Volume 52 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Zhao G L, Qi H Y, Li S L, Liu Y, Yang X G, Shi D Q, Sun Y T. Low-temperature hot corrosion fatigue damage mechanism, life model, and corrosion resistance design method of hot section components . Advances in Mechanics, 2022, 52(4): 809-851 doi: 10.6052/1000-0992-22-020
Citation: Zhao G L, Qi H Y, Li S L, Liu Y, Yang X G, Shi D Q, Sun Y T. Low-temperature hot corrosion fatigue damage mechanism, life model, and corrosion resistance design method of hot section components . Advances in Mechanics, 2022, 52(4): 809-851 doi: 10.6052/1000-0992-22-020

Low-temperature hot corrosion fatigue damage mechanism, life model, and corrosion resistance design method of hot section components

doi: 10.6052/1000-0992-22-020
More Information
  • Corresponding author: lishaolin@buaa.edu.cn
  • Received Date: 2022-04-13
  • Accepted Date: 2022-07-08
  • Available Online: 2022-07-09
  • Publish Date: 2022-12-29
  • Hot corrosion fatigue is the key factor affecting the service life of hot section components due to combined effect of high temperature, mechanical load and salt spray atmosphere for gas turbine engines serving in coastal areas or marine environments. In this paper, the damage mechanism, life model and corrosion resistant design methods of low temperature hot corrosion fatigue are summarized and commented. Meanwhile, the research trend and direction in the future are put forward. Firstly, the hot corrosion fatigue failure cases and damage evolution mechanism of gas turbine engine hot section components are described. Next, the phenomenological model, damage mechanics model, fracture mechanics model and machine learning model of low temperature corrosion fatigue life were analyzed. Moreover, several representative segmented full-life corrosion fatigue models considering different stages of corrosion evolution are reviewed, and the development trend of full-life corrosion fatigue models is also put forward. Finally, the corrosion resistant design methods for gas turbine engine material selection, parts manufacturing, structural strength design and operation and maintenance are summarized. In addition, the hot corrosion fatigue in additive manufacturing and the application of nondestructive testing technology and artificial intelligence in hot corrosion fatigue research are also prospected.

     

  • loading
  • 陈丹之. 1992. 燃气轮机叶片的热腐蚀及其防止. 燃气轮机技术, 5: 9-14 (Chen D Z. 1992. Hot corrosion of gas turbine blades and its prevention. Gas Turbine Technology, 5: 9-14).
    陈光. 2018. 遄达1000几起严重故障带来的启示. 航空动力, 1: 29-33 (Chen G. 2018. Lessons learned from Trent 1000’s serious faults. Aerospace Power, 1: 29-33).
    储昭贶. 2008. DZ951合金力学性能及变形机制的研究. 沈阳: 中国科学院金属研究所

    (Chu Z K. 2008. Study on mechanical properties and deformation mechanism of DZ951 alloy. Shenyang: Institute of Metal Research, Chinese Academy of Sciences
    范瑞麟. 1993. 国外燃气轮机涡轮叶片低温热腐蚀的防护. 材料工程, 12: 7-11 (Fan R L. 1993. Protection against low temperature hot corrosion of turbine blades of foreign gas turbines. Journal of Materials Engineering, 12: 7-11).
