Volume 52 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Wu W W, Xia R. Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties . Advances in Mechanics, 2022, 52(3): 673-718 doi: 10.6052/1000-0992-22-002
Citation: Wu W W, Xia R. Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties . Advances in Mechanics, 2022, 52(3): 673-718 doi: 10.6052/1000-0992-22-002

Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties

doi: 10.6052/1000-0992-22-002
More Information
  • With the rapid development of advanced manufacturing technology, multidisciplinary integration, and artificial intelligence technology, high-end equipment demonstrates the development trends of lightweight, integrated, composited, multi-functional, intelligent, flexible, and biomimetic features. Traditional structural research has encountered many intrinsic problems that constrain devices, and instruments performances, such as structural design and manufacturing are separated from each other, relative low manufacturing efficiency of complex structures, practical structural performances, and reliability of manufactured structures are significantly lower than theoretical predictions, insufficient multi-functional integration of structures, and high costs. In addition, materials and structures for constructing advanced industrial equipments are required to maintain reliable performances and endure extremely crucial service environments. It is urgent to carry out research on the synergy effects of design, manufacture, function, and applications of structures, thus providing theoretical foundations and technical support for solving the key technical problems of advanced manufacturing strategic plans. Lightweight multi-functional lattice meta-structures exhibit extraordinary mechanical performance advantages of lightweight, specific strength, impact energy absorption, shock absorption, and noise reduction advantages, and demonstrate great industrial application potentials in aerospace, transportation, national defense, biomedical, energy, machinery, equipment, and other industrial fields. Considering the above-mentioned status-quo, inspired by the multi-scale microstructures of the polycrystalline, the mechanical design of lightweight multi-functional lattice meta-structures is reviewed in this paper, and is elaborated from the perspectives of typical design methods, such as nodes, strut components, unit cell types, dual-phase structures, gradient structures and hierarchical structures of lattice structures. Afterward, physical foundations for design innovations based on multi-scale microstructures of polycrystalline are explained, rational regulations of multi-functional mechanical properties, and the underlying deformation and failure mechanisms are demonstrated.

     

  • loading
  • 李增聪, 陈燕, 李红庆等. 2021. 面向集中力扩散的回转曲面加筋拓扑优化方法. 航空学报, 42: 378-390 (Li Z C, Chen Y, Li H Q, et al. 2021. Topology optimization method for stiffened surface of revolution for concentrated force diffusion. Acta Aeronautica Sinica, 42: 378-390).
    卢柯. 2015. 梯度纳米结构材料. 金属学报, 51: 10 (Lu K. 2015. Gradient nanostructured materials. Chinese Journal of Metals, 51: 10).
    Alghamdi A, Maconachie T, Downing D, et al. 2020. Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. International Journal of Advanced Manufacturing Technology, 108: 1-15. doi: 10.1007/s00170-020-05074-7
    Bacon D J, Kocks U F, Scattergood R O. 1973. The effect of dislocation self-interaction on the orowan stress. Philosophical Magazine, 28: 1241-1263. doi: 10.1080/14786437308227997
    Benzerga A A, Leblond J B. 2010. Ductile fracture by void growth to coalescence. Advances in Applied Mechanics, 44: 169-305.
    Beyerlein I J, Mara N A, Carpenter J S, et al. 2013. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. Journal of Materials Research, 28: 1799-1812. doi: 10.1557/jmr.2013.21
    Bhuwal A S, Liu T, Ashcroft I, et al. 2021. Localization and coalescence of imperfect planar FCC truss lattice metamaterials under multiaxial loadings. Mechanics of Materials, 160: 103996. doi: 10.1016/j.mechmat.2021.103996
    Bian Y, Yang F, Li P, et al. 2021. Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals. Composite Structures, 271: 114103. doi: 10.1016/j.compstruct.2021.114103
    Branko N, Klemenc J, Zupanic F, et al. 2022. Modelling and predicting of the LCF-behaviour of aluminium auxetic structures. International Journal of Fatigue, 156: 106673. doi: 10.1016/j.ijfatigue.2021.106673
    Bertoldi K, Boyce M C, Deschanel S, et al. 2008. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 56: 2642-2668. doi: 10.1016/j.jmps.2008.03.006
    Chang Q, Feng J, Shu Y. 2021. Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B:Engineering, 227: 109393. doi: 10.1016/j.compositesb.2021.109393
    Chen P, Phuong T, Xuan H N, et al. 2020. Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach. Composite Structures, 235: 111821. doi: 10.1016/j.compstruct.2019.111821
    Chen W, Zheng X, Liu S. 2018. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing. Materials, 11: 2073. doi: 10.3390/ma11112073
    Chen Y, Jin L. 2018. Geometric role in designing pneumatically actuated pattern transforming metamaterials. Extreme Mechanics Letters, 23: 55-66. doi: 10.1016/j.eml.2018.08.001
    Chen Y, Li T, Jia Z, et al. 2018. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials & Design, 137: 226-234.
    Chen Y, Ma Y, Yin Q, et al. 2021. Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 214: 108970. doi: 10.1016/j.compscitech.2021.108970
    Chen Z, Xie Y M, Wu X, et al. 2019. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties. Materials & design, 183: 108109.
    Chen Z, Kai L, Wen P, et al. 2020. Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage. Advances in Engineering Software, 150: 102924. doi: 10.1016/j.advengsoft.2020.102924
    Clough E C, Plaisted T A, Eckel Z C, et al. 2019. Elastomeric microlattice impact attenuators-science direct. Matter, 1: 1519-1531. doi: 10.1016/j.matt.2019.10.004
    Conway K M, Kunka C, White B C, et al. 2021. Increasing fracture toughness via architected porosity. Materials & Design, 205: 109696.
    Dalia M, Mohamed E. 2017. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review. Journal of Manufacturing & Materials Processing, 1: 13.
    Dallago M, Raghavendra S, Luchin V, et al. 2021. The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion. International Journal of Fatigue, 142: 105946. doi: 10.1016/j.ijfatigue.2020.105946
    Dever J A, Nathal M V, Dicarlo J A. 2013. Research on high-temperature aerospace materials at NASA glenn research center. Journal of Aerospace Engineering, 26: 500-514. doi: 10.1061/(ASCE)AS.1943-5525.0000321
    Duan S, Wen W, Fang D. 2020. Additively-manufactured anisotropic and isotropic 3D plate-lattice materials for enhanced mechanical performance: Simulations & experiments. Acta Materialia, 199: 397-412. doi: 10.1016/j.actamat.2020.08.063
    Dunlop J, Fratzl P. 2013. Multilevel architectures in natural materials - ScienceDirect. Scripta Materialia, 68: 8-12. doi: 10.1016/j.scriptamat.2012.05.045
    Elsayed M, Pasini D. 2010. Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials. Mechanics of Materials, 42: 709-725. doi: 10.1016/j.mechmat.2010.05.003
    Evans A G, Hutchinson J W, Fleck N A, et al. 2001. The topological design of multifunctional cellular metals. Progress in Materials Science, 46: 309-327. doi: 10.1016/S0079-6425(00)00016-5
    Gao Z, Li D, Dong G, et al. 2020. Crack path-engineered 2D octet-truss lattice with bio-inspired crack deflection. Additive Manufacturing, 36: 101539. doi: 10.1016/j.addma.2020.101539
    Ge W, Ka-Cheung C, Lin Z. et al. 2017. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature, 545: 80-83. doi: 10.1038/nature21691
    Gorguluarslan R M, Gungor O U, Yldz S, et al. 2021. Energy absorption behavior of stiffness optimized graded lattice structures fabricated by material extrusion. Meccanica, 56: 2825-2841. doi: 10.1007/s11012-021-01404-5
    Groth J H, Anderson C, Magnini M, et al. 2021. Five simple tools for stochastic lattice creation. Additive Manufacturing, 49: 102488.
    Gu X, Cao Y, Zhu J, et al. 2020. Shape optimization of SMA structures with respect to fatigue. Materials & Design, 189: 108456.
    Guo Y, Ruan Q, Zhu S, et al. 2019. Temperature rise associated with adiabatic shear band: Causality clarified. Physical Review Letters, 122.
    Ha N S, Pham T M, Hao H, et al. 2021. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. International Journal of Mechanical Sciences, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
    Hector K W, Restrepo D, Bonilla C T, et al. 2019. Mechanics of chiral honeycomb architectures with phase transformations. Journal of Applied Mechanics, 86: 111014. doi: 10.1115/1.4044024
    Hu L, Zheng X, Wang G, et al. 2021. Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements. International Journal of Mechanical Sciences, 210: 106731. doi: 10.1016/j.ijmecsci.2021.106731
    Jia Z, Liu F, X Jiang, et al. 2020. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 127: 150901. doi: 10.1063/5.0004724
    Jian L, Hong S, Yi Z, et al. 2019. Toward imperfection-insensitive soft network materials for applications in stretchable electronics. ACS Applied Materials & Interfaces, 11: 36100-36109.
    Jnha B, Mbga C, Td B, et al. 2021. Design of isotropic porous plates for use in hierarchical plate-lattices. Materials & Design, 212: 110218.
    Kollar A J, Fitzpatrick M, Houck A A. 2019. Hyperbolic lattices in circuit quantum electrodynamics. Nature, 571: 45-50. doi: 10.1038/s41586-019-1348-3
    Kazem N, Bartlett M D, Majidi C. 2018. Extreme toughening of soft materials with liquid metal. Advanced Materials, 30: 1706594. doi: 10.1002/adma.201706594
    Khajehtourian R, Kochmann D M. 2020. Phase transformations in substrate-free dissipative multistable metamaterials. Extreme Mechanics Letters, 37: 100700. doi: 10.1016/j.eml.2020.100700
    Khakalo S, Balobanov V, Niiranen J. 2018. Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: Applications to sandwich beams and auxetics. International Journal of Engineering Science, 127: 33-52. doi: 10.1016/j.ijengsci.2018.02.004
    Khare E, Temple S, Tomov I, et al. 2018. Low fatigue dynamic auxetic lattices with 3d printable, multistable, and tuneable unit cells. Frontiers in Materials, 5: 2296-8016.
    Khoda B, Ahsan A, Shovon A N, et al. 2021. 3D metal lattice structure manufacturing with continuous rods. Scientific Reports, 11.
    Kolken H M A, Garvia A F, Plessis A D, et al. 2022. Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials. Acta Biomaterialia, 138: 398-409. doi: 10.1016/j.actbio.2021.11.002
    Kombaiah B, Murty K L. 2015. Coble, Orowan strengthening, and dislocation climb mechanisms in a Nb-modified zircaloy cladding. Metallurgical & Materials Transactions A, 46: 4646-4660.
    Latture R M, Begley M R, Zok F W. 2019. Defect sensitivity of truss strength. Journal of the Mechanics and Physics of Solids, 124: 489-504. doi: 10.1016/j.jmps.2018.10.019
    Latture R M, Rodriguez R X, Holmes L R, et al. 2018. Effects of nodal fillets and external boundaries on compressive response of an octet truss. Acta Materialia, 149: 78-87. doi: 10.1016/j.actamat.2017.12.060
    Lee S, Fincher C D, Rowe R, et al. 2020. Making something out of nothing: Enhanced flaw tolerance and rupture resistance in elastomer-void "negative" composites. Extreme Mechanics Letters, 40: 100845. doi: 10.1016/j.eml.2020.100845
    Lei H, Li C, Zhang X, et al. 2021. Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures. Additive Manufacturing, 37: 101674. doi: 10.1016/j.addma.2020.101674
    Lei Y, Si W, Chun Y, et al. 2021. Fatigue properties of Ti-6Al-4V Gyroid graded lattice structures fabricated by laser powder bed fusion with lateral loading. Additive Manufacturing, 46: 102214. doi: 10.1016/j.addma.2021.102214
    Li D, Liao W, Dai N, et al. 2019. Anisotropic design and optimization of conformal gradient lattice structures. Computer-Aided Design, 119: 102787.
    Li K, Seiler P E, Deshpande V S, et al. 2020. Regulation of notch sensitivity of lattice materials by strut topology. International Journal of Mechanical Sciences, 192: 106137.
    Li T, Fja B, Arab C, et al. 2021. Additive manufactured semi-plate lattice materials with high stiffness, strength and toughness. International Journal of Solids and Structures, 230-231: 111153. doi: 10.1016/j.ijsolstr.2021.111153
    Li W, Fan H, Bian Y, et al. 2021. Plastic deformation and energy absorption of polycrystalline-like lattice structures. Social Science Electronic Publishing, 198: 109321.
    Li X, Tan Y H, Wang P, et al. 2020. Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms. Composites Part A Applied Scienceand Manufacturin, 135: 105934. doi: 10.1016/j.compositesa.2020.105934
    Li X, Yu X, Chua J W, et al. 2021. Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption. Small, 17: 2100336. doi: 10.1002/smll.202100336
    Liu C, Lertthanasarn J, Pham M S. 2021. The origin of the boundary strengthening in polycrystal-inspired architected materials. Nature Communications, 12: 3674. doi: 10.1038/s41467-021-23938-8
    Liu J, Yan D, Zhang Y. 2021a. Mechanics of unusual soft network materials with rotatable structural nodes. Journal of the Mechanics and Physics of Solids, 146: 104210. doi: 10.1016/j.jmps.2020.104210
    Liu J, Zhu X, Shen Z, et al. 2021b. Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures. Acta Mech, 37: 1050-1062. doi: 10.1007/s10409-021-01087-x
    Liu K, Xiao C, Peng Z, et al. 2022. Dynamic mechanical performances of enhanced anti-tetra-chiral structure with rolled cross-section ligaments under impact lo ading. International Journal of Impact Engineering, 166: 104204. doi: 10.1016/j.ijimpeng.2022.104204
    Liu W, Song H, Huang C. 2020. Maximizing mechanical properties and minimizing support material of PolyJet fabricated 3D lattice structures. Additive Manufacturing, 35: 101257. doi: 10.1016/j.addma.2020.101257
    Liu W, Song H, Wang Z, et al. 2019. Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method. Materials & Design, 181: 108065.
    Liu X, Wada T, Suzki A, et al. 2021. Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion. Materials and Design, 199: 109416. doi: 10.1016/j.matdes.2020.109416
    Liu Y, Zhang J, Gu X, et al. 2020. Mechanical performance of a node reinforced body-centred cubic lattice structure manufactured via selective laser melting. Scripta Materialia, 189: 95-100. doi: 10.1016/j.scriptamat.2020.08.015
    Liu Y, Wang L. 2015. Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler. Composite Structures, 128: 274-283. doi: 10.1016/j.compstruct.2015.03.064
    Liu Y, Schaedler T A, Jacobsen A J, et al. 2014. Quasi-static energy absorption of hollow microlattice structures. Composites Part B, 67: 39-49. doi: 10.1016/j.compositesb.2014.06.024
    Long B A, Cheng G A, Xc A, et al. 2021. Quasi-Static compressive responses and fatigue behaviour of Ti-6Al-4V graded lattice structures fabricated by laser powder bed fusion. Materials & Design, 210: 110110.
    Lu Z, Yan W, Yan P, et al. 2020. A novel precipitate-type architected metamaterial strengthened via orowan bypass-like mechanism. Applied Sciences, 10: 7525. doi: 10.3390/app10217525
    Manno R, Gao W, Benedetti I. 2019. Engineering the crack path in lattice cellular materials through bio-inspired micro-structural alterations. Extreme Mechanics Letters, 26: 8-17. doi: 10.1016/j.eml.2018.11.002
    Mcgregor M, Patel S, Mclachlin S, et al. 2021. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Additive Manufacturing, 39: 107633.
    Mercer C, Lee J, Balint D S. 2015. An investigation of the mechanical fatigue behavior of low thermal expansion lattice structures. International Journal of Fatigue, 81: 238-248. doi: 10.1016/j.ijfatigue.2015.08.009
    Pham M S, Liu C, Todd I, et al. 2019. Damage-tolerant architected materials inspired bycrystal microstructure. Nature, 565: 305-311. doi: 10.1038/s41586-018-0850-3
    Mo C, Raney J R. 2019. Spatial programming of defect distributions to enhance material failure characteristics. Extreme Mechanics Letters, 34: 100598.
    Moestopo W P, Mateos A J, Fuller R M, et al. 2020. Pushing and pulling on ropes: Hierarchical woven materials. Advanced Science, 7: 20011271.
    Mousanezhad D, Haghpanah B, Ghosh R, et al. 2016. Elastic properties of chiral, anti-chiral and hierarchical honeycombs: A simple energy-based approach. Theoretical and Applied Mechanics Letters, 6: 81-96. doi: 10.1016/j.taml.2016.02.004
    Mueller J, Matlack K H, Shea K, et al. 2019. Energy absorption properties of periodic and stochastic 3D lattice materials. Advanced Theory and Simulations, 2: 1900081. doi: 10.1002/adts.201900081
    Mueller J, Shea K. 2018. Stepwise graded struts for maximizing energy absorption in lattices. Extreme Mechanics Letters, 25: 7-15. doi: 10.1016/j.eml.2018.10.006
    Munford M, Hossain U, Gh Ouse S, et al. 2020. Prediction of anisotropic mechanical properties for lattice structures. Additive Manufacturing, 32: 101041. doi: 10.1016/j.addma.2020.101041
    Niknam H, Akbarzadeh A H. 2020. Graded lattice structures: Simultaneous enhancement in stiffness and energy absorption. Materials & Design, 196: 109-129.
    Oftadeh R, Haghpanah B, Vella D, et al. 2014. Optimal fractal-like hierarchical honeycombs. Physical Review Letters, 113: 104301. doi: 10.1103/PhysRevLett.113.104301
    Oraid K T, Lee D W, Rashid K. 2021. Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials. Additive Manufacturing, 48: 102418. doi: 10.1016/j.addma.2021.102418
    Pan C, Han Y, J Lu. 2020. Design and optimization of lattice structures: A review. Applied Sciences, 10: 6374. doi: 10.3390/app10186374
    Pang Y, Chen S, Y Chu, et al. 2019. Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 66: 104131. doi: 10.1016/j.nanoen.2019.104131
    Peirce D, Asaro R J, Needleman A. 1982. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica, 30: 1087-1119. doi: 10.1016/0001-6160(82)90005-0
    Portela C M, Greer J R, Kochmann D M. 2018. Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mechanics Letters, 22: 138-148. doi: 10.1016/j.eml.2018.06.004
    Portela C M, Vidyasagar A, Krdel S, et al. 2020. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proceedings of the National Academy of Sciences of the United States of America, 117: 5686-5693. doi: 10.1073/pnas.1916817117
    Polley C, