and self-healing ability of VHB 4910. Macromolecular Materials and Engineering, 300: 99-106. doi: 10.1002/mame.201400122
|
[34] |
Fan W, Wang Y, Cai S. 2017. Fatigue fracture of a highly stretchable acrylic elastomer. Polymer Testing, 61: 373-377. doi: 10.1016/j.polymertesting.2017.06.005
|
[35] |
Foo C C, Cai S, Koh S J A, et al. 2012. Model of dissipative dielectric elastomers. Journal of Applied Physics, 111: 034102. doi: 10.1063/1.3680878
|
[36] |
Gent A N. 1996. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69: 59-61. doi: 10.5254/1.3538357
|
[37] |
Gu G Y, Gupta U, Zhu J, et al. 2017. Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. Ieee Transactions on Robotics, 33: 1263-1271. doi: 10.1109/TRO.2017.2706285
|
[38] |
Haupt P. 2013. Continuum mechanics and theory of materials. Springer Science & Business Media.
|
[39] |
Helal A, Doumit M, Shaheen R. 2018. Biaxial experimental and analytical characterization of a dielectric elastomer. Applied Physics A Materials Science & Processing, 124: 2.
|
[40] |
Hill M, Rizzello G, Seelecke S. 2019. Development and validation of a fatigue testing setup for dielectric elastomer membrane actuators. Smart Materials and Structures, 28: 055029. doi: 10.1088/1361-665X/ab1347
|
[41] |
Hodgins M, Seelecke S. 2016. Systematic experimental study of pure shear type dielectric elastomer membranes with different electrode and film thicknesses. Smart Materials and Structures, 25: 095001. doi: 10.1088/0964-1726/25/9/095001
|
[42] |
Holzapfel A G. 2000. Nonlinear solid mechanics II. John Wiley & Sons Inc.
|
[43] |
Hong W. 2011. Modeling viscoelastic dielectrics. Journal of the Mechanics and Physics of Solids, 59: 637-650. doi: 10.1016/j.jmps.2010.12.003
|
[44] |
Hossain M, Vu D K, Steinmann P. 2012. Experimental study and numerical modelling of VHB 4910 polymer. Computational Materials Science, 59: 65-74. doi: 10.1016/j.commatsci.2012.02.027
|
[45] |
Hossain M, Vu D K, Steinmann P. 2015. A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Archive of Applied Mechanics, 85: 523-537. doi: 10.1007/s00419-014-0928-9
|
[46] |
Huang J, Shian S, Suo Z, et al. 2013. Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Advanced Functional Materials, 23: 5056-5061. doi: 10.1002/adfm.201300402
|
[47] |
Huang W, Kang G. 2022. Experimental study on uniaxial ratchetting of VHB 4910 dielectric elastomer. Polymer Testing, 109: 107557. doi: 10.1016/j.polymertesting.2022.107557
|
[48] |
Jiang Y J, Liu S T, Zhong M L, et al. 2020. Optimizing energy harvesting performance of cone dielectric elastomer generator based on VHB elastomer. Nano Energy, 71: 104606. doi: 10.1016/j.nanoen.2020.104606
|
[49] |
Jimenez S M A, McMeeking R M. 2013. Deformation dependent dielectric permittivity and its effect on actuator performance and stability. International Journal of Non-Linear Mechanics, 57: 183-191. doi: 10.1016/j.ijnonlinmec.2013.08.001
|
[50] |
Jimenez S M A, McMeeking R M. 2016. A constitutive law for dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity. International Journal of Non-Linear Mechanics, 87: 125-136. doi: 10.1016/j.ijnonlinmec.2016.10.004
|
[51] |
Johnson A, Quigley C. 1992. A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chemistry and Technology, 65: 137-153. doi: 10.5254/1.3538596
|
[52] |
Johnson A, Quigley C, Freese C. 1995. A viscohyperelastic finite element model for rubber. Computer Methods in Applied Mechanics and Engineering, 127: 163-180. doi: 10.1016/0045-7825(95)00833-4
|
[53] |
Kang G Z. 2008. Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application. International Journal of Fatigue, 30: 1448-1472. doi: 10.1016/j.ijfatigue.2007.10.002
|
[54] |
Kang G Z, Liu Y J, Wang Y F, et al. 2009. Uniaxial ratchetting of polymer and polymer matrix composites: Time-dependent experimental observations. Materials Science and Engineering: A, 523: 13-20. doi: 10.1016/j.msea.2009.06.055
|
[55] |
Kang J, Zhang Z, Li J, et al. 2020. Effect of temperature on the rupture behavior of highly stretchable acrylic elastomer. Polymer Testing, 81: 106221. doi: 10.1016/j.polymertesting.2019.106221
|
[56] |
Khajehsaeid H, Arghavani J, Naghdabadi R. 2013. A hyperelastic constitutive model for rubber-like materials. European Journal of Mechanics - A/Solids, 38: 144-151. doi: 10.1016/j.euromechsol.2012.09.010
|
[57] |
Kofod G. 2001. Dielectric elastomer actuators. The Technical University of Denmark.
