Citation: | Cui Z W, Wang Z, Jiang X Y, Zhao L H. Numerical study of non-spherical particle-laden flows. Advances in Mechanics, 2022, 52(3): 623-672 doi: 10.6052/1000-0992-22-006 |
崔智文, 赵立豪. 2021. 近壁湍流中微小非球形颗粒取向行为研究综述. 空气动力学学报, 39: 99-108 (Cui Z W, Zhao L H. 2021. Reviews on alignment of non-spherical particles in wall-bounded turbulence. Acta Aerodynamica Sinica, 39: 99-108). doi: 10.7638/kqdlxxb-2021.0045
|
何雅玲, 王勇, 李庆. 2009. 格子Boltzmann方法的理论及应用. 北京: 科学出版社
He Y L, Wang Y, Li Q. 2009. Lattice Boltzmann Method Theory and Applications. Beijing: Science Press
|
邱敬然, 赵立豪. 2021. 复杂流动中的智能颗粒游动策略研究进展. 力学学报, 53: 2630-2639 (Qiu J R, Zhao L H. 2021. Progresses in swimming strategy of smart particles in complex flows. Chinese Journal of Theoretical and Applied Mechanics, 53: 2630-2639). doi: 10.6052/0459-1879-21-402
|
许春晓. 2015. 壁湍流相干结构和减阻控制机理. 力学进展, 45: 201504 (Xu C X. 2015. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 45: 201504). doi: 10.6052/1000-0992-15-006
|
张兆顺, 崔桂香, 许春晓, 黄伟希. 2017. 湍流理论与模拟. 北京: 清华大学出版社
Zhang Z S, Cui G X, Xu C X, Huang W X. 2017. Theory and Modeling of Turbulence. Beijing: Tsinghua University Press
|
Abbasi Hoseini A, Lundell F, Andersson H I. 2015. Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. International Journal of Multiphase Flow, 76: 13-21. doi: 10.1016/j.ijmultiphaseflow.2015.05.015
|
Aidun C K, Clausen J R. 2010. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42: 439-472. doi: 10.1146/annurev-fluid-121108-145519
|
Anand P, Ray S S, Subramanian G. 2020. Orientation dynamics of sedimenting anisotropic particles in turbulence. Physical Review Letters, 125: 034501. doi: 10.1103/PhysRevLett.125.034501
|
Andersson H I, Zhao L, Barri M. 2012. Torque-coupling and particle–turbulence interactions. Journal of Fluid Mechanics, 696: 319-329. doi: 10.1017/jfm.2012.44
|
Andersson H I, Zhao L, Variano E A. 2015. On the anisotropic vorticity in turbulent channel flows. Journal of Fluids Engineering, 137: 084503-084503–3.
|
Andersson H I, Jiang F. 2018. Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects. Acta Mechanica, 230: 431-447.
|
Angot P, Bruneau C H, Fabrie P. 1999. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81: 497-520. doi: 10.1007/s002110050401
|
Ardekani M N, Costa P, Breugem W P, Brandt L. 2016. Numerical study of the sedimentation of spheroidal particles. International Journal of Multiphase Flow, 87: 16-34. doi: 10.1016/j.ijmultiphaseflow.2016.08.005
|
Ardekani M N, Costa P, Breugem W-P, Picano F, Brandt L. 2017b. Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. Journal of Fluid Mechanics, 816: 43-70. doi: 10.1017/jfm.2017.68
|
Ardekani M N, Sardina G, Brandt L, Karp-Boss L, Bearon R N, Variano E A. 2017a. Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton. Journal of Fluid Mechanics, 831: 655-674. doi: 10.1017/jfm.2017.670
|
Bagchi P, Balachandar S. 2002. Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Physics of Fluids, 14: 2719-2737. doi: 10.1063/1.1487378
|
Balachandar S, Eaton J K. 2010. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42: 111-133. doi: 10.1146/annurev.fluid.010908.165243
|
Balkovsky E, Fouxon A. 1999. Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Physical Review E, 60: 4164-4174.
|
Batchelor G K. 1952. The effect of homogeneous turbulence on material lines and surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 213: 349-366.
|
Batchelor G K. 1970. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics, 41: 545-570. doi: 10.1017/S0022112070000745
|
Bec J, Homann H, Ray S S. 2014. Gravity-driven enhancement of heavy particle clustering in turbulent flow. Physical Review Letters, 112: 184501. doi: 10.1103/PhysRevLett.112.184501
|
Boivin M, Simonin O, Squires K D. 1998. Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal of Fluid Mechanics, 375: 235-263. doi: 10.1017/S0022112098002821
|
Bounoua S, Bouchet G, Verhille G. 2018. Tumbling of inertial fibers in turbulence. Physical Review Letters, 121: 124502.
