Volume 52 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Sun P C, Zhao L, Dong M. Study on the evolution of non-modal disturbances in hypersonic boundary layer based on HLNS approach. Advances in Mechanics, 2022, 52(1): 180-195 doi: 10.6052/1000-0992-22-003
Citation: Sun P C, Zhao L, Dong M. Study on the evolution of non-modal disturbances in hypersonic boundary layer based on HLNS approach. Advances in Mechanics, 2022, 52(1): 180-195 doi: 10.6052/1000-0992-22-003

Study on the evolution of non-modal disturbances in hypersonic boundary layer based on HLNS approach

doi: 10.6052/1000-0992-22-003
More Information
  • Corresponding author: lei_zhao@tju.edu.cn
  • Received Date: 2022-01-13
  • Accepted Date: 2022-02-24
  • Available Online: 2022-03-04
  • Publish Date: 2022-03-25
  • Laminar-turbulent transition in hypersonic boundary layers is of fundamental importance in the design of aerospace vehicles. Subcritical transition, occurring upstream of the linear instability region, appears frequently in conventional wind-tunnel experiments. The subcritical transition is usually triggered by the evolution of non-modal disturbances and their subsequent secondary instability. In order to reveal the inherent mechanisms governing the impact of abrupt changes on hypersonic subcritical transition, a numerical framework describing the evolution of non-modal disturbances based on the harmonic linearized Navier-Stokes (HLNS) equation and its adjoint system is developed. The advantage of this framework is that the elliptic nature of the original system is retained, leading to the ability to deal with the rapid distortion of the non-modal disturbances (streaks) in the vicinity of the local abrupt changes. For a hypersonic blunt-plate boundary layer with an oncoming Mach number 5.96 and an angle of attack $ - 4^\circ $, the impact of the cavities with different depths on streak amplitude is studied. Numerical solutions indicate that streaks are enhanced by the cavities, which agrees with the experimental observations in quantity. Moreover, the enhancement effect peaks at a particular cavity depth.

     

  • loading
  • [1]
    董明. 2020. 边界层转捩预测中的局部散射理论. 空气动力学学报, 38: 286-298 (Dong M. 2020. Local scattering theory for transition prediction in boundary-layer flows. Acta Aerodynamica Sinica, 38: 286-298).
    [2]
    李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 2020. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 69: 024703 (Li Q, Zhao L, Chen S Y, Jiang T, Zhuang Y, Zhang K L. 2020. Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition. Acta Phys Sin, 69: 024703). doi: 10.7498/aps.69.20191155
    [3]
    李斯特, 董明. 2021. 局部散射理论在高超声速边界层转捩预测中应用的检验. 力学进展, 51: 364-375 (Li S T, Dong M. 2021. Verification of local scattering theory as is applied to transition prediction in hypersonic boundary layers. Advances in Mechanics, 51: 364-375). doi: 10.6052/1000-0992-21-016
    [4]
    赵磊. 2017. 高超声速后掠钝板边界层横流定常涡失稳的研究. [博士论文]. 天津: 天津大学

    Zhao L. 2017. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers. [PhD Thesis]. Tianjin: Tianjin University
    [5]
    Dong M, Li C. 2021. Effect of two-dimensional short rectangular indentations on hypersonic boundary-layer transition. AIAA Journal, 59: 7 DOI: 10.2514/1.J059957.
    [6]
    Dong M, Liu Y H, Wu X S. 2020. Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness. Journal of Fluid Mechanics, 896: A23. doi: 10.1017/jfm.2020.358
    [7]
    Dong M, Zhao L. 2021. An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. Journal of Fluid Mechanics, 913: A22. doi: 10.1017/jfm.2020.1146
    [8]
    Henningson D. 1995. Bypass transition and linear growth mechanisms. Advances in Turbulence V. Springer, 1: 190-204.
    [9]
    Leib S J, Wundrow D W, Goldstein M E. 1999. Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. Journal of Fluid Mechanics, 380: 169-203. doi: 10.1017/S0022112098003504
    [10]
    Liu Y H, Dong M, Wu X S. 2020. Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness. Journal of Fluid Mechanics, 888: A10. doi: 10.1017/jfm.2020.38
    [11]
    Luchini P. 2000. Reynolds-number-independent instability of the boundary layer over a flat surface optimal perturbations. Journal of Fluid Mechanics, 404: 289-309. doi: 10.1017/S0022112099007259
    [12]
    Paredes P, Choudhari M M, Li F, et al. 2016. Optimal growth in hypersonic boundary layers. AIAA Journal, 54: 3050-3061. doi: 10.2514/1.J054912
    [13]
    Paredes P, Choudhari M M, Li F. 2017. Blunt-body paradox and transient growth on a hypersonic spherical forebody. Physical Review Fluids, 2: 053903. doi: 10.1103/PhysRevFluids.2.053903
    [14]
    Paredes P, Choudhari M M, Li F, et al. 2018. Nose-tip bluntness effects on transition at hypersonic speeds. Journal of Spacecraft and Rockets, 56: 1-19. doi: 10.2514/1.A34277
    [15]
    Ricco P, Luo J S, Wu X S. 2011. Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances. Journal of Fluid Mechanics, 677: 1-38. doi: 10.1017/jfm.2011.41
    [16]
    Song R, Zhao L, Huang Z. F. 2020. Improvement of the parabolized stability equation to predict the linear evolution of disturbances in three-dimensional boundary layers based on ray tracing theory. Physical Review Fluids, 5: . doi: 10.1103/PhysRevFluids.5.033901
    [17]
    Tempelmann D, Hanifi A, Henningson D S. 2010. Spatial optimal growth in three-dimensional boundary layers. Journal of Fluid Mechanics, 646: 5-37. doi: 10.1017/S0022112009993260
    [18]
    Tempelmann D, Hanifi A, Henningson D S. 2012. Spatial optimal growth in three-dimensional compressible boundary layers. Journal of Fluid Mechanics, 704: 251-279. doi: 10.1017/jfm.2012.235
    [19]
    Trefethen L N, Trefethen A E, Reddy S C, et al. 1993. Hydrodynamic stability without eigenvalues. Science, 261: 578-584. doi: 10.1126/science.261.5121.578
    [20]
    Tumin A, Reshotko E. 2001. Spatial theory of optimal disturbances in boundary layers. Physics of Fluids, 13: 2097-2104. doi: 10.1063/1.1378070
    [21]
    Wu X S, Dong M. 2016. A local scattering theory for the effects of isolated roughness on boundary-layer instability and transition: transmission coefficient as an eigenvalue. Journal of Fluid Mechanics, 794: 68-108. doi: 10.1017/jfm.2016.125
    [22]
    Zhang A Y, Dong M, Zhang Y M. 2018. Receptivity of secondary instability modes in streaky boundary layers. Physics of Fluids, 30: 114102. doi: 10.1063/1.5046136
    [23]
    Zhao L, Zhang C B, Liu J X, Luo J S. 2016. Improved algorithm for solving nonlinear parabolized stability equations. Chinese Physics B, 25: 084701. doi: 10.1088/1674-1056/25/8/084701
    [24]
    Zhao L, Dong M, Yang Y G. 2019. Harmonic linearized Navier-Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Physics of Fluids, 31: 034108. doi: 10.1063/1.5086912
    [25]
    Zhao L, Dong M. 2020. Effect of suction on laminar-flow control in subsonic boundary layers with forward-/backward-facing steps. Physics of Fluids, 32: 054108. doi: 10.1063/5.0007624
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (1358) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return