    韩峰, 张海华, 武晓龙. 2011. 某型发动机高压涡轮叶片表面腐蚀分析和预防. 航空维修与工程, 02: 69-70 (Han F, Zhang H H, Wu X L. 2011. Analysis and prevention about superficial corrosion for aeroengine high pressure turbine blade. Aviation Maintenance & Engineering, 02: 69-70). doi: 10.3969/j.issn.1672-0989.2011.06.031
    洪友士, 方飚. 1993. 疲劳短裂纹萌生及发展的细观过程和理论. 力学进展, 23: 468-486 (Hong Y S, Fang B. 1993. Microscopic process and description for the initiation and propagation of short fatigue cracks. Advances in Mechanics, 23: 468-486). doi: 10.6052/1000-0992-1993-4-J1993-043
    李铁藩. 2003. 金属高温氧化和热腐蚀. 北京: 化学工业出版社

    (Li T F. 2003. High Temperature Oxidation and Hot Corrosion of Metals. Beijing: Chemical Industry Press
    李艳明, 刘欢, 乔志, 等. 2020. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较. 中国有色金属学报, 30: 2105-2115 (Li Y M, Liu H, Qiao Z, et al. 2020. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11. The Chinese Journal of Nonferrous Metals, 30: 2105-2115). doi: 10.11817/j.ysxb.1004.0609.2020-36479
    娄学明, 孙文儒, 郭守仁, 等. 2008. IN718高温合金热腐蚀行为及其对力学性能的影响. 稀有金属材料与工程, 37: 259-263 (Lou X M, Sun W R, Guo S R, et al. 2008. Hot corrosion behavior of IN718 alloy and its effect on mechanical properties. Rare Metal Materials and Engineering, 37: 259-263). doi: 10.3321/j.issn:1002-185X.2008.02.016
    王佩弦, 李遵照, 丁凯, 王晓司, 李明一. 2021. 航空煤油的关键指标分析与影响因素探讨. 中外能源, 26: 68-73

    Wang P X, Li Z Z, Ding K, Wang X S, Li M Y. 2021. Analysis on Key Indicators of Aviation Kerosene and Discussion on Influencing Factors. Sino-Global Energy, 26: 68-73
    吴欣强, 徐松, 韩恩厚, 柯伟. 2011. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型. 金属学报, 47: 790-796 (Wu X Q, Xu S, Han E H. 2011. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environmental fatigue design model. Acta Metallurgica Sinica, 47: 790-796).
    张永刚, 廖建樟. 2020. 某型发动机燃气涡轮工作叶片热腐蚀问题分析. 现代工业经济和信息化, 10: 110-111 (Zhang Y G, Liao J Z. 2020. Analysis of the hot corrosion of the working blades of a gas turbine. Modern Industrial Economy and Informationization, 10: 110-111). doi: 10.16525/j.cnki.14-1362/n.2020.02.48
    张源虎. 1995. 热腐蚀环境中高温合金的蠕变与断裂. 腐蚀科学与防护技术, 7: 108-114 (Zhang Y H. 1995. Creep and fracture of superalloysin hot corrosion environments. Corrsion Science and Protection Technology, 7: 108-114).
    张源虎, 曹鹏, 方炜, 等. 1994. 单晶DD3合金在混合盐介质中的蠕变和断裂特性. 金属学报, 30: 368-373 (Zhang Y H, Cao P, Fang W, et al. 1994. Creep and fracture feature of dd3 single crystal nickel-base superalloy in mixed salt environment. Acta Metallurgica Sinica, 30: 368-373).
    2009. Engine/Component Investigation Report.
    Al Ameri M, Yi Y, Cho P, et al. 2015. Critical conditions for pit initiation and growth of austenitic stainless steels. Corrosion Science, 92: 209-216. doi: 10.1016/j.corsci.2014.12.006
    Amiri M, Arcari A, Airoldi L, et al. 2015. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3,. Corrosion Science, 98: 678-687. doi: 10.1016/j.corsci.2015.06.009
    Arunachalam S, Fawaz S. 2016. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy. International Journal of Fatigue, 91: 50-58. doi: 10.1016/j.ijfatigue.2016.05.021
    Aviation G. 2017. CF34-8 ESN 965-352 HPT S2B Under-Platform Separations.
    Bagui S, Ray A K, Sahu J K, et al. 2013. Influence of saline environment on creep rupture life of Nimonic-263 for marine turbine application. Materials Science and Engineering:A, 566: 54-60. doi: 10.1016/j.msea.2012.12.081
    Bao L, Li K, Zheng J, et al. 2022. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes. Surface and Coatings Technology, 440: 128481. doi: 10.1016/j.surfcoat.2022.128481
    Bhushana Rao V N, Kumar I N, Prasad K B. 2014. Failure analysis of gas turbine blades in a gas turbine engine used for marine applications. International Journal of Engineering Science & Technology, 6: 43-48.
    Birks N, Meier G H, Pettit F S. 2006. Introduction to the High Temperature Oxidation of Metals. 2013.
    Bornstein N S, Crescente M A. 1969. The relationship between compounds of sodium and sulfur and sulfidation. Metallurgical and Materials Transactions B, 4: 1799-1810.
    Bornstein N S, Decrescente M A. 1971. The role of sodium in the accelerated oxidation phenomenon termed sulfidation. 2: 2875-2883.