|
Brenner H, Cox R G. 1963a. The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. Journal of Fluid Mechanics, 17: 561-595. doi: 10.1017/S002211206300152X
|
Brenner H. 1961. The Oseen resistance of a particle of arbitrary shape. Journal of Fluid Mechanics, 11: 604-610. doi: 10.1017/S0022112061000755
|
Brenner H. 1963b. The Stokes resistance of an arbitrary particle. Chemical Engineering Science, 18: 1-25. doi: 10.1016/0009-2509(63)80001-9
|
Brenner H. 1974. Rheology of a dilute suspension of axisymmetric Brownian particles. International Journal of Multiphase Flow, 1: 195-341. doi: 10.1016/0301-9322(74)90018-4
|
Breugem W-P. 2012. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. Journal of Computational Physics, 231: 4469-4498. doi: 10.1016/j.jcp.2012.02.026
|
Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E. 2015. Shape-dependence of particle rotation in isotropic turbulence. Physics of Fluids, 27: 035101. doi: 10.1063/1.4913501
|
Candelier F, Mehlig B. 2016. Settling of an asymmetric dumbbell in a quiescent fluid. Journal of Fluid Mechanics, 802: 174-185. doi: 10.1017/jfm.2016.350
|
Challabotla N R, Nilsen C, Andersson H I. 2015a. On rotational dynamics of inertial disks in creeping shear flow. Physics Letters A, 379: 157-162. doi: 10.1016/j.physleta.2014.10.045
|
Challabotla N R, Zhao L, Andersson H I. 2015b. Shape effects on dynamics of inertia-free spheroids in wall turbulence. Physics of Fluids, 27: 061703. doi: 10.1063/1.4922864
|
Challabotla N R, Zhao L, Andersson H I. 2015c. Orientation and rotation of inertial disk particles in wall turbulence. Journal of Fluid Mechanics, 766.
|
Challabotla N R, Zhao L, Andersson H I. 2016a. Orientation and rotation dynamics of triaxial ellipsoidal tracers in wall turbulence. Physics of Fluids, 28: 123304. doi: 10.1063/1.4971318
|
Challabotla N R, Zhao L, Andersson H I. 2016b. Gravity effects on fiber dynamics in wall turbulence. Flow, Turbulence and Combustion, 97: 1095-1110. doi: 10.1007/s10494-016-9742-5
|
Challabotla N R, Zhao L, Andersson H I. 2016c. On fiber behavior in turbulent vertical channel flow. Chemical Engineering Science, 153: 75-86. doi: 10.1016/j.ces.2016.07.002
|
Chen J, Jin G, Zhang J. 2016. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows. Journal of Turbulence, 17: 308-326. doi: 10.1080/14685248.2015.1093638
|
Chen S, Doolen G D. 1998. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30: 329-364. doi: 10.1146/annurev.fluid.30.1.329
|
Cheung H, Ho M, Lau K, Cardona F, Hui D. 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B:Engineering, 40: 655-663. doi: 10.1016/j.compositesb.2009.04.014
|
Chevillard L, Meneveau C. 2013. Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. Journal of Fluid Mechanics, 737: 571-596. doi: 10.1017/jfm.2013.580
|
Chrust M, Bouchet G, Dusek J. 2013. Numerical simulation of the dynamics of freely falling discs. Physics of Fluids, 25: 044102. doi: 10.1063/1.4799179
|
Costa P, Boersma B J, Westerweel J, Breugem W-P. 2015. Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E, 92: 053012. doi: 10.1103/PhysRevE.92.053012
|
Crowe C T, Sharma M P, Stock D E. 1977. The particle-source-in cell (PSI-CELL) model for gas-droplet flows. Journal of Fluids Engineering, 99: 325-332. doi: 10.1115/1.3448756
|
Cui Y, Ravnik J, Hriberšek M, Steinmann P. 2018. A novel model for the lift force acting on a prolate spheroidal particle in an arbitrary non-uniform flow. Part I. Lift force due to the streamwise flow shear. International Journal of Multiphase Flow, 104: 103-112. doi: 10.1016/j.ijmultiphaseflow.2018.03.007
|
Cui Y, Ravnik J, Hriberšek M, Steinmann P. 2020. Towards a unified shear-induced lift model for prolate spheroidal particles moving in arbitrary non-uniform flow. Computers & Fluids, 196: 104323.