|
[58] |
Kofod G, Sommer-Larsen P, Kornbluh R, et al. 2003. Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures, 14: 787-793. doi: 10.1177/104538903039260
|
[59] |
Kollosche M, Kofod G, Suo Z, et al. 2015. Temporal evolution and instability in a viscoelastic dielectric elastomer. Journal of the Mechanics and Physics of Solids, 76: 47-64. doi: 10.1016/j.jmps.2014.11.013
|
[60] |
Kong X, Li J, Collins W, et al. 2017. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 101680B.
|
[61] |
Kornbluh R D, Pelrine R, Pei Q, et al. 2002. Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures. SPIE's 9th Annual International Symposium on Smart Structures and Materials, 4698: 254-270. doi: 10.1117/12.475072
|
[62] |
Leng J, Liu L, Liu Y, et al. 2009. Electromechanical stability of dielectric elastomer. Applied Physics Letters, 94: 211901. doi: 10.1063/1.3138153
|
[63] |
Li B, Chen H, Qiang J, et al. 2011. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. Journal of Physics D: Applied Physics, 44: 155301. doi: 10.1088/0022-3727/44/15/155301
|
[64] |
Li B, Chen H, Qiang J, et al. 2012. A model for conditional polarization of the actuation enhancement of a dielectric elastomer. Soft Matter, 8: 311-317. doi: 10.1039/C1SM05847A
|
[65] |
Li B, Liu L, Wu J, et al. 2010. Electrostriction in dielectric elastomer: effect on electromechanical actuation. Proceedings of SPIE: Electroactive Polymer Actuators and Devices, 7642: 764212.
|
[66] |
Li G, Chen X, Zhou F, et al. 2021. Self-powered soft robot in the Mariana Trench. Nature, 591: 66-71. doi: 10.1038/s41586-020-03153-z
|
[67] |
Li T, Keplinger C, Baumgartner R, et al. 2013. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 61: 611-628. doi: 10.1016/j.jmps.2012.09.006
|
[68] |
Li T, Li G, Liang Y, et al. 2017. Fast-moving soft electronic fish. Science Advances, 3: e1602045. doi: 10.1126/sciadv.1602045
|
[69] |
Liang X, Cai S. 2018. New electromechanical instability modes in dielectric elastomer balloons. International Journal of Solids and Structures, 132-133: 96-104. doi: 10.1016/j.ijsolstr.2017.09.021
|
[70] |
Liao Z S, Hossain M, Yao X H, et al. 2020. On thermo-viscoelastic experimental characterization and numerical modelling of VHB polymer. International Journal of Non-Linear Mechanics, 118: 103263. doi: 10.1016/j.ijnonlinmec.2019.103263
|
[71] |
Linder C, Tkachuk M, Miehe C. 2011. A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 59: 2134-2156. doi: 10.1016/j.jmps.2011.05.005
|
[72] |
Liu B, Chen F, Wang S, et al. 2017. Electromechanical control and stability analysis of a soft swim-bladder robot driven by dielectric elastomer. Journal of Applied Mechanics-Transactions of the ASME, 84: 091005. doi: 10.1115/1.4037147
|
[73] |
Liu X J, Zhang J S, Chen H L. 2019. Ambient humidity altering electromechanical actuation of dielectric elastomers. Applied Physics Letters, 115: 184101. doi: 10.1063/1.5126654
|
[74] |
Lotz P, Matysek M, Schlaak H F. 2011. Lifetime of dielectric elastomer stack actuators. Electroactive Polymer Actuators and Devices (EAPAD)
|
[75] |
Lu F, Kang G, Jiang H, et al. 2014. Experimental studies on the uniaxial ratchetting of polycarbonate polymer at different temperatures. Polymer Testing, 39: 92-100. doi: 10.1016/j.polymertesting.2014.07.019
|
[76] |