    Brannen J M, Dymock D. 2004. National Transportation Safety Board Aviation Accident Final Report.
    Brooking L, Gray S, Sumner J, et al. 2018. Effect of stress state and simultaneous hot corrosion on the crack propagation and fatigue life of single crystal superalloy CMSX-4. International Journal of Fatigue, 116: 106-117. doi: 10.1016/j.ijfatigue.2018.05.002
    Burns J, Larsen J, Gangloff R. 2011. Driving forces for localized corrosion to fatigue crack transition in Al–Zn–Mg–Cu. Fatigue & Fracture of Engineering Materials & Structures, 34: 745-773.
    Battelle Memorial Institute C, OH. 1975. Proceedings of the Conference on Gas Turbine Materials in the Marine Environment: Castine.
    Cariboo Chilcotin Helicopters Ltd. 2016. Aviation Investigation Report: Engine power loss–hard landing and rollover [EB/OL]. http://www.bst-tsb.gc.ca/eng/rapports-reports/ aviation/2003/a03p01 36/a03p0136.asp
    Chaboche J L. 1981. Continuous damage mechanics — A tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64: 233-247. doi: 10.1016/0029-5493(81)90007-8
    Chan K, Burns J, Enright M, et al. 2020a. Validation of hot corrosion and fatigue models in HOTPITS,. Journal of Engineering Materials and Technology, 142.
    Chan K, Enright M, Moody J. 2013. Development of a Probabilistic Methodology for Predicting Hot Corrosion Fatigue Crack Growth Life of Gas Turbine Engine Disks. Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition.
    Chan K, Enright M, Moody J P, et al. 2016. Physics-based modeling tools for predicting type II hot corrosion in nickel-based superalloys. Proceedings of the 13th Intenational Symposium of Superalloys.
    Chan K S, Enright M P, Moody J, et al. 2014. A microstructure-based time-dependent crack growth model for life and reliability prediction of turbopropulsion systems. Metallurgical and Materials Transactions A, 45: 287-301. doi: 10.1007/s11661-013-1971-9
    Chan K S, Enright M P, Moody J, et al. 2020b. HOTPITS: The DARWIN approach to assessing risk of hot corrosion-induced fracture in gas turbine components,. Engineering Fracture Mechanics, 228: 106889. doi: 10.1016/j.engfracmech.2020.106889
    Chanyathunyaroj K, Phetchcrai S, Laungsopapun G, et al. 2020. Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment. International Journal of Fatigue, 133: 105420.
    Chen J, Diao B, He J, et al. 2018. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion. International Journal of Fatigue, 110: 153-161. doi: 10.1016/j.ijfatigue.2018.01.019
    Cheng A, Chen N-Z. 2017a. Corrosion fatigue crack growth modelling for subsea pipeline steels. Ocean Engineering, 142: 10-19. doi: 10.1016/j.oceaneng.2017.06.057
    Cheng A, Chen N-Z. 2017b. Fatigue crack growth modelling for pipeline carbon steels under gaseous hydrogen conditions. International Journal of Fatigue, 96: 152-161. doi: 10.1016/j.ijfatigue.2016.11.029
    Cheng A, Chen N-Z. 2018. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels. Engineering Failure Analysis, 84: 262-275. doi: 10.1016/j.engfailanal.2017.11.012
    Cheng Y, Huang W L, Zhou C Y 1999. Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring. International Journal of Pressure Vessels and Piping, 76: 113-116.
    Cheng Y F, Luo J L. 1999. Metastable pitting of carbon steel under potentiostatic control. Journal of the Electrochemical Society, 146: 970-976. doi: 10.1149/1.1391707
    Chou J-S, Ngo N-T, Chong W K. 2017. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Engineering Applications of Artificial Intelligence, 65: 471-483. doi: 10.1016/j.engappai.2016.09.008
    Cockings H L, Cockings B J, Harrison W, et al. 2020. The effect of near-surface plastic deformation on the hot corrosion and high temperature corrosion-fatigue response of a nickel-based superalloy. Journal of Alloys and Compounds, 832: 154889. doi: 10.1016/j.jallcom.2020.154889
    Conner J A, Weimer M J. 2000. Coating rejuvenation: New repair technology for high pressure turbine blades. Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air.
