Volume 53 Issue 3
Sep.  2023
Turn off MathJax
Article Contents
Han G Q, Zhang X F, Tan M T, Bao K, Li Y. Research on impact response characteristics and damage evolution law of transparent ceramics. Advances in Mechanics, 2023, 53(3): 497-560 doi: 10.6052/1000-0992-23-007
Citation: Han G Q, Zhang X F, Tan M T, Bao K, Li Y. Research on impact response characteristics and damage evolution law of transparent ceramics. Advances in Mechanics, 2023, 53(3): 497-560 doi: 10.6052/1000-0992-23-007

Research on impact response characteristics and damage evolution law of transparent ceramics

doi: 10.6052/1000-0992-23-007
More Information
  • Corresponding author: lynx@njust.edu.cn
  • Received Date: 2023-02-10
  • Accepted Date: 2023-04-25
  • Available Online: 2023-04-26
  • Publish Date: 2023-09-30
  • Transparent ceramics excel in light transmission and impact damage resistance, and have good application prospects as superior protective materials in military equipment, aerospace and other national defense fields. It is important to explore the damage evolution process of transparent ceramics and clarify the loading response characteristics of materials under impact load in order to grasp the failure mechanism of materials and improve the elastic performance of transparent ceramic armor. This paper systematically reviews the impact response characteristics of transparent ceramics under static and dynamic loading from the experimental research, including experimental technology, strain rate effect, crack growth rate and material failure characteristics. At the same time, the impact failure mechanism of transparent ceramic materials is elucidated based on the impact failure test of ceramic materials, and thereby the damage model, strength criterion and dynamic constitutive model of impact response of transparent ceramic are elaborated. Finally, this paper analyzes the research status of impact response characteristics and numerical simulation technology of transparent ceramic composite packaging, discusses the development trend of impact response characteristics of ceramic materials, and provides the design of transparent composite targets. In view of the shortcomings of the current research on the impact response of transparent ceramics, this paper also proposes suggestions for future research directions.

     

  • loading
  • [1]
    艾月霞, 张国轩, 蔡懿, 李景镇. 2017. 光学分幅成像仪图像采集系统及其实验研究. 激光杂志, 38: 28-31 (Ai Yuexia, Zhang Guoxuan, Cai Yi, Li Jingzhen. 2017. Research on image acquisition system of optical framing camera,. Laser Journal, 38: 28-31).

    Ai Yuexia, Zhang Guoxuan, Cai Yi, Li Jingzhen. 2017. Research on Image Acquisition System of Optical Framing Camera. Laser Journal, 38: 28-31
    [2]
    包阔, 张先锋, 王桂吉, 邓佳杰, 韩丹, 谈梦婷, 魏海洋. 2021. 破片撞击下YAG透明陶瓷复合靶的破坏特性. 爆炸与冲击, 41: 24-36 (Bao Kuo, Zhang Xianfeng, Wang Guiji, Deng Jiajie, Han Dan, Tan Mengting, Wei Haiyang. 2021. Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments. Explosion and Shock Waves, 41: 24-36).

    Bao Kuo, Zhang Xianfeng, Wang Guiji, Deng Jiajie, Han Dan, Tan Mengting, Wei Haiyang. 2021. Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments. Explosion And Shock Waves, 41: 24-36
    [3]
    畅里华, 谭显祥, 汪伟, 尚长水, 李剑, 田建华. 2006. 纹影技术用于爆轰与冲击波物理实验研究. 激光与光电子学进展, 43: 58 (Chang Lihua, Tan Xianxiang, Wang Wei, Shang Changshui, Li Jian, Tian Jianhua. 2006. Schlieren techniques in experiments of shock wave and detonation physics. Laser & Optoelectronics Progress, 43: 58).

    Chang Lihua, Tan Xianxiang, Wang Wei, Shang Changshui, Li Jian, Tian Jianhua. 2006. Schlieren Techniques in Experiments of Shock Wave and Detonation Physics. Laser & Optoelectronics Progress, 43: 58
    [4]
    陈小伟, 陈裕泽. 2006. 脆性陶瓷靶高速侵彻/穿甲动力学的研究进展. 力学进展, 36: 85-102 (Chen Xiaowei, Chen Yuze. 2006. Review on the Penetration/Perforation of Ceramics Targets. Advances in Mechanics, 36: 85-102). doi: 10.6052/1000-0992-2006-1-J2004-086

    Chen Xiaowei, Chen Yuze. 2006. REVIEW ON THE PENETRATION/PERFORATION OF CERAMICS TARGETS. Advances in Mechanics, 36: 85-102 doi: 10.6052/1000-0992-2006-1-J2004-086
    [5]
    邓佳杰, 章健, 张先锋, 包阔. 2022. YAG透明陶瓷复合靶抗弹机理研究. 北京理工大学学报, 42: 620-628 (Deng Jiajie, Zhang Jian, Zhang Xianfeng, Bao Kuo. 2022. Investigation on Bullet Proof Mechanism of YAG Transparent Ceramic Composite Targets. Transactions of Beijing institute of Technology, 42: 620-628). doi: 10.15918/j.tbit1001-0645.2021.230

    Deng Jiajie, Zhang Jian, Zhang Xianfeng, Bao Kuo. 2022. Investigation on Bullet Proof Mechanism of YAG Transparent Ceramic Composite Targets. Transactions of Beijing institute of Technology, 42: 620-628 doi: 10.15918/j.tbit1001-0645.2021.230
    [6]
    段锦霞, 王程民, 王修慧, 高宏, 杨金龙. 2017. 镁铝尖晶石透明陶瓷研究进展. 粉末冶金技术, 35: 358-362 (Duan Jinxia, Wang Chengmin, Wang Xiuhui, Gao Hong, Yang Jinlong. 2017. Research progress of magnesium aluminate spinel transparent ceramic. Powder Metallurgy Technology, 35: 358-362).