|
Cui Y, Ravnik J, Verhnjak O, Hriberšek M, Steinmann P. 2019. A novel model for the lift force acting on a prolate spheroidal particle in arbitrary non-uniform flow. Part II. Lift force taking into account the non-streamwise flow shear. International Journal of Multiphase Flow, 111: 232-240. doi: 10.1016/j.ijmultiphaseflow.2018.12.003
|
Cui Z, Dubey A, Zhao L, Mehlig B. 2020. Alignment statistics of rods with the Lagrangian stretching direction in a channel flow. Journal of Fluid Mechanics, 901: A16. doi: 10.1017/jfm.2020.547
|
Cui Z, Huang W-X, Xu C-X, Andersson H I, Zhao L. 2021. Alignment of slender fibers and thin disks induced by coherent structures of wall turbulence. International Journal of Multiphase Flow, 145: 103837. doi: 10.1016/j.ijmultiphaseflow.2021.103837
|
Cui Z, Zhao L, Huang W-X, Xu C-X. 2019. Stability analysis of rotational dynamics of ellipsoids in simple shear flow. Physics of Fluids, 31: 023301. doi: 10.1063/1.5080316
|
Cui Z, Zhao L. 2021. A method for long-time integration of Lyapunov exponent and vectors along fluid particle trajectories. Physics of Fluids, 33: 125107. doi: 10.1063/5.0071064
|
Dabade V, Marath N K, Subramanian G. 2015. Effects of inertia and viscoelasticity on sedimenting anisotropic particles. Journal of Fluid Mechanics, 778: 133-188. doi: 10.1017/jfm.2015.360
|
Dabade V, Marath N K, Subramanian G. 2016. The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. Journal of Fluid Mechanics, 791: 631-703. doi: 10.1017/jfm.2016.14
|
Daitche A. 2015. On the role of the history force for inertial particles in turbulence. Journal of Fluid Mechanics, 782: 567-593. doi: 10.1017/jfm.2015.551
|
Den Toonder J M J, Hulsen M A, Kuiken G D C, Nieuwstadt F T M. 1997. Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. Journal of Fluid Mechanics, 337: 193-231. doi: 10.1017/S0022112097004850
|
Derksen J J. 2011. Simulations of granular bed erosion due to laminar shear flow near the critical Shields number. Physics of Fluids, 23: 113303. doi: 10.1063/1.3660258
|
Do-Quang M, Amberg G, Brethouwer G, Johansson A V. 2014. Simulation of finite-size fibers in turbulent channel flows. Physical Review E, 89: 013006. doi: 10.1103/PhysRevE.89.013006
|
Einarsson J, Angilella J R, Mehlig B. 2014. Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows. Physica D: Nonlinear Phenomena, 278–279: 79–85.
|
Einarsson J, Candelier F, Lundell F, Angilella J-R, Mehlig B. 2015. Rotation of a spheroid in a simple shear at small Reynolds number. Physics of Fluids, 27.
|
Einarsson J, Mihiretie B M, Laas A, Ankardal S, Angilella J R, Hanstorp D, Mehlig B. 2016. Tumbling of asymmetric microrods in a microchannel flow. Physics of Fluids, 28: 013302. doi: 10.1063/1.4938239
|
Ern P, Risso F, Fabre D, Magnaudet J. 2012. Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annual Review of Fluid Mechanics, 44: 97-121. doi: 10.1146/annurev-fluid-120710-101250
|
Eshghinejadfard A, Abdelsamie A, Janiga G, Thevenin D. 2016. Direct-forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non-spherical particles. Particuology, 25: 93-103. doi: 10.1016/j.partic.2015.05.004
|
Eshghinejadfard A, Hosseini S A, Thévenin D. 2017. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study. AIP Advances, 7: 095007. doi: 10.1063/1.5002528
|
Eshghinejadfard A, Hosseini S A, Thévenin D. 2019. Effect of particle density in turbulent channel flows with resolved oblate spheroids. Computers & Fluids, 184: 29-39.
|
Eshghinejadfard A, Zhao L, Thévenin D. 2018. Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence. Journal of Fluid Mechanics, 849: 510-540. doi: 10.1017/jfm.2018.441
|
Fadlun E A, Verzicco R, Orlandi P, Mohd-Yusof J. 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161: 35-60. doi: 10.1006/jcph.2000.6484
|
Fan F-G, Ahmadi G. 1995. A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. Journal of Aerosol Science, 26: 813-840. doi: 10.1016/0021-8502(95)00021-4
|
Feng Y, Kleinstreuer C. American Institute of Physics, 2013. 2013. Analysis of non-spherical particle transport in complex internal shear flows. Physics of Fluids, 25: 091904. doi: 10.1063/1.4821812
|
Fries J, Einarsson J, Mehlig B. 2017. Angular dynamics of small crystals in viscous flow. Physical Review Fluids, 2: 014302. doi: 10.1103/PhysRevFluids.2.014302
|
Frohlich K, Meinke M, Schroeder W. 2020. Correlations for inclined prolates based on highly resolved simulations. Journal of Fluid Mechanics, 901: A5. doi: 10.1017/jfm.2020.482
|
Gillissen J J J, Boersma B J, Mortensen P H, Andersson H I. 2008. Fibre-induced drag reduction. Journal of Fluid Mechanics, 602: 209-218. doi: 10.1017/S0022112008000967
|
Girimaji S S, Pope S B. 1990. Material-element deformation in isotropic turbulence. Journal of Fluid Mechanics, 220: 427-458. doi: 10.1017/S0022112090003330
|
Glowinski R, Pan T W, Hesla T I, Joseph D D. 1999. A distributed Lagrange multiplier fictitious domain method for particulate flows. International Journal of Multiphase Flow, 25: 755-794. doi: 10.1016/S0301-9322(98)00048-2
|
Goldstein D, Handler R, Sirovich L. 1993. Modeling a no-slip flow boundary with an external force-field. Journal of Computational Physics, 105: 354-366. doi: 10.1006/jcph.1993.1081
|
Griffith B E, Patankar N A. 2020. Immersed methods for fluid-structure interaction. Annual Review of Fluid Mechanics, Vol 52, 52: 421-448. doi: 10.1146/annurev-fluid-010719-060228
|
Guala M, Lüthi B, Liberzon A, Tsinober A, Kinzelbach W. 2005. On the evolution of material lines and vorticity in homogeneous turbulence. Journal of Fluid Mechanics, 533: 339-359.
|
Guazzelli E, Morris J F. 2011. A physical introduction to suspension dynamics. Cambridge University Press.
|
Gustavsson K, Einarsson J, Mehlig B. 2014. Tumbling of small axisymmetric particles in random and turbulent flows. Physical Review Letters, 112.
|
Gustavsson K, Jucha J, Naso A, Lévêque E, Pumir A, Mehlig B. 2017. Statistical model for the orientation of non-spherical particles settling in turbulence. Physical Review Letters, 119.
|
Gustavsson K, Sheikh M Z, Lopez D, Naso A, Pumir A, Mehlig B. 2019. Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New Journal of Physics, 21: 083008. doi: 10.1088/1367-2630/ab3062
|
Gyr A, Bewersdorff H-W. 1995. Drag reduction of turbulent flows by additives. Springer Netherlands.
|
Haeri S, Shrimpton J S. 2012. On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. International Journal of Multiphase Flow, 40: 38-55. doi: 10.1016/j.ijmultiphaseflow.2011.12.002
|
Håkansson K M O, Fall A B, Lundell F, Yu S, Krywka C, Roth S V, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg L D. 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nature Communications, 5: 4018. doi: 10.1038/ncomms5018
|
Harper E Y, Chang I-D. 1968. Maximum dissipation resulting from lift in a slow viscous shear flow. Journal of Fluid Mechanics, 33: 209-225. doi: 10.1017/S0022112068001254
|
Heymsfield A J. 1977. Precipitation development in stratiform ice clouds: A microphysical and dynamical study. Journal of the Atmospheric Sciences, 34: 367-381. doi: 10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2
|
Hinch E J, Leal L G. 1979. Rotation of small non-axisymmetric particles in a simple shear flow. Journal of Fluid Mechanics, 92: 591. doi: 10.1017/S002211207900077X
|
Hölzer A, Sommerfeld M. 2008. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184: 361-365. doi: 10.1016/j.powtec.2007.08.021
|
Huang H, Yang X, Krafczyk M, Lu X-Y. 2012. Rotation of spheroidal particles in Couette flows. Journal of Fluid Mechanics, 692: 369-394. doi: 10.1017/jfm.2011.519
|
Huang W-X, Chang C B, Sung H J. 2011. An improved penalty immersed boundary method for fluid-flexible body interaction. Journal of Computational Physics, 230: 5061-5079. doi: 10.1016/j.jcp.2011.03.027
|
Jain R, Tschisgale S, Froehlich J. 2019. A collision model for DNS with ellipsoidal particles in viscous fluid. International Journal of Multiphase Flow, 120: 103087. doi: 10.1016/j.ijmultiphaseflow.2019.103087
|
Jeffery G B. 1922. The motion of ellipsoidal particles in a viscous fluid. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 102: 161-179.
|
Jeffrey D J. 1982. Low-Reynolds-number flow between converging spheres. Mathematika, 29: 58-66. doi: 10.1112/S002557930001216X
|
Jiang F, Zhao L, Andersson H I, Gustavsson K, Pumir A, Mehlig B. 2021. Inertial torque on a small spheroid in a stationary uniform flow. Physical Review Fluids, 6: 024302. doi: 10.1103/PhysRevFluids.6.024302
|
Jie Y, Xu C, Dawson J R, Andersson H I, Zhao L. 2019. Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow. Journal of Turbulence: 1–15.
|
Johnson P L, Hamilton S S, Burns R, Meneveau C. 2017. Analysis of geometrical and statistical features of Lagrangian stretching in turbulent channel flow using a database task-parallel particle tracking algorithm. Physical Review Fluids, 2: 014605. doi: 10.1103/PhysRevFluids.2.014605
|
Jucha J, Naso A, Lévêque E, Pumir A. 2018. Settling and collision between small ice crystals in turbulent flows. Physical Review Fluids, 3: 014604. doi: 10.1103/PhysRevFluids.3.014604
|
Kempe T, Froehlich J. 2012. Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics, 709: 445-489. doi: 10.1017/jfm.2012.343
|
Khayat R E, Cox R G. 1989. Inertia effects on the motion of long slender bodies. Journal of Fluid Mechanics, 209: 435-462. doi: 10.1017/S0022112089003174
|
Kim W, Choi H. 2019. Immersed boundary methods for fluid-structure interaction: A review. International Journal of Heat and Fluid Flow, 75: 301-309. doi: 10.1016/j.ijheatfluidflow.2019.01.010
|
Ladd A J C. 1994a. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 271: 285-309. doi: 10.1017/S0022112094001771
|
Ladd A J C. 1994b. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics, 271: 311-339. doi: 10.1017/S0022112094001783
|
Lai M C, Peskin C S. 2000. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of Computational Physics, 160: 705-719. doi: 10.1006/jcph.2000.6483
|
Lawrence C J, Weinbaum S. 1986. The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. Journal of Fluid Mechanics, 171: 209. doi: 10.1017/S0022112086001428
|
Lawrence C J, Weinbaum S. 1988. The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. Journal of Fluid Mechanics, 189: 463-489. doi: 10.1017/S0022112088001107
|
Lees A W, Edwards S F. 1972. The computer study of transport processes under extreme conditions. Journal of Physics Part C Solid State Physics, 5: 1921-1929. doi: 10.1088/0022-3719/5/15/006
|
Legendre D, Magnaudet J. 1998. The lift force on a spherical bubble in a viscous linear shear flow. Journal of Fluid Mechanics, 368: 81-126. doi: 10.1017/S0022112098001621
|
Li R-Y, Cui Z-W, Huang W-X, Zhao L-H, Xu C-X. 2019. On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mechanica, 239: 449-467.
|
Lundell F, Carlsson A. 2010. Heavy ellipsoids in creeping shear flow: Transitions of the particle rotation rate and orbit shape. Physical Review E, 81: 016323. doi: 10.1103/PhysRevE.81.016323
|
Lundell F, Söderberg L D, Alfredsson P H. 2011a. Fluid mechanics of papermaking. Annual Review of Fluid Mechanics, 43: 195-217. doi: 10.1146/annurev-fluid-122109-160700
|
Lundell F. 2011b. The effect of particle inertia on triaxial ellipsoids in creeping shear: From drift toward chaos to a single periodic solution. Physics of Fluids, 23: 011704. doi: 10.1063/1.3548864
|
Magnaudet J, Takagi S, Legendre D. 2003. Drag, deformation and lateral migration of a buoyant drop moving near a wall. Journal of Fluid Mechanics, 476: 115-157. doi: 10.1017/S0022112002002902
|
Magnaudet J. 2003. Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. Journal of Fluid Mechanics, 485: 115-142. doi: 10.1017/S0022112003004464
|
Majumdar S, Iaccarino G, Durbin P. 2001. RANS solvers with adaptive structured boundary non-conforming grids. Annual Research Briefs, NASA Ames Research Center/Stanford University Center for Turbulence Research, Stanford, CA. 353-366
|
Mandø M, Roséndahl L. 2010. On the motion of non-spherical particles at high Reynolds number. Powder Technology, 202: 1-13. doi: 10.1016/j.powtec.2010.05.001
|
Mao W, Alexeev A. 2014. Motion of spheroid particles in shear flow with inertia. Journal of Fluid Mechanics, 749: 145-166. doi: 10.1017/jfm.2014.224
|
Marchioli C, Fantoni M, Soldati A. 2010. Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Physics of fluids, 22: 033301. doi: 10.1063/1.3328874
|
Marchioli C, Soldati A. 2013. Rotation statistics of fibers in wall shear turbulence. Acta Mechanica, 224: 2311-2329. doi: 10.1007/s00707-013-0933-z
|
Marchioli C, Zhao L, Andersson H. 2016. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Physics of Fluids, 28: 013301. doi: 10.1063/1.4937757
|
Marcus G G, Parsa S, Kramel S, Ni R, Voth G A. 2014. Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New Journal of Physics, 16: 102001. doi: 10.1088/1367-2630/16/10/102001
|
Maxey M R, Patel B K, Chang E J, Wang L-P. 1997. Simulations of dispersed turbulent multiphase flow. Fluid Dynamics Research, 20: 143-156. doi: 10.1016/S0169-5983(96)00042-1
|
Maxey M R, Riley J J. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. The Physics of Fluids, 26: 883-889. doi: 10.1063/1.864230
|
Maxey M R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 174: 441-465. doi: 10.1017/S0022112087000193
|
Maxey M. 2017. Simulation methods for particulate flows and concentrated suspensions. Annual Review of Fluid Mechanics, 49: 171-193. doi: 10.1146/annurev-fluid-122414-034408
|
McLaughlin J B. 1991. Inertial migration of a small sphere in linear shear flows. Journal of Fluid Mechanics, 224: 261-274. doi: 10.1017/S0022112091001751
|
Meibohm J, Candelier F, Rosén T, Einarsson J, Lundell F, Mehlig B. 2016. Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number. Physical Review Fluids, 1: 084203. doi: 10.1103/PhysRevFluids.1.084203
|
Michel A, Arcen B. 2021a. Long time statistics of prolate spheroids dynamics in a turbulent channel flow. International Journal of Multiphase Flow, 135: 103525. doi: 10.1016/j.ijmultiphaseflow.2020.103525
|
Michel A, Arcen B. 2021b. Reynolds number effect on the concentration and preferential orientation of inertial ellipsoids. Physical Review Fluids, 6: 114305. doi: 10.1103/PhysRevFluids.6.114305
|
Milici B, De Marchis M, Sardina G, Napoli E. 2014. Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. Journal of Fluid Mechanics, 739: 465-478. doi: 10.1017/jfm.2013.633
|
Mittal R, Iaccarino G. 2005. Immersed boundary methods. Annual Review of Fluid Mechanics, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
|
Moosaie A, Manhart M. 2013. Direct Monte Carlo simulation of turbulent drag reduction by rigid fibers in a channel flow. Acta Mechanica, 224: 2385-2413. doi: 10.1007/s00707-013-0919-x
|
Moriche M, Uhlmann M, Dusek J. 2021. A single oblate spheroid settling in unbounded ambient fluid: A benchmark for simulations in steady and unsteady wake regimes. International Journal of Multiphase Flow, 136: 103519. doi: 10.1016/j.ijmultiphaseflow.2020.103519
|
Mortensen P H, Andersson H I, Gillissen J J J, Boersma B J. 2008a. Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Physics of Fluids, 20: 093302. doi: 10.1063/1.2975209
|
Mortensen P H, Andersson H I, Gillissen J J J, Boersma B J. 2008b. On the orientation of ellipsoidal particles in a turbulent shear flow. International Journal of Multiphase Flow, 34: 678-683. doi: 10.1016/j.ijmultiphaseflow.2007.12.007
|
Ni R, Ouellette N T, Voth G A. 2014. Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. Journal of Fluid Mechanics, 743.
|
Nilsen C, Andersson H I. 2013. Chaotic rotation of inertial spheroids in oscillating shear flow. Physics of Fluids, 25: 013303. doi: 10.1063/1.4789376
|
Olivieri S, Picano F, Sardina G, Iudicone D, Brandt L. 2014. The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Physics of Fluids, 26: 041704. doi: 10.1063/1.4871480
|
Ouchene R, Khalij M, Arcen B, Taniere A. 2016. A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technology, 303: 33-43. doi: 10.1016/j.powtec.2016.07.067
|
Ouchene R, Khalij M, Tanière A, Arcen B. 2015. Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers. Computers & Fluids, 113: 53-64.
|
Parsa S, Calzavarini E, Toschi F, Voth G A. 2012. Rotation rate of rods in turbulent fluid flow. Physical Review Letters, 109.
|
Parsa S, Guasto J S, Kishore M, Ouellette N T, Gollub J P, Voth G A. 2011. Rotation and alignment of rods in two-dimensional chaotic flow. Physics of Fluids, 23: 043302. doi: 10.1063/1.3570526
|
Paschkewitz J S, Dimitropoulos C D, Hou Y X, Somandepalli V S R, Mungal M G, Shaqfeh E S G, Moin P. 2005. An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rodlike polymer. Physics of Fluids, 17: 085101. doi: 10.1063/1.1993307
|
Paschkewitz J S, Dubief Y, Dimitropoulos C D, Shaqfeh E S G, Moin P. 2004. Numerical simulation of turbulent drag reduction using rigid fibres. Journal of Fluid Mechanics, 518: 281-317. doi: 10.1017/S0022112004001144
|
Paschkewitz J S, Dubief Y, Shaqfeh E S G. 2005. The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics. Physics of Fluids, 17: 063102. doi: 10.1063/1.1925447
|
Pedley T J, Kessler J O. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annual Review of Fluid Mechanics, 24: 313-358. doi: 10.1146/annurev.fl.24.010192.001525
|
Peng C, Teng Y, Hwang B, Guo Z, Wang L-P. 2016. Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Computers & Mathematics with Applications, 72: 349-374.
|
Peskin C S. 1972. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10: 252-271.
|
Peskin C S. 1977. Numerical analysis of blood flow in heart. Journal of Computational Physics, 25: 220-252. doi: 10.1016/0021-9991(77)90100-0
|
Peskin C S. 2002. The immersed boundary method. Acta Numerica, 11: 479-517. doi: 10.1017/S0962492902000077
|
Prasath S G, Vasan V, Govindarajan R. 2019. Accurate solution method for the Maxey–Riley equation, and the effects of Basset history. Journal of Fluid Mechanics, 868: 428-460. doi: 10.1017/jfm.2019.194
|
Pujara N, Arguedas-Leiva J-A, Lalescu C C, Bramas B, Wilczek M. 2021. Shape- and scale-dependent coupling between spheroids and velocity gradients in turbulence. Journal of Fluid Mechanics, 922: R6.
|
Pujara N, Variano E A. 2017. Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence. Journal of Fluid Mechanics, 821: 517-538. doi: 10.1017/jfm.2017.256
|
Pujara N, Voth G A, Variano E A. 2019. Scale-dependent alignment, tumbling and stretching of slender rods in isotropic turbulence. Journal of Fluid Mechanics, 860: 465-486. doi: 10.1017/jfm.2018.866
|
Pumir A, Wilkinson M. 2011. Orientation statistics of small particles in turbulence. New Journal of Physics, 13: 093030. doi: 10.1088/1367-2630/13/9/093030
|
Qi D, Luo L. 2002. Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow. Physics of Fluids, 14: 4440-4443. doi: 10.1063/1.1517053
|
Qi D, Luo L S. 2003. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. Journal of Fluid Mechanics, 477: 201-213.
|
Qiu J, Marchioli C, Andersson H I, Zhao L. 2019. Settling tracer spheroids in vertical turbulent channel flows. International Journal of Multiphase Flow, 118: 173-182. doi: 10.1016/j.ijmultiphaseflow.2019.06.012
|
Radin I, Zakin J L, Patterson G K. 1975. Drag reduction in solid-fluid systems. AIChE Journal, 21: 358-371. doi: 10.1002/aic.690210218
|
Reddy G V, Singh R P. 1985. Drag reduction effectiveness and shear stability of polymer-polymer and polymer-fibre mixtures in recirculatory turbulent flow of water. Rheologica Acta, 24: 296-311. doi: 10.1007/BF01332609
|
Rosén T, Do-Quang M, Aidun C K, Lundell F. 2015a. The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia. Journal of Fluid Mechanics, 771: 115-158. doi: 10.1017/jfm.2015.127
|
Rosén T, Einarsson J, Nordmark A, Aidun C K, Lundell F, Mehlig B. 2015b. Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Physical Review E, 92: 063022.
|
Rosén T, Kotsubo Y, Aidun C K, Do-Quang M, Lundell F. 2017b. Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia. Physical Review E, 96: 013109.
|
Rosén T, Lundell F, Aidun C K. 2014. Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. Journal of Fluid Mechanics, 738: 563-590. doi: 10.1017/jfm.2013.599
|
Rosén T, Nordmark A, Aidun C K, Do-Quang M, Lundell F. 2016. Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate Reynolds numbers. Physical Review Fluids, 1: 044201. doi: 10.1103/PhysRevFluids.1.044201
|
Rosén T. 2017a. Chaotic rotation of a spheroidal particle in simple shear flow. Chaos:An Interdisciplinary Journal of Nonlinear Science, 27: 063112. doi: 10.1063/1.4985640
|
Roy A, Gupta A, Ray S S. 2018. Inertial spheroids in homogeneous, isotropic turbulence. Physical Review E, 98: 021101. doi: 10.1103/PhysRevE.98.021101
|
Saffman P G. 1965. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22: 385-400. doi: 10.1017/S0022112065000824
|
Saffman P G. 1968. The lift on a small sphere in a slow shear flow Corrigendum. Journal of Fluid Mechanics, 31: 624-624. doi: 10.1017/S0022112068999990
|
Saintillan D. 2018. Rheology of active fluids. Annual Review of Fluid Mechanics, 50: 563-592. doi: 10.1146/annurev-fluid-010816-060049
|
Sanjeevi S K P, Kuipers J A M, Padding J T. 2018. Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. International Journal of Multiphase Flow, 106: 325-337. doi: 10.1016/j.ijmultiphaseflow.2018.05.011
|
Sardina G, Schlatter P, Brandt L, Picano F, Casciola C M. 2012. Wall accumulation and spatial localization in particle-laden wall flows. Journal of Fluid Mechanics, 699: 50-78. doi: 10.1017/jfm.2012.65
|
Schneiders L, Fröhlich K, Meinke M, Schröder W. 2019. The decay of isotropic turbulence carrying non-spherical finite-size particles. Journal of Fluid Mechanics, 875: 520-542. doi: 10.1017/jfm.2019.516
|
Schneiders L, Meinke M, Schröder W. 2017. On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence. Fuel, 201: 2-14. doi: 10.1016/j.fuel.2016.11.096
|
Shapiro M, Goldenberg M. 1993. Deposition of glass fiber particles from turbulent air flow in a pipe. Journal of Aerosol Science, 24: 65-87. doi: 10.1016/0021-8502(93)90085-N
|
Sheikh M Z, Gustavsson K, Lopez D, Lévêque E, Mehlig B, Pumir A, Naso A. 2020. Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. Journal of Fluid Mechanics, 886: A9.
|
Shin M, Koch D L. 2005. Rotational and translational dispersion of fibres in isotropic turbulent flows. Journal of Fluid Mechanics, 540: 143-173. doi: 10.1017/S0022112005005690
|
Siewert C, Kunnen R P J, Meinke M, Schröder W. 2014. Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmospheric Research, 142: 45-56. doi: 10.1016/j.atmosres.2013.08.011
|
Siewert C, Kunnen R P J, Schröder W. 2014. Collision rates of small ellipsoids settling in turbulence. Journal of Fluid Mechanics, 758: 686-701. doi: 10.1017/jfm.2014.554
|
Soutis C. 2005. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41: 143-151. doi: 10.1016/j.paerosci.2005.02.004
|
Taira K, Colonius T. 2007. The immersed boundary method: A projection approach. Journal of Computational Physics, 225: 2118-2137. doi: 10.1016/j.jcp.2007.03.005
|
Taylor G I. 1923. The motion of ellipsoidal particles in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 103: 58-61.
|
Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annual Review of Fluid Mechanics, 46: 199-230. doi: 10.1146/annurev-fluid-010313-141344
|
Udaykumar H S, Shyy W, Rao M M. 1996. ELAFINT: A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. International Journal for Numerical Methods in Fluids, 22: 691-712. doi: 10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U
|
Uhlmann M. 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209: 448-476. doi: 10.1016/j.jcp.2005.03.017
|
Voth G A, Soldati A. 2017. Anisotropic particles in turbulence. Annual Review of Fluid Mechanics, 49: 249-76. doi: 10.1146/annurev-fluid-010816-060135
|
Vreman A W. 2015. Turbulence attenuation in particle-laden flow in smooth and rough channels. Journal of Fluid Mechanics, 773: 103-136. doi: 10.1017/jfm.2015.208
|
Wang L-P, Maxey M R. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256: 27-68. doi: 10.1017/S0022112093002708
|
Wang Z, Xu C-X, Zhao L. 2021. Turbulence modulations and drag reduction by inertialess spheroids in turbulent channel flow. Physics of Fluids, 33: 123313. doi: 10.1063/5.0074857
|
Wang Z, Zhao L. 2020. The particle stress in dilute suspensions of inertialess spheroids in turbulent channel flow. Physics of Fluids, 32: 013302. doi: 10.1063/1.5139028
|
Xia Y, Xiong H, Yu Z, Zhu C. 2020. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Physics of Fluids, 32: 103303. doi: 10.1063/5.0020995
|
Xu H, Pumir A, Bodenschatz E. 2011. The pirouette effect in turbulent flows. Nature Physics, 7: 709-712. doi: 10.1038/nphys2010
|
Yang K, Zhao L, Andersson H I. 2018. Particle segregation in turbulent Couette–Poiseuille flow with vanishing wall shear. International Journal of Multiphase Flow, 98: 45-55. doi: 10.1016/j.ijmultiphaseflow.2017.09.001
|
Yarin A L, Gottlieb O, Roisman I V. 1997. Chaotic rotation of triaxial ellipsoids in simple shear flow. Journal of Fluid Mechanics, 340: 83-100. doi: 10.1017/S0022112097005260
|
Yin C, Roséndahl L, Knudsen Kær S, Sørensen H. 2003. Modelling the motion of cylindrical particles in a nonuniform flow. Chemical Engineering Science, 58: 3489-3498. doi: 10.1016/S0009-2509(03)00214-8
|
Yu Z, Phan-Thien N, Tanner R I. 2007a. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Physical Review E, 76: 026310.
|
Yu Z, Shao X. 2007b. A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 227: 292-314. doi: 10.1016/j.jcp.2007.07.027
|
Yu Z, Shao X. 2010. Direct numerical simulation of particulate flows with a fictitious domain method. International Journal of Multiphase Flow, 36: 127-134. doi: 10.1016/j.ijmultiphaseflow.2009.10.001
|
Yuan W, Andersson H I, Zhao L, Challabotla N R, Deng J. 2017. Dynamics of disk-like particles in turbulent vertical channel flow. International Journal of Multiphase Flow, 96: 86-100. doi: 10.1016/j.ijmultiphaseflow.2017.06.008
|
Yuan W, Zhao L, Andersson H I, Deng J. 2018. Three-dimensional Voronoï analysis of preferential concentration of spheroidal particles in wall turbulence. Physics of Fluids, 30: 063304. doi: 10.1063/1.5031117
|
Zastawny M, Mallouppas G, Zhao F, van Wachem B. 2012. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. International Journal of Multiphase Flow, 39: 227-239. doi: 10.1016/j.ijmultiphaseflow.2011.09.004
|
Zhang H, Ahmadi G, Fan F-G, McLaughlin J B. 2001. Ellipsoidal particles transport and deposition in turbulent channel flows. International Journal of Multiphase Flow, 27: 971-1009. doi: 10.1016/S0301-9322(00)00064-1
|
Zhao L, Challabotla N R, Andersson H I, Variano E A. 2015. Rotation of nonspherical particles in turbulent channel flow. Physical review letters, 115: 244501. doi: 10.1103/PhysRevLett.115.244501
|
Zhao L, Challabotla N R, Andersson H I, Variano E A. 2019a. Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia. Journal of Fluid Mechanics, 876: 19-54. doi: 10.1017/jfm.2019.521
|
Zhao L, Gustavsson K, Ni R, Kramel S, Voth G A, Andersson H I, Mehlig B. 2019b. Passive directors in turbulence. Physical Review Fluids, 4: 054602. doi: 10.1103/PhysRevFluids.4.054602
|
Zhong W Q, Yu A B, Liu X J, Tong Z B, Zhang H. 2016. DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications. Powder Technology, 302: 108-152. doi: 10.1016/j.powtec.2016.07.010
|
Zhu C, Yu Z, Pan D, Shao X. 2020. Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. Journal of Fluid Mechanics, 891: A6.
|
Zhu C, Yu Z, Shao X. 2018. Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Physics of Fluids, 30: 115103. doi: 10.1063/1.5051592
|