    Corrosion Removal Techniques. Aviation Online Magazine. http://avstop.com/maint/corrosion/ch6.html
    Cramer S D, Covino B. 2006. Corrosion: Environments and Industries. ASM International.
    Diao Y, Yan L, Gao K. 2021. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features. Materials & Design, 198: 109326.
    Draper S. 2011. Effect of environmental exposure on fatigue life of P/M disk superalloys. NASA Aviation Safety Program Annual Meeting.
    EASA. 2019. Emergency Airworthiness Directive (AD No. : 2017-0253-E): 1-3.
    Ebara R. 2010. Corrosion fatigue crack initiation behavior of stainless steels. Procedia Engineering, 2: 1297-1306.
    Ejaz N, Tauqir A. 2006. Failure due to structural degradation in turbine blades. Engineering Failure Analysis, 13: 452-463. doi: 10.1016/j.engfailanal.2004.12.041
    El Haddad M H, Smith K N, Topper T H. 1979a. Fatigue crack propagation of short cracks. Journal of Engineering Materials and Technology, 101: 42-46. doi: 10.1115/1.3443647
    El Haddad M H, Topper T H, Smith K N. 1979b. Prediction of non propagating cracks. Engineering Fracture Mechanics, 11: 573-584. doi: 10.1016/0013-7944(79)90081-X
    Encinas-Oropesa A, Drew G L, Hardy M C, et al. 2008. Effects of oxidation and hot corrosion in a nickel disc alloy. proceedings of the international symposium on superalloys.
    Evans C, Leiva-Garcia R, Akid R. 2018. Strain evolution around corrosion pits under fatigue loading. Theoretical and Applied Fracture Mechanics, 95: 253-260. doi: 10.1016/j.tafmec.2018.02.015
    Fairbanks J W, Machlin I. 1975. Proceedings of gas turbine materials in the marine environment. Conference Held at the Marine Maritime Academy at Castine, Maine on 24-26 July 1974.
    Feng J, Gao K, Gao W, et al. 2022. Machine learning-based bridge cable damage detection under stochastic effects of corrosion and fire. Engineering Structures, 264: 114421. doi: 10.1016/j.engstruct.2022.114421
    Frankel G S. 1998. Pitting corrosion of metals: A review of the critical factors. Journal of the Electrochemical Society, 145: 2186-2198. doi: 10.1149/1.1838615
    Franklin D B, Nelson. 1981. Corrosion fatigue of Inconel 718 and Incoloy 903 NASA TM-82426. NASA Marshall Space Flight Center, Alabama.
    Gabb T, Miller R, Sudbrack C, et al. 2015. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys.
    Gabb T P, Telesman J, Hazel B, et al. 2010. The effects of hot corrosion pits on the fatigue resistance of a disk superalloy. Journal of Materials Engineering and Performance, 19: 77-89. doi: 10.1007/s11665-009-9399-5
    Gangloff R P. 2008. Critical issues in hydrogen assisted cracking of structural alloys. Environment-Induced Cracking of Materials, 1: 141-165.
    Gauntner D J, Ensign C R. 1981. An introduction to NASA's turbine engine hot section technology (HOST) project.
    Gibson G J, Perkins K M, Gray S, et al. 2016. Influence of shot peening on high-temperature corrosion and corrosion-fatigue of nickel based superalloy 720Li. Materials at High Temperatures, 33: 225-233. doi: 10.1080/09603409.2016.1161945
    GJB 241—1987. 航空涡轮喷气和涡轮风扇发动机通用规范. 北京: 总装备部军标出版发行部.
    GJB 2635—1996. 军用飞机腐蚀防护设计和控制要求.
    GJB 242—1987. 航空涡轮螺桨和涡轮轴发动机通用规范.
    GJB/Z 138-2004. 海军航空装备腐蚀控制要求指南.
    Gordon A P. 2006. Crack Initiation Modeling of A Directionally-solidified Nickel-base Superalloy. Georgia Institute of Technology.
    Haddad M, Smith K, Topper T 1979. Fatigue Crack Propagation of Short Cracks. Journal of Engineering Materials and Technology-transactions of the ASME, 101.
    Han Z, Huang X, Yang Z. 2019. Effect of Al–Zn alloy coating on corrosion fatigue behavior of X80 riser steel. Materials, 12: 1520. doi: 10.3390/ma12091520
    Haque M E, Sudhakar K V. 2001. Prediction of corrosion–fatigue behavior of DP steel through artificial neural network. International Journal of Fatigue, 23: 1-4.
    Harlow D G, Wei R P. 1994. Probability approach for prediction of corrosion and corrosion fatigue life. AIAA Journal, 32: 2073-2079.
    Heidloff A, Tang Z, Zhang F, et al. 2010. A combined mapping process for the development of platinum-modified Ni-based superalloys. 62: 48-53.
    Hendery M L, Whittaker M T, Cockings B J, et al. 2022. The effect of salt composition on the stress-free and corrosion-fatigue performance of a fine-grained nickel-based superalloy. Corrosion Science, 198: 110113. doi: 10.1016/j.corsci.2022.110113
    HN 7671-2000. 飞机结构防腐蚀设计要求.
    Hogenson D J, Alvarez A, August R, et al. 2006. National transportation safety board aviation incident final report.
    Holroyd N J H, Hardie D. 1983. Factors controlling crack velocity in 7000 series aluminium alloys during fatigue in an aggressive environment. Corrosion Science, 23: 527-546. doi: 10.1016/0010-938X(83)90117-8
    Hu W P, Shen Q A, Zhang M, et al. 2011. Corrosion–fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach. International Journal of Damage Mechanics, 21: 1245-1266.
    Hu Y, Wu S, Withers P J, et al. 2021. Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Engineering Fracture Mechanics, 245: 107588. doi: 10.1016/j.engfracmech.2021.107588
    Hudak S J. 1981. Small crack behavior and the prediction of fatigue life. Journal of Engineering Materials and Technology, 103: 26-35. doi: 10.1115/1.3224969
    Jianting G, Ranucci D, Picco E. 1983. Low cycle fatigue behaviour of cast nickel-base superalloy IN-738LC in air and in hot corrosive environments. Materials Science and Engineering, 58: 127-133. doi: 10.1016/0025-5416(83)90144-1
    Jianting G, Ranucci D, Picco E, et al. 1984. Effect of environment on the low cycle fatigue behaviour of cast nickel-base superalloy IN738LC. International Journal of Fatigue, 6: 95-99. doi: 10.1016/0142-1123(84)90019-7
    Jie Z, Li Y, Wei X, et al. 2018. Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics. Journal of Constructional Steel Research, 148: 542-550. doi: 10.1016/j.jcsr.2018.06.013
    Khan Z, Younas M. 1996. Corrosion-fatigue life prediction for notched components based on the local strain and linear elastic fracture mechanics concepts. International Journal of Fatigue, 18: 491-498. doi: 10.1016/0142-1123(95)00054-2
    Khobaib M, Lynch C T, Vahldiek F W. 1981. Inhibition of corrosion fatigue in high strength aluminum alloys. Corrosion, 37: 285-292. doi: 10.5006/1.3621685
    Kircher T A. 1989. Oxidation, sulfidation, and hot corrosion: mechanisms and interrelationships. Meeting of the Structures and Materials Panel of AGARD. 68 (1989). AGARD, Neuilly-sur-Seine: 4.1-4.8.
    Kofstad P. 1988. High Temperature Corrosion.
    Kofstad P, Åkesson G. 1979. The reaction of preoxidized nickel in SO2 at high temperatures. Oxidation of Metals, 13: 57-76. doi: 10.1007/BF00715870
    Kondo Y. 1989. Prediction of fatigue crack initiation life based on pit growth. Corrosion, 45: 7-11.
    Kumawat M K, Parlikar C, Alam M Z, et al. 2021. Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na2SO4 film. Metallurgical and Materials Transactions A, 52: 378-393. doi: 10.1007/s11661-020-06068-6
    Kupkovits R A. 2009. Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC [M]. Georgia Institute of Technology.
    Larrosa N O, Akid R, Ainsworth R A 2018. Corrosion-fatigue: a review of damage tolerance models. International Materials Reviews, 63: 283-308.
    Li S-X, Akid R. 2013. Corrosion fatigue life prediction of a steel shaft material in seawater. Engineering Failure Analysis, 34: 324-334. doi: 10.1016/j.engfailanal.2013.08.004
    Li S, Yang X, Qi H, et al. 2018. Low-temperature hot corrosion effects on the low-cycle fatigue lifetime and cracking behaviors of a powder metallurgy Ni-based superalloy. International Journal of Fatigue, 116: 334-343. doi: 10.1016/j.ijfatigue.2018.06.035
    Li S, Yang X, Xu G, et al. 2016. Influence of the different salt deposits on the fatigue behavior of a directionally solidified nickel-based superalloy. International Journal of Fatigue, 84: 91-96. doi: 10.1016/j.ijfatigue.2015.11.020
    Li Z, Li S, Xu G, et al. 2021. The framework of hot corrosion fatigue life estimation of a PM superalloy using notch fatigue methodology combined with pit evolution. International Journal of Fatigue, 153: 106483. doi: 10.1016/j.ijfatigue.2021.106483
    Liao M, Bellinger N C, Komorowski J P. 2010. Corrosion Fatigue Analysis of AN F-18 LONGERON.
    Liu M, Luo S, Shen Y, et al. 2019. Corrosion fatigue crack propagation behavior of S135 high–strength drill pipe steel in H2S environment. Engineering Failure Analysis, 97: 493-505. doi: 10.1016/j.engfailanal.2019.01.026
    Lukaszewicz M, Zhou S, Turnbull A. 2015. Novel concepts on the growth of corrosion fatigue small and short cracks. Diffusion & Defect Data. Solid State Data Part B. Solid State Phenomena, 66: 1488-1490.
    Mahobia G S, Paulose N, Mannan S L, et al. 2014. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. International Journal of Fatigue, 59: 272-281. doi: 10.1016/j.ijfatigue.2013.08.009
    Mao M, Zhang X, Tu S, et al. 2014. Prediction of crack initiation life due to corrosion pits. Journal of Aircraft, 51: 805-810. doi: 10.2514/1.C032436
    Meisner K J, Opila E J. 2020. Hot corrosion of shipboard gas turbine blades. Oxidation of Metals, 94: 301-322.
    Miller J K. 1991. Metal fatigue—past, current and future. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C. Journal of Mechanical Engineering Science, 36: 291-304.
    Miller K J. 1993. Materials science perspective of metal fatigue resistance. Materials Science and Technology, 9: 453-462.
    Mills T, Honeycutt K. Holistic structural integrity analysis of corrosion in a dynamic helicopter component.
    Misak H E, Perel V Y, Sabelkin V, et al. 2013. Corrosion fatigue crack growth behavior of 7075-T6 under biaxial tension–tension cyclic loading condition. Engineering Fracture Mechanics, 106: 38-48. doi: 10.1016/j.engfracmech.2013.04.004
    Mitchell M R, Landgraf R W. 1992. Advances in Fatigue Lifetime Predictive Techniques. STP1122-EB.
    Mu Z T, Chen D H, Zhu Z T, et al. 2011. The stress concentration factor with different shapes of corrosion pits. Advanced Materials Research.: 1115-1119.
    Murtaza G, Akid R. 1996. Corrosion fatigue short crack growth behaviour in a high strength steel. International Journal of Fatigue, 18: 557-566.
    Nan Z Y, Ishihara S, Goshima T. 2008. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution. International Journal of Fatigue, 30: 1181-1188.
    National Tranaportation Safety Board Office of Aviation Safety. 2009. Powerplants Group Chairman’S Factual Report.
    National Tranaportation Safety Board Office of Aviation Safety. 2015. Powerplants Group Chairman’S Factual Report.
    National Tranaportation Safety Board Office of Aviation Safety. 2016. Powerplants Group Chairman’S Factual Report.
    Nesbitt J, Draper S. 2016. Pit morphology and depth after low-temperature hot corrosion of a disc alloy. Materials at High Temperatures, 33: 501-516.
    Nesbitt J, Gabb T, Draper S, et al. 2017. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys.
    Nesbitt J, Gabb T, Puleo S, et al. 2018. Effect of Pre-and Post-Coat Processing on the Fatigue Life of Coated Disk Alloys.
    Nesbitt J A, Gabb T P, Draper S L, et al. 2019. LCF life of as-deposited and annealed NiCr-Y coatings for oxidation and hot corrosion protection of disk alloys. National Aeronautics and Space Administration, Glenn Research Center.
    Nesbitt J A, Miller R A, Gabb T P, et al. 2020. LCF Life of NiCr-Y Coated Disk Alloys After Shot Peening, Oxidation and Hot Corrosion.
    Nippon Cargo Airlines Co. 2011. AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT.
    Pao P S, Gill S J, Feng C R 2000. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy. Scripta Materialia, 43: 391-396.
    Paris P, Erdogan F. 1963. A critical analysis of crack propagation laws. Journal of Basic Engineering, 85: 528-533. doi: 10.1115/1.3656900
    Pettit F. 2011. Hot corrosion of metals and alloys. Oxidation of Metals, 76: 1-21. doi: 10.1007/s11085-011-9254-6
    Peyre P, Scherpereel X, Berthe L, et al. 2000. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering, A, 280: 294-302.
    Piascik R S, Willard S A. 1994. The growth of small corrosion fatigue cracks in alloy 2024. Fatigue & Fracture of Engineering Materials & Structures, 17: 1247-1259. doi: 10.1111/j.1460-2695.1994.tb00213.x
    Piascik R S. 1999. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075. NASA Langley Technical Report Server.
    Plagens H D, Weber M A, Booth A. 2003. National Transportation Safety Board Aviation Accident Final Report.
    Poursaeidi E, Arablu M. 2013. Humidity effects on corrosion-assisted fatigue fracture of heavy-duty gas turbine compressor blades. Journal of Propulsion and Power, 29: 1009-1016. doi: 10.2514/1.B34481
    Pridemore W D. 2003. Metallurgical evaluation of stage one HPT blades and additional hardware from CF6-80C2 ESN 704-893 operated by atlas air involved in undercowl fire event.
    Rajabipour A, MELCHERS R E 2015. Application of Paris’ law for estimation of hydrogen-assisted fatigue crack growth. International Journal of Fatigue, 80: 357-363.
    Rapp R A 2002. Hot corrosion of materials: a fluxing mechanism? Corrosion Science, 44: 209-221.
    Rémy L, Geuffrard M, Alam A, et al. 2013. Effects of microstructure in high temperature fatigue: Lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue. International Journal of Fatigue, 57: 37-49. doi: 10.1016/j.ijfatigue.2012.10.013
    Roach J, Moore J D, Swift J, et al. 2005. National Transportation Safety Board Aviation Accident Final Report.
    Rokhlin S I, Kim J Y, Nagy H, et al. 1999. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Engineering Fracture Mechanics, 62: 425-444. doi: 10.1016/S0013-7944(98)00101-5
    Rossmann A. Aeroengine Safety. Institute of Thermal Turbomachinery and Machine Dynamics.
    Sahu J K, Gupta R K, Swaminathan J, et al. 2013. Influence of hot corrosion on low cycle fatigue behavior of nickel base superalloy SU 263,. International Journal of Fatigue, 51: 68-73. doi: 10.1016/j.ijfatigue.2013.02.006
    Sahu J K, Ravi Kumar B, Das S K, et al. 2015. Isothermal high temperature low cycle fatigue behavior of Nimonic-263: Influence of type I and type II hot corrosion. Materials Science and Engineering:A, 622: 131-138. doi: 10.1016/j.msea.2014.11.016
    Sankaran K K, Perez R, Jata K V 2001. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies. Materials Science and Engineering: A, 297: 223-229.
    Schönbauer B M, Stanzl-Tschegg S E, Perlega A, et al. 2015. The influence of corrosion pits on the fatigue life of 17-4PH steam turbine blade steel. Engineering Fracture Mechanics, 147: 158-175. doi: 10.1016/j.engfracmech.2015.08.011
    Schönbauer B M, Stanzl-Tschegg S E, Perlega A, et al. 2014. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. International Journal of Fatigue, 65: 33-43. doi: 10.1016/j.ijfatigue.2013.10.003
    Shi P, Mahadevan S. 2001a. Aircraft structures reliability under corrosion fatigue. 19th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2001-137710.2514/6.2001-1377.
    Shi P, Mahadevan S. 2001b. Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction. Engineering Fracture Mechanics, 68: 1493-1507. doi: 10.1016/S0013-7944(01)00041-8
    Sriraman M R, Pidaparti R M. 2009. Life Prediction of Aircraft Aluminum Subjected to Pitting Corrosion Under Fatigue Conditions. Journal of Aircraft, 46: 1253-1259. doi: 10.2514/1.40481
    Sriraman M R, Pidaparti R M. 2010. Crack Initiation Life of Materials Under Combined Pitting Corrosion and Cyclic Loading. Journal of Materials Engineering and Performance, 19: 7-12. doi: 10.1007/s11665-009-9379-9
    Stringer J. 1977. Hot Corrosion of High-Temperature Alloys. Annual Review of Materials Science, 7: 477-509. doi: 10.1146/annurev.ms.07.080177.002401
    Stringer J. 1987. High-temperature corrosion of superalloys. Materials Science & Technology, 3: 482-493.
    Sun B. 2018. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. Journal of Constructional Steel Research, 146: 76-83. doi: 10.1016/j.jcsr.2018.03.031
    Szklarska-Smialowska Z. 1999. Pitting corrosion of aluminum. Corrosion Science, 41: 1743-1767. doi: 10.1016/S0010-938X(99)00012-8
    Tan J, Zhang Z, Zheng H, et al. 2020. Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plants. Journal of Nuclear Materials, 541: 152407. doi: 10.1016/j.jnucmat.2020.152407
    Telesman J, Gabb T P, Yamada Y, et al. 2016. Fatigue resistance of a hot corrosion exposed disk superalloy at varied test temperatures. Materials at High Temperatures, 33: 517-527. doi: 10.1080/09603409.2016.1179000
    Turnbull A, Horner D A, Connolly B J. 2009. Challenges in modelling the evolution of stress corrosion cracks from pits. Engineering Fracture Mechanics, 76: 633-640. doi: 10.1016/j.engfracmech.2008.09.004
    Turnbull A, Mccartney L N, Zhou S. 2006. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters. Corrosion Science, 48: 2084-2150.
    Turnbull A, Zhou S. 2012. Electrochemical short crack effect in environmentally assisted cracking of a steam turbine blade steel. Corrosion Science, 58: 33-40. doi: 10.1016/j.corsci.2012.01.004
    Van Orden J, Pettit D. 1975. Corrosion fatigue crack growth in 7050 aluminum alloy extrusions. 16th Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics: 1975-806.
    Vormwald M, Seeger T. 2007. The consequences of short crack closure on fatigue crack growth under variable amplitude loading. Fatigue & Fracture of Engineering Materials & Structures, 14: 205-225.
    Wang Q, Palakal M, Pidaparti R. 2001. Comparative Study of Corrosion–Fatigue in Aircraft Materials. Aiaa Journal - AIAA J, 39: 325-330. doi: 10.2514/2.1308
    Wang R. 2008. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip. International Journal of Fatigue, 30: 1376-1386. doi: 10.1016/j.ijfatigue.2007.10.007
    Wei R. 1998. Corrosion and Fatigue of Aluminum Alloys: Chemistry, Micro-Mechanics and Reliability. 40.
    Yang X, Li S, Qi H. 2015. Effect of high-temperature hot corrosion on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy. International Journal of Fatigue, 70: 106-113. doi: 10.1016/j.ijfatigue.2014.08.011
    Zhang Y, Liu X, Lai J, et al. 2021. Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size. Theoretical and Applied Fracture Mechanics, 114: 103023. doi: 10.1016/j.tafmec.2021.103023
    Zhang Y, Zheng K, Zhu J. 2019a. Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges. Applied Sciences, 9: 3461. doi: 10.3390/app9173461
    Zhang Z, Tan J, Wu X, et al. 2019b. Corrosion fatigue behavior and crack-tip characteristic of 316LN stainless steel in high-temperature pressurized water. Journal of Nuclear Materials, 518: 21-29. doi: 10.1016/j.jnucmat.2019.02.040
    Zhao G, Qi H, Li S, et al. 2021. Effects of tensile load hold time on the fatigue and corrosion-fatigue behavior of turbine blade materials. International Journal of Fatigue, 152: 106448. doi: 10.1016/j.ijfatigue.2021.106448
    Zheng Y, Wang Y. 2020. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue. Corrosion Science, 164: 108368. doi: 10.1016/j.corsci.2019.108368
    Zhou T. 2001. Influence of pitting on the fatigue life of a turbine blade steel,. Fatigue & Fracture of Engineering Materials & Structures, 22: 1083-1093.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article views (2432) PDF downloads(406) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return