    Duan Jinxia, Wang Chengmin, Wang Xiuhui, Gao Hong, Yang Jinlong. 2017. Research progress of magnesium aluminate spinel transparent ceramic. Powder Metallurgy Technology, 35: 358-362
    [7]
    高玉波, 秦国华, 张伟, 宜晨虹, 邓勇军. 2019. TiB2-B4C复合陶瓷动态压缩特性研究. 兵工学报, 40: 2304-2310 (Gao Yubo, Qin Guohua, Zhang Wei, Yi Chenhong, Deng Yongjun. 2019. Research on Dynamic Compression Properties of TiB2-B4C Composite. Acta Armamentarii, 40: 2304-2310). doi: 10.3969/j.issn.1000-1093.2019.11.015

    Gao Yubo, Qin Guohua, Zhang Wei, Yi Chenhong, Deng Yongjun. 2019. Research on Dynamic Compression Properties of TiB2-B4C Composite. Acta Armamentarii, 40: 2304-2310 doi: 10.3969/j.issn.1000-1093.2019.11.015
    [8]
    韩国庆, 张先锋, 谈梦婷, 包阔, 李逸. 2022. 边缘冲击(EOI)作用下透明陶瓷破坏特性研究. 爆炸与冲击, 42: 053102-053101 (Han Guoqing, Zhang Xianfeng, Tan Mengting, Bao Kuo, Li Yi. 2022. Failure characteristics of three transparent ceramics materials under the edge-on impact loading. Explosion and Shock Waves, 42: 053102-053101). doi: 10.11883/bzycj-2021-0292

    Han Guoqing, Zhang Xianfeng, Tan Mengting, Bao Kuo, Li Yi. 2022. Failure characteristics of three transparent ceramics materials under the edge-on impact loading. Explosion and Shock Waves, 42: 053102-053101 doi: 10.11883/bzycj-2021-0292
    [9]
    靳玲玲, 蒋志君, 章健, 王士维. 2010. 氧化钇透明陶瓷的研究进展. 硅酸盐学报, 38: 521-526 (Jin Lingling, Jiang Zhijun, Zhang Jian, Wang Shiwei. 2010. Research Progress of Yttria Transparent Ceramics. Journal of the Chinese Ceramic Society, 38: 521-526).

    Jin Lingling, Jiang Zhijun, Zhang Jian, Wang Shiwei. 2010. RESEARCH PROGRESS OF YTTRIA TRANSPARENT CERAMICS. Journal of the Chinese Ceramic Society, 38: 521-526
    [10]
    李鹏杰, 白雪, 刘宇阳, 王星明, 孙悦, 储茂友. 2021. 钇铝石榴石(YAG)透明陶瓷的研究进展. 中国稀土学报: 1-25

    Li Pengjie, Bai Xue, Liu Yuyang, Wang Xingming, Sun Yue, Chu Maoyou. 2021. A Review of Yttrium Aluminum Garnet (YAG) Transparent Ceramics Researching. Journal of the Chinese Society of Rare Earths, 1-25
    [11]
    李旺辉, 奉兰西, 张晓晴, 姚小虎. 2021. 极端条件下碳化硅的变形, 损伤与破坏研究进展. 高压物理学报, 35: 41 (Li Wanghui, Feng Lanxi, Zhang Xiaoqing, Yao Xiaohu. 2021. Brief Review of Research Progress on the Deformation, Damage and Failure of Silicon Carbide under Extreme Conditions. Chinese Journal of High Pressure Physics, 35: 41).

    Li Wanghui, Feng Lanxi, Zhang Xiaoqing, Yao Xiaohu. 2021. Brief Review of Research Progress on the Deformation, Damage and Failure of Silicon Carbide under Extreme Conditions. Chinese Journal of High Pressure Physics, 35: 41
    [12]
    李玉龙, 聂海亮, 汤忠斌, 索涛, 吴蓓蓓. 基于电磁力加载的分离式霍普金森压杆实验装置: CN201410161610: X. 2014-07-09

    Li Yulong, Nie Hailiang, Tang Zhongbin, Suo Tao, Wu Beibei. 2014. The discrete Hopkinson bar experimental setup based on electromagnetic force loading
    [13]
    刘江丽, 黄志文. 2022. 蓝宝石单晶材料的抗弹仿真分析. 直升机技术, 3: 10-15 (Liu Jiangli, Huang Zhiwen. 2022. Experimental Study on Penetration Resistance of the Sapphire Single Crystal. Helicopter Technique, 3: 10-15). doi: 10.3969/j.issn.1673-1220.2022.03.003

    Liu Jiangli, Huang Zhiwen. 2022. Experimental Study on Penetration Resistance of the Sapphire Single Crystal. Helicopter Technique, 3: 10-15 doi: 10.3969/j.issn.1673-1220.2022.03.003
    [14]
    卢芳云, 陈荣. 2013. 霍普金森杆实验技术. 北京: 科学出版社

    Lu Fangyun, Chen Rong. 2013. Hopkinson Bar Techniques. Beijing: Science Press
    [15]
    牛欢欢, 闫晓鹏, 罗浩舜, 陈佳君, 李志强. 2022. 不同应变率下蓝宝石透明陶瓷玻璃的力学响应. 爆炸与冲击, 42: 74-83 (Niu Huanhuan, Yan Xiaopeng, Luo Haoshun, Chen Jiajun, Li Zhiqiang. 2022. Mechanical response of sapphire transparent ceramic glass at different strain rates. Explosion and Shock Waves, 42: 74-83). doi: 10.11883/bzycj-2021-0434