Lu T, Cheng S, Li T, et al. 2016. Electromechanical catastrophe. International Journal of Applied Mechanics, 8: 1640005. doi: 10.1142/S1758825116400056
|
[77] |
Lu T, Ma C, Wang T. 2020. Mechanics of dielectric elastomer structures: A review. Extreme Mechanics Letters, 38: 100752. doi: 10.1016/j.eml.2020.100752
|
[78] |
Lu T, Shi Z, Chen Z, et al. 2015. Current leakage performance of dielectric elastomers under different boundary conditions. Applied Physics Letters, 107: 152901. doi: 10.1063/1.4933173
|
[79] |
Lu T, Wang J, Yang R, et al. 2017. A constitutive model for soft materials incorporating viscoelasticity and Mullins effect. Journal of Applied Mechanics, 84: 021010. doi: 10.1115/1.4035180
|
[80] |
Lubliner J. 1985. A model of rubber viscoelasticity. Mechanics Research Communications, 12: 93-99. doi: 10.1016/0093-6413(85)90075-8
|
[81] |
Mars W, Fatemi A. 2002. A literature survey on fatigue analysis approaches for rubber. International Journal of Fatigue, 24: 949-961. doi: 10.1016/S0142-1123(02)00008-7
|
[82] |
McKay T G, O’Brien B M, Calius E P, et al. 2011. Soft generators using dielectric elastomers. Applied Physics Letters, 98: 142903. doi: 10.1063/1.3572338
|
[83] |
Mehnert M, Hossain M, Steinmann P. 2019. Experimental and numerical investigations of the electro-viscoelastic behavior of VHB 4905TM. European Journal of Mechanics - A/Solids, 77: 103797. doi: 10.1016/j.euromechsol.2019.103797
|
[84] |
Mehnert M, Hossain M, Steinmann P. 2021. A complete thermo-electro-viscoelastic characterization of dielectric elastomers, Part I: Experimental investigations. Journal of the Mechanics and Physics of Solids, 157: 104603. doi: 10.1016/j.jmps.2021.104603
|
[85] |
Miehe C, Göktepe S. 2005. A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 53: 2231-2258. doi: 10.1016/j.jmps.2005.04.006
|
[86] |
Miehe C, Keck J. 2000. Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. Journal of the Mechanics and Physics of Solids, 48: 323-365. doi: 10.1016/S0022-5096(99)00017-4
|
[87] |
Mooney M. 1940. A theory of large elastic deformation. Journal of applied physics, 11: 582-592. doi: 10.1063/1.1712836
|
[88] |
Mullins L. 1969. Softening of Rubber by Deformation. Rubber Chemistry and Technology, 42: 339-362. doi: 10.5254/1.3539210
|
[89] |
Ogden R. 1972. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 326: 565-584. doi: 10.1098/rspa.1972.0026
|
[90] |
Pelrine R. 2000. High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering C, 11: 89-100. doi: 10.1016/S0928-4931(00)00128-4
|
[91] |
Pelrine R, Kornbluh R, Eckerle J, et al. 2001. Dielectric elastomers: generator mode fundamentals and applications. SPIE's 8th Annual International Symposium on Smart Structures and Materials, 4329: 148-156. doi: 10.1117/12.432640
|
[92] |
Pelrine R, Kornbluh R, Joseph J. 1998. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 64: 77-85. doi: 10.1016/S0924-4247(97)01657-9
|
[93] |
Pelrine R, Kornbluh R, Kofod G. 2000. High-strain actuator materials based on dielectric elastomers. Advanced Materials, 12: 1223-1225. doi: 10.1002/1521-4095(200008)12:16<1223::AID-ADMA1223>3.0.CO;2-2
|
[94] |
Pelrine R, Kornbluh R, Pei Q, et al. 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287: 836-839. doi: 10.1126/science.287.5454.836
|
[95] |
Pelrine R, Kornbluh R, Pei Q, et al. 2002. Dielectric elastomer artificial muscle actuators: toward biomimetic motion. SPIE's 9th Annual International Symposium on Smart Structures and Materials, 4695: 126-137. doi: 10.1117/12.475157
|
[96] |
Pelrine R, Sommer-Larsen P, Kornbluh R, et al. 2001. Applications of dielectric elastomer actuators. Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, 4329: 335-349. doi: 10.1117/12.432665
|
[97] |
Pharr M, Sun J, Suo Z. 2012. Rupture of a highly stretchable acrylic dielectric elastomer. Journal of Applied Physics, 111: 104114. doi: 10.1063/1.4721777
|
[98] |
Plante J, Dubowsky S. 2006. Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 43: 7727-7751. doi: 10.1016/j.ijsolstr.2006.03.026
|
[99] |
Plante J, Dubowsky S. 2007. On the performance mechanisms of dielectric elastomer actuators. Sensors and Actuators A: Physical, 137: 96-109. doi: 10.1016/j.sna.2007.01.017
|
[100] |
Pyo D, Ryu S, Kyung K, et al. 2018. High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer. Applied Physics Letters, 112: 061902. doi: 10.1063/1.5016385
|
[101] |
Qi H J, Boyce M C. 2005. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 37: 817-839. doi: 10.1016/j.mechmat.2004.08.001
|
[102] |
Qiang J, Chen H, Li B. 2012. Experimental study on the dielectric properties of polyacrylate dielectric elastomer. Smart Materials and Structures, 21: 025006. doi: 10.1088/0964-1726/21/2/025006
|
[103] |
Qiu Y, Zhang E, Plamthottam R, et al. 2019. Dielectric elastomer artificial muscle: materials innovations and device explorations. Accounts of Chemical Research, 52: 316-325. doi: 10.1021/acs.accounts.8b00516
|
[104] |
Qu S, Li K, Li T, et al. 2012. Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mechanica Solida Sinica, 25: 542-549. doi: 10.1016/S0894-9166(12)60048-2
|
[105] |
Reese S, Govindjee S. 1998. A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures, 35: 3455-3482. doi: 10.1016/S0020-7683(97)00217-5
|
[106] |
Reese S, Wriggers P. 1997. A material model for rubber-like polymers exhibiting plastic deformation: Computational aspects and a comparison with experimental results. Computer Methods in Applied Mechanics and Engineering, 148: 279-298. doi: 10.1016/S0045-7825(97)00034-0
|
[107] |
Rivlin R. 1948. Large elastic deformations of isotropic materials. I. Fundamental concepts. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 240: 459-490.
|
[108] |
Rosset S, de Saint-Aubin C, Poulin A, et al. 2017. Assessing the degradation of compliant electrodes for soft actuators. Review of Scientific Instruments, 88: 105002. doi: 10.1063/1.4989464
|
[109] |
Sahu R K, Patra K. 2016. Rate-dependent mechanical behavior of VHB 4910 elastomer. Mechanics of Advanced Materials and Structures, 23: 170-179. doi: 10.1080/15376494.2014.949923
|
[110] |
Sahu R K, Patra K, Szpunar J. 2015. Experimental study and numerical modelling of creep and stress relaxation of dielectric elastomers. Strain, 51: 43-54. doi: 10.1111/str.12117
|
[111] |
Schmidt A, Rothemund P, Mazza E. 2012. Multiaxial deformation and failure of acrylic elastomer membranes. Sensors and Actuators A: Physical, 174: 133-138.
|
[112] |
Sheng J J, Chen H L, Li B, et al. 2013. Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Applied Physics a-Materials Science & Processing, 110: 511-515.
|
[113] |
Sheng J J, Chen H L, Qiang J H, et al. 2012. Thermal, mechanical, and dielectric properties of a dielectric elastomer for actuator applications. Journal of Macromolecular Science Part B-Physics, 51: 2093-2104. doi: 10.1080/00222348.2012.659617
|
[114] |
Shian S, Huang J, Zhu S, et al. 2014. Optimizing the electrical energy conversion cycle of dielectric elastomer generators. Advanced Materials, 26: 6617-6621. doi: 10.1002/adma.201402291
|
[115] |
Sommer-Larsen P, Kofod G, Shridhar M H, et al. 2002. Performance of dielectric elastomer actuators and materials. Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD)
|
[116] |
Song Z, Ohyama K, Shian S, et al. 2019. Power generation performance of dielectric elastomer generator with laterally-constrained configuration. Smart Materials and Structures, 29: 015018.
|
[117] |
Steinmann P, Hossain M, Possart G. 2012. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar's data. Archive of Applied Mechanics, 82: 1183-1217. doi: 10.1007/s00419-012-0610-z
|
[118] |
Sun W, Liu F, Ma Z, et al. 2016. Soft mobile robots driven by foldable dielectric elastomer actuators. Journal of Applied Physics, 120: 084901. doi: 10.1063/1.4960718
|
[119] |
Suo Z. 2010. Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23: 549-578. doi: 10.1016/S0894-9166(11)60004-9
|
[120] |
Suo Z, Zhao X, Greene W H. 2008. A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 56: 467-486. doi: 10.1016/j.jmps.2007.05.021
|
[121] |
Thylander S, Menzel A, Ristinmaa M, et al. 2017. Electro-viscoelastic response of an acrylic elastomer analysed by digital image correlation. Smart Materials and Structures, 26: 085021. doi: 10.1088/1361-665X/aa7255
|
[122] |
Treloar L R G. 1975. The physics of rubber elasticity. Oxford university press.
|
[123] |
Verron E, Andriyana A. 2008. Definition of a new predictor for multiaxial fatigue crack nucleation in rubber. Journal of the Mechanics and Physics of Solids, 56: 417-443. doi: 10.1016/j.jmps.2007.05.019
|
[124] |
Wang H, Qu S. 2016. Constitutive models of artificial muscles: a review. Journal of Zhejiang University-Science A, 17: 22-36. doi: 10.1631/jzus.A1500207
|
[125] |
Wang S B, Kaaya T, Chen Z. 2020. Self-sensing of dielectric elastomer tubular actuator with feedback control validation. Smart Materials and Structures, 29: 075037. doi: 10.1088/1361-665X/ab914b
|
[126] |
Wang Y, Chen X, Yu W, et al. 2009. Experimental study on multiaxial ratcheting behavior of vulcanized natural rubber. Polymer Engineering & Science, 49: 506-513.
|
[127] |
Wang Y, Zhu J. 2016. Artificial muscles for jaw movements. Extreme Mechanics Letters, 6: 88-95. doi: 10.1016/j.eml.2015.12.007
|
[128] |
Wissler M, Mazza E. 2005. Modeling of a pre-strained circular actuator made of dielectric elastomers. Sensors and Actuators A: Physical, 120: 184-192. doi: 10.1016/j.sna.2004.11.015
|
[129] |
Wissler M, Mazza E. 2007a. Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators A: Physical, 138: 384-393. doi: 10.1016/j.sna.2007.05.029
|
[130] |
Wissler M, Mazza E. 2007b. Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sensors and Actuators A: Physical, 134: 494-504. doi: 10.1016/j.sna.2006.05.024
|
[131] |
Xiang Y, Zhong D, Rudykh S, et al. 2020. A review of physically based and thermodynamically based constitutive models for soft materials. Journal of Applied Mechanics-Transactions of the Asme, 87: 110801. doi: 10.1115/1.4047776
|
[132] |
Xiang Y, Zhong D, Wang P, et al. 2018. A general constitutive model of soft elastomers. Journal of the Mechanics and Physics of Solids, 117: 110-122. doi: 10.1016/j.jmps.2018.04.016
|
[133] |
Xiang Y, Zhong D, Wang P, et al. 2019. A physically based visco-hyperelastic constitutive model for soft materials. Journal of the Mechanics and Physics of Solids, 128: 208-218. doi: 10.1016/j.jmps.2019.04.010
|
[134] |
Yeoh O H. 1993. Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66: 754-771. doi: 10.5254/1.3538343
|
[135] |
Yu W, Chen X, Wang Y, et al. 2008. Uniaxial ratchetting behavior of vulcanized natural rubber. Polymer Engineering & Science, 48: 191-197.
|
[136] |
Zhang J, Li B, Chen H, et al. 2016. Dissipative performance of dielectric elastomers under various voltage waveforms. Soft matter, 12: 2348-2356. doi: 10.1039/C5SM02634B
|
[137] |
Zhang J, Liu X J, Liu L, et al. 2020. Modeling and experimental study on dielectric elastomers incorporating humidity effect. A Letters Journal Exploring the Frontiers of Physics, 129: 57002.
|
[138] |
Zhang J, Ru J, Chen H, et al. 2017. Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model. Applied Physics Letters, 110: 044104. doi: 10.1063/1.4974991
|
[139] |
Zhao X, Hong W, Suo Z. 2007. Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 76: 134113. doi: 10.1103/PhysRevB.76.134113
|
[140] |
Zhao X, Koh S J A, Suo Z. 2011. Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics, 3: 203-217. doi: 10.1142/S1758825111000944
|
[141] |
Zhao X, Suo Z. 2007. Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 91: 061921. doi: 10.1063/1.2768641
|
[142] |
Zhao X, Suo Z. 2008. Electrostriction in elastic dielectrics undergoing large deformation. Journal of Applied Physics, 104: 123530. doi: 10.1063/1.3031483
|
[143] |
Zhaso X, Suo Z. 2010. Theory of dielectric elastomers capable of giant deformation of actuation. Physical Review Letters, 104: 178302. doi: 10.1103/PhysRevLett.104.178302
|
[144] |
Zhou F, Zhang M, Cao X, et al. 2019. Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame. Sensors and Actuators A: Physical, 292: 112-120. doi: 10.1016/j.sna.2019.02.017
|
[145] |
Zhou J, Hong W, Zhao X, et al. 2008. Propagation of instability in dielectric elastomers. International Journal of Solids and Structures, 45: 3739-3750. doi: 10.1016/j.ijsolstr.2007.09.031
|
[146] |
Zhou J, Jiang L. 2018. Development of a predictor for fatigue crack nucleation of dielectric viscoelastomers under electromechanical loads. Journal of the Mechanics and Physics of Solids, 119: 400-416. doi: 10.1016/j.jmps.2018.07.012
|
[147] |
Zhou J, Jiang L. 2020. Electromechanical fatigue of dielectric viscoelastomers. Extreme Mechanics Letters, 36: 100666. doi: 10.1016/j.eml.2020.100666
|
[148] |
Zhou J, Jiang L, Khayat R E. 2015. Investigation on the performance of a viscoelastic dielectric elastomer membrane generator. Soft Matter, 11: 2983-2992. doi: 10.1039/C5SM00036J
|
[149] |
Zhou J, Jiang L, Khayat R E. 2018. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. Journal of the Mechanics and Physics of Solids, 110: 137-154. doi: 10.1016/j.jmps.2017.09.016
|
[150] |
Zhu F B, Zhang C L, Qian J, et al. 2016. Mechanics of dielectric elastomers: materials, structures, and devices. Journal of Zhejiang University-Science A, 17: 1-21. doi: 10.1631/jzus.A1500125
|
[151] |
Zhu J, Kollosche M, Lu T, et al. 2012. Two types of transitions to wrinkles in dielectric elastomers. Soft Matter, 8: 8840-8846. doi: 10.1039/c2sm26034d
|
[152] |
Zhu J, Stoyanov H, Kofod G, et al. 2010. Large deformation and electromechanical instability of a dielectric elastomer tube actuator. Journal of Applied Physics, 108: 074113. doi: 10.1063/1.3490186
|
[153] |
Zhu Y, Kang G, Kan Q, et al. 2014. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues. Journal of Biomechanics, 47: 996-1003. doi: 10.1016/j.jbiomech.2014.01.004
|
[154] |
Zuo Y, Ding Y, Zhang J, et al. 2021. Humidity effect on dynamic electromechanical properties of polyacrylic dielectric elastomer: an experimental study. Polymers, 13: 784. doi: 10.3390/polym13050784
|