Citation: | Sun P C, Zhao L, Dong M. Study on the evolution of non-modal disturbances in hypersonic boundary layer based on HLNS approach. Advances in Mechanics, 2022, 52(1): 180-195 doi: 10.6052/1000-0992-22-003 |
[1] |
董明. 2020. 边界层转捩预测中的局部散射理论. 空气动力学学报, 38: 286-298 (Dong M. 2020. Local scattering theory for transition prediction in boundary-layer flows. Acta Aerodynamica Sinica, 38: 286-298).
|
[2] |
李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 2020. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 69: 024703 (Li Q, Zhao L, Chen S Y, Jiang T, Zhuang Y, Zhang K L. 2020. Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition. Acta Phys Sin, 69: 024703). doi: 10.7498/aps.69.20191155
|
[3] |
李斯特, 董明. 2021. 局部散射理论在高超声速边界层转捩预测中应用的检验. 力学进展, 51: 364-375 (Li S T, Dong M. 2021. Verification of local scattering theory as is applied to transition prediction in hypersonic boundary layers. Advances in Mechanics, 51: 364-375). doi: 10.6052/1000-0992-21-016
|
[4] |
赵磊. 2017. 高超声速后掠钝板边界层横流定常涡失稳的研究. [博士论文]. 天津: 天津大学
Zhao L. 2017. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers. [PhD Thesis]. Tianjin: Tianjin University
|
[5] |
Dong M, Li C. 2021. Effect of two-dimensional short rectangular indentations on hypersonic boundary-layer transition. AIAA Journal, 59: 7 DOI: 10.2514/1.J059957.
|
[6] |
Dong M, Liu Y H, Wu X S. 2020. Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness. Journal of Fluid Mechanics, 896: A23. doi: 10.1017/jfm.2020.358
|
[7] |
Dong M, Zhao L. 2021. An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. Journal of Fluid Mechanics, 913: A22. doi: 10.1017/jfm.2020.1146
|
[8] |
Henningson D. 1995. Bypass transition and linear growth mechanisms. Advances in Turbulence V. Springer, 1: 190-204.
|
[9] |
Leib S J, Wundrow D W, Goldstein M E. 1999. Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. Journal of Fluid Mechanics, 380: 169-203. doi: 10.1017/S0022112098003504
|
[10] |
Liu Y H, Dong M, Wu X S. 2020. Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness. Journal of Fluid Mechanics, 888: A10. doi: 10.1017/jfm.2020.38
|
[11] |
Luchini P. 2000. Reynolds-number-independent instability of the boundary layer over a flat surface optimal perturbations. Journal of Fluid Mechanics, 404: 289-309. doi: 10.1017/S0022112099007259
|
[12] |
Paredes P, Choudhari M M, Li F, et al. 2016. Optimal growth in hypersonic boundary layers. AIAA Journal, 54: 3050-3061. doi: 10.2514/1.J054912
|
[13] |
Paredes P, Choudhari M M, Li F. 2017. Blunt-body paradox and transient growth on a hypersonic spherical forebody. Physical Review Fluids, 2: 053903. doi: 10.1103/PhysRevFluids.2.053903
|
[14] |
Paredes P, Choudhari M M, Li F, et al. 2018. Nose-tip bluntness effects on transition at hypersonic speeds. Journal of Spacecraft and Rockets, 56: 1-19. doi: 10.2514/1.A34277
|
[15] |
Ricco P, Luo J S, Wu X S. 2011. Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances. Journal of Fluid Mechanics, 677: 1-38. doi: 10.1017/jfm.2011.41
|
[16] |
Song R, Zhao L, Huang Z. F. 2020. Improvement of the parabolized stability equation to predict the linear evolution of disturbances in three-dimensional boundary layers based on ray tracing theory. Physical Review Fluids, 5: . doi: 10.1103/PhysRevFluids.5.033901
|
[17] |
Tempelmann D, Hanifi A, Henningson D S. 2010. Spatial optimal growth in three-dimensional boundary layers. Journal of Fluid Mechanics, 646: 5-37. doi: 10.1017/S0022112009993260
|
[18] |
Tempelmann D, Hanifi A, Henningson D S. 2012. Spatial optimal growth in three-dimensional compressible boundary layers. Journal of Fluid Mechanics, 704: 251-279. doi: 10.1017/jfm.2012.235
|
[19] |
Trefethen L N, Trefethen A E, Reddy S C, et al. 1993. Hydrodynamic stability without eigenvalues. Science, 261: 578-584. doi: 10.1126/science.261.5121.578
|
[20] |
Tumin A, Reshotko E. 2001. Spatial theory of optimal disturbances in boundary layers. Physics of Fluids, 13: 2097-2104. doi: 10.1063/1.1378070
|
[21] |
Wu X S, Dong M. 2016. A local scattering theory for the effects of isolated roughness on boundary-layer instability and transition: transmission coefficient as an eigenvalue. Journal of Fluid Mechanics, 794: 68-108. doi: 10.1017/jfm.2016.125
|
[22] |
Zhang A Y, Dong M, Zhang Y M. 2018. Receptivity of secondary instability modes in streaky boundary layers. Physics of Fluids, 30: 114102. doi: 10.1063/1.5046136
|
[23] |
Zhao L, Zhang C B, Liu J X, Luo J S. 2016. Improved algorithm for solving nonlinear parabolized stability equations. Chinese Physics B, 25: 084701. doi: 10.1088/1674-1056/25/8/084701
|
[24] |
Zhao L, Dong M, Yang Y G. 2019. Harmonic linearized Navier-Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Physics of Fluids, 31: 034108. doi: 10.1063/1.5086912
|
[25] |
Zhao L, Dong M. 2020. Effect of suction on laminar-flow control in subsonic boundary layers with forward-/backward-facing steps. Physics of Fluids, 32: 054108. doi: 10.1063/5.0007624
|