    Niu Huanhuan, Yan Xiaopeng, Luo Haoshun, Chen Jiajun, Li Zhiqiang. 2022. Mechanical response of sapphire transparent ceramic glass at different strain rates. Explosion and Shock Waves, 42: 74-83 doi: 10.11883/bzycj-2021-0434
    [16]
    施剑林, 冯涛. 2008. 无机光学透明材料: 透明陶瓷. 上海: 上海科学普及出版社

    Shi Jianlin, Feng Tao. 2008. Inorganic optically clear material: transparent ceramics. Shanghai: Shanghai Popular Science Press
    [17]
    苏翼林. 1979. 材料力学. 北京: 高等教育出版社

    Su Yilin. 1979. Mechanics of materials. Beijing: Higher Education Press
    [18]
    谈梦婷, 张先锋, 包阔, 伍杨, 吴雪. 2019. 装甲陶瓷的界面击溃效应. 力学进展, 49: 201905 (Tan Mengting, Zhang Xianfeng, Bao Kuo, Wu Yang, Wu Xue. 2019. Interface defeat of ceramic armor. Advances in Mechanics, 49: 201905). doi: 10.6052/1000-0992-17-015

    Tan Mengting, Zhang Xianfeng, Bao Kuo, Wu Yang, Wu Xue. 2019. Interface defeat of ceramic armor. Advances in Mechanics, 49: 201905 doi: 10.6052/1000-0992-17-015
    [19]
    万林林, 邓泽辉, 邓朝晖, 李乐. 2020. 冲击载荷下氧化锆陶瓷的弹脆性损伤本构关系. 材料科学与工程学报, 38: 785-790, 784 (Wan Linlin, Deng Zehui, Deng Zhaohui, Li Le. 2020. Constitutive Relationship of Elastic-brittle Damage of Zirconia Ceramics under Impact Load. Journalor of Materials Science and Engineering, 38: 785-790, 784).

    Wan Linlin, Deng Zehui, Deng Zhaohui, Li Le. 2020. Constitutive Relationship of Elastic-brittle Damage of Zirconia Ceramics under Impact Load. Journalor of Materials Science and Engineering, 38: 785-790 + 784
    [20]
    王维斌, 索涛, 郭亚洲, 李玉龙, 聂海亮, 刘会芳, 金康华, 杜冰, 江斌. 2021. 电磁霍普金森杆实验技术及研究进展. 力学进展, 51: 729-754 (Wang Weibin, Suo Tao, Guo Yazhou, Li Yulong, Nie Hailiang, Liu Huifang, Jin Kanghua, Du Bing, Jiang Bin. 2021. Experimental technique and research progress of electromagnetic Hopkinson bar. Advances in Mechanics, 51: 729-754). doi: 10.6052/1000-0992-20-024

    Wang Weibin, Suo Tao, Guo Yazhou, Li Yulong, Nie Hailiang, Liu Huifang, Jin Kanghua, Du Bing, Jiang Bin. 2021. Experimental technique and research progress of electromagnetic Hopkinson bar. Advances in Mechanics, 51: 729-754 doi: 10.6052/1000-0992-20-024
    [21]
    魏化震, 于广, 钟蔚华. 2020. 高分子复合材料在装甲防护领域的研究与应用进展. 材料工程, 48: 25-32

    Wei Huazhen, Yu Guang, Zhong Weihua. 2020. Research and application progress of polymer composites in armor protection. Journal of Materials Engineering, 48: 25-32.
    [22]
    吴建, 王卓健, 胡智臣, 刘兴亮, 谭敦强, 戴煜, 耿东生. 2022. 透明AlON陶瓷发展现状综述(英文). 中国有色金属学报(英文版): 1-27

    Wu Jian, Wang Zhuojian, Hu Zhichen, Liu Xingliang, Tan Dunqiang, Dai Yu, Geng Dongsheng. 2022. Recent progress and challenges of transparent AlON ceramics. Transactions of Nonferrous Metals Society of China, 1-27
    [23]
    杨迪, 李福欣. 1988. 显微硬度试验. 北京: 中国计量出版社

    Yang Di, Li Fuxin. 1988. Microhardness test. Beijing: China Metrology Publishing House
    [24]
    岳中文, 王煦, 杨仁树, 邱鹏, 胡庆文, 陈程. 2017. 一种动光弹模型材料的制作方法及其应用. 实验力学, 32: 10 (Yue Zhongwen, Wang Xu, Yang Renshu, Qiu Peng, Hu Qingwen, Chen Cheng. 2017. A Method of Dynamic Photoelastic Experimental Model Material and its Application. Journal of Experimental Mechanics, 32: 10).

    Yue Zhongwen, Wang Xu, Yang Renshu, Qiu Peng, Hu Qingwen, Chen Cheng. 2017. A Method of Dynamic Photoelastic Experimental Model Material and its Application. Journal of Experimental Mechanics, 32: 10
    [25]
    张泰华, 杨业敏. 2002. 纳米硬度技术的发展和应用. 力学进展, 32: 16 (Zhang Taihua, Yang Yemin. 2002. Developments and Applications of Nano Hardness Techniques. Advances in Mechanics, 32: 16).

    Zhang Taihua, Yang Yemin. 2002. DEVELOPMENTS AND APPLICATIONS OF NANO-HARDNESS TECHNIQUES. Advances in Mechanics, 32: 16
    [26]
    郑颖人, 沈珠江, 龚晓南. 2002. 岩土塑性力学原理. 北京: 中国建筑工业出版社(Zheng Yingren, Shen Zhujiang, Gong Xiaonan. 2002. Geotechnical plastic mechanics theory. Beijing: China Architecture & Building Press)
    [27]
    Addessio F L, Johnson J N. 1990. A constitutive model for the dynamic response of brittle materials. Journal of Applied Physics, 67: 3275-3286. doi: 10.1063/1.346090
    [28]
    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V. 2003. Spall fracture [M]. Springer Science & Business Media.
    [29]
    Ashby M F, Hallam S D. 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Metallurgica, 34: 497-510. doi: 10.1016/0001-6160(86)90086-6
    [30]
    Bao K, Zhang X-f, Wang G-j, Deng J-j, Chong T, Han D, Luo B-q, Tan M-t. 2022. Damage characteristics of YAG transparent ceramics under different loading conditions. Defence Technology, 18: 1394-1404. doi: 10.1016/j.dt.2021.06.010
    [31]
    Belytschko T, Black T. 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45: 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [32]
    Borst R d, Remmers J J C, Needleman A. 2006. Mesh-independent discrete numerical representations of cohesive-zone models. Engineering Fracture Mechanics, 73: 160-177. doi: 10.1016/j.engfracmech.2005.05.007
    [33]
    Bourne N K, Millett J C F, Chen M, Mccauley J W, Dandekar D P. 2007. On the Hugoniot elastic limit in polycrystalline alumina. Journal of Applied Physics, 102: 073514. doi: 10.1063/1.2787154
    [34]
    Bouzid S, Nyoungue A, Azari Z, Bouaouadja N, Pluvinage G. 2001. Fracture criterion for glass under impact loading. International Journal of Impact Engineering, 25: 831-845. doi: 10.1016/S0734-743X(01)00023-9
    [35]
    Brannon R M, Lee M Y, Bronowski D R. 2005. Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition//; City.
    [36]
    Brocca M, Bažant Z P. 2000. Microplane Constitutive Model and Metal Plasticity. Applied Mechanics Reviews, 53: 265-281. doi: 10.1115/1.3097329
    [37]
    Cao X, Li T, Yu Y, Li X, Qi J, Meng C, He H, Hu J, Wu Q. 2022. Dynamic response of YAG polycrystalline and single-crystal transparent ceramics: Experiments and mesoscopic simulations. Journal of the American Ceramic Society, 105: 6864-6875. doi: 10.1111/jace.18647
    [38]
    Chessa J, Belytschko T. 2006. A local space–time discontinuous finite element method. Computer Methods in Applied Mechanics and Engineering, 195: 1325-1343. doi: 10.1016/j.cma.2005.05.022
    [39]
    Clinton D J, Morrell R. 1987. Hardness testing of ceramic materials. Materials Chemistry and Physics, 17: 461-473. doi: 10.1016/0254-0584(87)90096-4
    [40]
    Cook R F, Pharr G M. 1990. Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics. Journal of the American Ceramic Society, 73: 787-817. doi: 10.1111/j.1151-2916.1990.tb05119.x
    [41]
    Davison L, Stevens A L, M. B B, M. B L, E. M D, D. L C. 1972. Continuum Measures of Spall Damage. Journal of Applied Physics, 43: 988-994. doi: 10.1063/1.1661319
    [42]
    Dumerac M, Kleebe H-J, Mueller M, Reimanis I. 2013. Fifty Years of Research and Development Coming to Fruition; Unraveling the Complex Interactions During Processing of Transparent Magnesium Aluminate (MgAl2O4) Spinel. Journal of the American Ceramic Society, 96: 3341-3365. doi: 10.1111/jace.12637
    [43]
    Erzar B, Forquin P. 2011. Experiments and mesoscopic modelling of dynamic testing of concrete. Mechanics of Materials, 43: 505-527. doi: 10.1016/j.mechmat.2011.05.002
    [44]
    Fahrenthold E P. 1991. A continuum damage model for fracture of brittle solids under dynamic loading. Journal of Applied Mechanics, 58: 904-909. doi: 10.1115/1.2897704
    [45]
    Forquin P, Tran L, Louvigne P F, Rota L, Hild F. 2003. Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. International Journal of Impact Engineering, 28: 1061-1076. doi: 10.1016/S0734-743X(03)00034-4
    [46]
    Fountzoulas C G, Cheeseman B A, Lasalvia J C. 2009. Simulation of Ballistic Impact of a Tungsten Carbide Sphere on a Confined Silicon Carbide Target//; City.
    [47]
    Fredrich J T, Evans B, Wong T T. 1990. Effect of grain size on brittle and semibrittle strength: Implications for micromechanical modelling of failure in compression. Journal of Geophysical Research, 95: 10907-10920. doi: 10.1029/JB095iB07p10907
    [48]
    Gallo L S A, Villas Boas M O C, Rodrigues A C M, Melo F C L, Zanotto E D. 2019. Transparent glass–ceramics for ballistic protection: materials and challenges. Journal of Materials Research and Technology, 8: 3357-3372. doi: 10.1016/j.jmrt.2019.05.006
    [49]
    Ganesh I. 2013. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. International Materials Reviews, 58: 63-112. doi: 10.1179/1743280412Y.0000000001
    [50]
    Ganesh I, Srinivas B, Johnson R, Saha B P, Mahajan Y R. 2002. Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders. British Ceramic Transactions, 101: 247-254. doi: 10.1179/096797802225004063
    [51]
    Gazonas G, Mccauley J, Batyrev I, Becker R, Izvekov S, Jenkins T, Patel P, Rice B, Schuster B, Weingarten N, Wildman R. 2013. Multiscale Modeling of Non-crystalline Ceramics (Glass) (Final Report).
    [52]
    Ghosh D, Subhash G, Sudarshan T S, Radhakrishnan R, Gao X L. 2007. Dynamic Indentation Response of Fine-Grained Boron Carbide. Journal of the American Ceramic Society, 90: 1850-1857. doi: 10.1111/j.1551-2916.2007.01652.x
    [53]
    Gilman J J, Tuler F R. 1970. Dynamic fracture by spallation in metals. International Journal of Fracture Mechanics, 6: 169-182. doi: 10.1007/BF00189824
    [54]
    Grady D E. 1998. Shock-wave compression of brittle solids. Mechanics of Materials, 29: 181-203. doi: 10.1016/S0167-6636(98)00015-5
    [55]
    Grange S, Forquin P, Mencacci S, Hild F. 2008. On the dynamic fragmentation of two limestones using edge-on impact tests. International Journal of Impact Engineering, 35: 977-991. doi: 10.1016/j.ijimpeng.2007.07.006
    [56]
    Griffith A A. 1921. The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society A, 221: 163-198.
    [57]
    Grujicic M, Bell W C, Pandurangan B. 2012. Design and material selection guidelines and strategies for transparent armor systems. Materials & Design, 34: 808-819.
    [58]
    Grujicic M, Pandurangan B, Coutris N, Cheeseman B A, Fountzoulas C, Patel P, Templeton D W, Bishnoi K D. 2009. A simple ballistic material model for soda-lime glass. International Journal of Impact Engineering, 36: 386-401. doi: 10.1016/j.ijimpeng.2008.08.001
    [59]
    Haney E J, Subhash G. 2011a. Rate Sensitive Indentation Response of a Coarse-Grained Magnesium Spinel. Journal of the American Ceramic Society, 94: 3960-3966. doi: 10.1111/j.1551-2916.2011.04756.x
    [60]
    Haney E J, Subhash G. 2011b. Analysis of interacting cracks due to sequential indentations on sapphire. Acta Materialia, 59: 3528-3536. doi: 10.1016/j.actamat.2011.02.026
    [61]
    Haney E J, Subhash G. 2011c. Static and dynamic indentation response of basal and prism plane sapphire. Journal of the European Ceramic Society, 31: 1713-1721. doi: 10.1016/j.jeurceramsoc.2011.03.006
    [62]
    Haney E J, Subhash G. 2013. Damage Mechanisms Perspective on Superior Ballistic Performance of Spinel over Sapphire. Experimental Mechanics, 53: 31-46. doi: 10.1007/s11340-012-9634-0
    [63]
    Hazell P J, Edwards M R, Longstaff H, Erskine J. 2009. Penetration of a glass-faced transparent elastomeric resin by a lead–antimony-cored bullet. International Journal of Impact Engineering, 36: 147-153. doi: 10.1016/j.ijimpeng.2007.12.009
    [64]
    Hertz H. 1880. On the contact of elastic solids. Journal für die reine und angewandte Mathematik (Crelles Journal), 92.
    [65]
    Holmquist T J, Anderson C E, Behner T, Orphal D L. 2010. Mechanics of dwell and post-dwell penetration. Advances in Applied Ceramics, 109: 467-479. doi: 10.1179/174367509X12535211569512
    [66]
    Holmquist T J, Johnson G R. 2011. A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures. Journal of Applied Mechanics, 78.
    [67]
    Holmquist T J, Templeton D W, Bishnoi K D. 2001. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. International Journal of Impact Engineering, 25: 211-231. doi: 10.1016/S0734-743X(00)00046-4
    [68]
    Espinosa H D, Xu Y P, Brar N S. 1997. Micromechanics of Failure Waves in Glass: II, Modeling. Journal of the American Ceramic Society, 80: 2074-2085.
    [69]
    Huang J, Zhang X, Long S, Yao X. 2023. Damage and failure mechanism of sapphire under ballistic loading based on a modified bond-based peridynamic model. Journal of the American Ceramic Society, 106: 2095-2117. doi: 10.1111/jace.18904
    [70]
    Huang X, Zhang W, Deng Y, Jiang X. 2018. Experimental investigation on the ballistic resistance of polymer-aluminum laminated plates. International Journal of Impact Engineering, 113: 212-221. doi: 10.1016/j.ijimpeng.2017.12.002
    [71]
    Jiang W, Cheng X, Cai H, Zhang J. 2018. Static and dynamic failure behavior of transparent polycrystalline spinel (MgAl2O4) under compression/shear loading experiments. Materials Research Express, 6: 015204. doi: 10.1088/2053-1591/aae4ba
    [72]
    Jiang W, Cheng X, Xiong Z, Ali T, Cai H, Zhang J. 2019a. Bimodal grain structure effect on the static and dynamic mechanical properties of transparent polycrystalline magnesium aluminate (spinel). Ceramics International, 45: 20362-20367. doi: 10.1016/j.ceramint.2019.07.010
    [73]
    Jiang W, Cheng X, Xiong Z, Ma Z, Ali T, Cai H, Zhang J. 2019b. Static and dynamic mechanical properties of Yttrium Aluminum Garnet (YAG). Ceramics International, 45: 12256-12263. doi: 10.1016/j.ceramint.2019.03.136
    [74]
    Johnson G R, Holmquist T J. 1994. An Improved Computational Constitutive Model for Brittle Materials. American Institute of Physics (AIP).
    [75]
    Johnson G R, Holmquist T J. 1994b. An improved computational constitutive model for brittle materials. 309: 981-984.
    [76]
    Johnson G R, Holmquist T J. 1999. Response of boron carbide subjected to large strains, high strain rates, and high pressures. Journal of Applied Physics, 85: 8060-8073. doi: 10.1063/1.370643
    [77]
    Johnson G R, Holmquist T J, Beissel S R. 2003. Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures. Journal of Applied Physics, 94: 1639-1646. doi: 10.1063/1.1589177
    [78]
    Kanel G I, Nellis W J, Savinykh A S, Razorenov S V, Rajendran A M. 2009. Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa. Journal of Applied Physics, 106: 043524. doi: 10.1063/1.3204940
    [79]
    Kanel G I, Razorenov S V, Fortov V E, Fortov V. 2004. Shock-wave phenomena and the properties of condensed matter. Springer Science & Business Media.
    [80]
    Kimberley J, Ramesh K T. 2011. Dynamic response of transparent ceramic MgAl2O4 spinel. Scripta Materialia, 65: 830-833. doi: 10.1016/j.scriptamat.2011.07.044
    [81]
    Klecka M A, Subhash G. 2010. Rate-Dependent Indentation Response of Structural Ceramics. Journal of the American Ceramic Society, 93: 2377-2383. doi: 10.1111/j.1551-2916.2010.03729.x
    [82]
    Klement R, Rolc S, Mikulikova R, Krestan J. 2008. Transparent armour materials. Journal of the European Ceramic Society, 28: 1091-1095. doi: 10.1016/j.jeurceramsoc.2007.09.036
    [83]
    Klopp R W, Shockey D A, A. S D, H. M A, R. S S, E. C G, W. B M, R. P. 1991. The strength behavior of granulated silicon carbide at high strain rates and confining pressure. Journal of Applied Physics, 70: 7318-7326. doi: 10.1063/1.349750
    [84]
    Krell A, Strassburger E. 2014. Order of influences on the ballistic resistance of armor ceramics and single crystals. Materials Science and Engineering:A, 597: 422-430. doi: 10.1016/j.msea.2013.12.101
    [85]
    Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z. 2018. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. International Journal of Impact Engineering, 111: 130-146. doi: 10.1016/j.ijimpeng.2017.08.008
    [86]
    Lawn B R, Evans A G. 1977. A model for crack initiation in elastic/plastic indentation fields. Journal of Materials Science, 12: 2195-2199. doi: 10.1007/BF00552240
    [87]
    Lawn B R, Evans A G, Marshall D B. 1980. Elastic / Plastic Indentation Damage in Ceramics: The MediadRadial Crack System. Journal of the American Ceramic Society, 63: 574-581. doi: 10.1111/j.1151-2916.1980.tb10768.x
    [88]
    Lawn B R, Jensen T, Arora A. 1976. Brittleness as an Indentation Effect. Journal of Materials Science, 11: 573-575. doi: 10.1007/BF00540940
    [89]
    Lawn B R, Marshall D B. 2010. Hardness, Toughness, and Brittleness: An Indentation Analysis. Journal of the American Ceramic Society, 62: 347-350.
    [90]
    Leavy R B, Clayton J D, Strack O E, Brannon R M, Strassburger E. 2013. Edge on Impact Simulations and Experiments. Procedia Engineering, 58: 445-452. doi: 10.1016/j.proeng.2013.05.051
    [91]
    Li H, Bradt R C. 1992. The indentation load/size effect and the measurement of the hardness of vitreous silica. Journal of Non-Crystalline Solids, 146: 197-212. doi: 10.1016/S0022-3093(05)80492-2
    [92]
    Li H, Bradt R C. 1993. The microhardness indentation load/size effect in rutile and cassiterite single crystals. Journal of Materials Science, 28: 917-926. doi: 10.1007/BF00400874
    [93]
    Li H, Bradt R C. 1996. The effect of indentation-induced cracking on the apparent microhardness. Journal of Materials Science, 31: 1065-1070. doi: 10.1007/BF00352908
    [94]
    Li T, Cao X, Wang Q, Li Y, He H, Yu Y, Li Y, Jin X. 2021. Numerical modeling of dynamic response and microcracking in shock-loaded polycrystalline transparent ceramic. Journal of Applied Physics, 129: 205103. doi: 10.1063/5.0046248
    [95]
    Li Y, Zhou S, Lin H, Hou X, Li W, Teng H, Jia T. 2010. Fabrication of Nd: YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids. Journal of Alloys and Compounds, 502: 225-230. doi: 10.1016/j.jallcom.2010.04.151
    [96]
    Lu Y, Xu K. 2004. Modelling of dynamic behaviour of concrete materials under blast loading. International Journal of Solids and Structures, 41: 131-143. doi: 10.1016/j.ijsolstr.2003.09.019
    [97]
    Luo D, Wang Y, Wang F, Cheng H, Zhang B, Li Z. 2021. Influence of cover thickness on the ballistic performance of silicon carbide subjected to large-scale tungsten projectiles. Ceramics International, 47: 15783-15791. doi: 10.1016/j.ceramint.2021.02.150
    [98]
    Marshall D B, Evans A G, Nisenholz Z. 1983. Measurement of Dynamic Hardness by Controlled Sharp-Projectile Impact. Journal of the American Ceramic Society, 66: 580-585. doi: 10.1111/j.1151-2916.1983.tb10095.x
    [99]
    Mccauley J W, Patel P J. 2013. Evaluation of IKTS Transparent Polycrystalline Magnesium Aluminate Spinel (MgAl2O4) for Armor and Infrared Dome/Window Applications//; City.
    [100]
    Mccauley J W, Strassburger E, Patel P, Paliwal B, Ramesh K T. 2013. Experimental Observations on Dynamic Response of Selected Transparent Armor Materials. Experimental Mechanics, 53: 3-29. doi: 10.1007/s11340-012-9658-5
    [101]
    Melenk J M, Babuška I. 1996. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139: 289-314. doi: 10.1016/S0045-7825(96)01087-0
    [102]
    Moës N, Belytschko T. 2002. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 69: 813-833. doi: 10.1016/S0013-7944(01)00128-X
    [103]
    Mukhopadhyay A K, Joshi K D, Dey A, Chakraborty R, Mandal A K, Rav A, Ghosh J, Bysakh S, Biswas S K, Gupta S C. 2011. Electron microscopy of shock deformation in alumina. Ceramics International, 37: 2365-2376. doi: 10.1016/j.ceramint.2011.03.034
    [104]
    Murray N H, Bourne N K, Rosenberg Z. 1998. The dynamic compressive strength of aluminas. Journal of Applied Physics, 84: 4866-4871. doi: 10.1063/1.368729
    [105]
    Nie X, Wright J C, Chen W W, Fehrenbacher L, Vesnovsky I. 2011. Rate effects on the mechanical response of magnesium aluminate spinel. Materials Science and Engineering:A, 528: 5088-5095. doi: 10.1016/j.msea.2011.03.027
    [106]
    Paliwal B, Ramesh K T. 2007. Effect of crack growth dynamics on the rate-sensitive behavior of hot-pressed boron carbide. Scripta Materialia, 57: 481-484. doi: 10.1016/j.scriptamat.2007.05.028
    [107]
    Paliwal B, Ramesh K T. 2008. An interacting micro-crack damage model for failure of brittle materials under compression. Journal of the Mechanics and Physics of Solids, 56: 896-923. doi: 10.1016/j.jmps.2007.06.012
    [108]
    Paliwal B, Ramesh K T, Mccauley J W. 2006. Direct Observation of the Dynamic Compressive Failure of a Transparent Polycrystalline Ceramic (AlON). Journal of the American Ceramic Society, 89: 2128-2133.
    [109]
    Paliwal B, Ramesh K T, Mccauley J W, Chen M. 2008. Dynamic Compressive Failure of AlON Under Controlled Planar Confinement. Journal of the American Ceramic Society, 91: 3619-3629. doi: 10.1111/j.1551-2916.2008.02712.x
    [110]
    Paris V, Kalabukhov S, Dariel M P, Frage N, Zaretsky E. 2011. High strain rate behavior of spark plasma sintered magnesium aluminate spinel. International Journal of Impact Engineering, 38: 910-917. doi: 10.1016/j.ijimpeng.2011.06.005
    [111]
    Patel P J, Swab J J, Staley M E, Quinn G D. 2006. Indentation Size Effect (ISE) of Transparent AION and MgAl2O4//; City.
    [112]
    Pazdniakou A, Adler P M. 2012. Lattice Spring Models. Transport in Porous Media, 93: 243-262. doi: 10.1007/s11242-012-9955-6
    [113]
    Rajendran A M, Kroupa J L. 1989. Impact damage model for ceramic materials. Journal of Applied Physics, 66: 3560-3565. doi: 10.1063/1.344085
    [114]
    Sands J M, Fountzoulas C G, Gilde G A, Patel P J. 2009. Modelling transparent ceramics to improve military armour. Journal of the European Ceramic Society, 29: 261-266. doi: 10.1016/j.jeurceramsoc.2008.03.010
    [115]
    Sathananthan P, Sirois A, Singh D, Cronin D. 2019. Sphere on Tile Ballistic Impact Experiment to Characterize the Response of Soda Lime Glass. International Journal of Impact Engineering, 133: 103321. doi: 10.1016/j.ijimpeng.2019.103321
    [116]
    Schardin H. 1950. Results of cinematographic investigation of the fracture process in glass. Glastech. Ber., 23: 325-336.
    [117]
    Schultz R A, Bradt R C 1992. Cleavage of Ceramic and Mineral Single Crystals//; City.
    [118]
    Shah Q H. 2009. Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts. International Journal of Impact Engineering, 36: 1128-1135. doi: 10.1016/j.ijimpeng.2008.12.005
    [119]
    Shi Z, Wang H, Zhao Q, Ji T, Wang Y, Pan Y, Guo B. 2020. Damage mechanisms of polycrystalline aluminate magnesium spinel (PAMS) under different loading conditions of indentation and micro-cutting tests. Ceramics International, 46: 7235-7252. doi: 10.1016/j.ceramint.2019.11.218
    [120]
    Silling S A, Askari E. 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83: 1526-1535.
    [121]
    Simha C H M, Bless S J, Bedford A. 2002. Computational modeling of the penetration response of a high-purity ceramic. International Journal of Impact Engineering, 27: 65-86. doi: 10.1016/S0734-743X(01)00036-7
    [122]
    Stanag N. 2004. Protection levels for occupants of logistic and light armoured vehicles.
    [123]
    Straßburger E. 2006. High-speed photographic study of wave propagation and impact damage in transparent aluminum oxynitride (AION). Fraunhofer-gesellschaft Zur Foerderung Der Angewandten Forschung Ev Munich ….
    [124]
    Straßburger E. 2009. Ballistic testing of transparent armour ceramics. Journal of the European Ceramic Society, 29: 267-273. doi: 10.1016/j.jeurceramsoc.2008.03.049
    [125]
    Straßburger E, Steinhauser M. 2008. High-Speed Photographic Study of Wave Propagation and Impact Damage in Transparent Laminates//; City.
    [126]
    Strassburger E, Bauer S 2018. Analysis of the Interaction of Projectiles with Ceramic Targets by Means of Flash X-Ray Cinematography and Optical Methods//; City.
    [127]
    Strassburger E, Hunzinger M, Patel P, Mccauley J W. 2013. Analysis of the Fragmentation of AlON and Spinel Under Ballistic Impact. Journal of Applied Mechanics, 80.
    [128]
    Strassburger E, Patel P J, Mccauley J W. 2011. Visualization and Analysis of Impact Damage in Sapphire//; City.
    [129]
    Taylor L M, Chen E P, Kuszmaul J S. 1986. Microcrack-induced damage accumulation in brittle rock under dynamic loading. Computer Methods in Applied Mechanics & Engineering, 55: 301-320.
    [130]
    Thornhill T F, Vogler T J, Reinhart W D, Chhabildas L C. 2006. Polycrystalline Aluminum Oxynitride Hugoniot and Optical Properties. AIP Conference Proceedings, 845: 143-146. doi: 10.1063/1.2263285
    [131]
    Tonge A L, Ramesh K T. 2016. Multi-scale defect interactions in high-rate brittle material failure: Part I: Model formulation and application to ALON. Journal of the Mechanics and Physics of Solids, 86: 117-149. doi: 10.1016/j.jmps.2015.10.007
    [132]
    Wang M, Li Y, Luo H, Zheng X, Li Z. 2022. Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load. Materials, 15: 3809. doi: 10.3390/ma15113809
    [133]
    Wang S F, Zhang J, Luo D W, Gu F, Tang D Y, Dong Z L, Tan G E B, Que W X, Zhang T S, Li S, Kong L B. 2013. Transparent ceramics: Processing, materials and applications. Progress in Solid State Chemistry, 41: 20-54. doi: 10.1016/j.progsolidstchem.2012.12.002
    [134]
    Weiss A, Borenstein A, Ben- Melech G, Ravid M, Shapira N. 2017. Ballistic Performance of Ceramic Targets against 25mm APDS-T Projectile.
    [135]
    Wilantewicz T E. 2010. Failure Behavior of Glass and Aluminum Oxynitride (AlON) Tiles Under Spherical Indenters//; City.
    [136]
    Winkler S, Senf H, Rothenhausler H B. 1989. Wave and Fracture Phenomena in Impacted Ceramics//; City.
    [137]
    Xiao Z, Yu S, Li Y, Ruan S, Kong L B, Huang Q, Huang Z, Zhou K, Su H, Yao Z, Que W, Liu Y, Zhang T, Wang J, Liu P, Shen D, Allix M, Zhang J, Tang D. 2020. Materials development and potential applications of transparent ceramics: A review. Materials Science and Engineering:R:Reports, 139: 100518. doi: 10.1016/j.mser.2019.100518
    [138]
    Xin Z, Wang Y, Fu Q, Cheng H, Cheng X, Zhang J. 2021. Effect of glass cover layer on the ballistic performance of transparent ceramic armor. Ceramics International, 47: 29277-29284. doi: 10.1016/j.ceramint.2021.07.092
    [139]
    Xu J, Li Y, Chen X, Yan Y, Ge D, Zhu M, Liu B. 2010. Characteristics of windshield cracking upon low-speed impact: Numerical simulation based on the extended finite element method. Computational Materials Science, 48: 582-588. doi: 10.1016/j.commatsci.2010.02.026
    [140]
    Yang H, Qin X, Zhang J, Ma J, Tang D, Wang S, Zhang Q. 2012. The effect of MgO and SiO2 codoping on the properties of Nd: YAG transparent ceramic. Optical Materials, 34: 940-943. doi: 10.1016/j.optmat.2011.05.029
    [141]
    Zeng Q, Tonge A L, Ramesh K T. 2019. A multi-mechanism constitutive model for the dynamic failure of quasi-brittle materials: Part I: Amorphization as a failure mode. Journal of the Mechanics and Physics of Solids, 130: 370-392. doi: 10.1016/j.jmps.2019.06.012
    [142]
    Zhang B, Guo X, Liu Y, Lang L, Tan S. 2021. Study of glass laminate configurations on ballistic resistance of novel lightweight sapphire transparent laminated structures. International Journal of Lightweight Materials and Manufacture, 4: 397-404. doi: 10.1016/j.ijlmm.2021.05.002
    [143]
    Zhang G, Gazonas G A, Bobaru F. 2018. Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A peridynamic analysis. International Journal of Impact Engineering, 113: 73-87. doi: 10.1016/j.ijimpeng.2017.11.010
    [144]
    Zhang Q, Zheng Y, Zhou F, Yu T. 2020. Fragmentations of Alumina(Al2O3) and Silicon Carbide(SiC) under quasi-static compression. International Journal of Mechanical Sciences, 167: 105119. doi: 10.1016/j.ijmecsci.2019.105119
    [145]
    Zhou F, Molinari J F. 2004. Stochastic fracture of ceramics under dynamic tensile loading. International Journal of Solids and Structures, 41: 6573-6596. doi: 10.1016/j.ijsolstr.2004.05.029
    [146]
    Zi G, Belytschko T. 2003. New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, 57: 2221-2240. doi: 10.1002/nme.849
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(68)

    Article Metrics

    Article views (1547) PDF downloads(535) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return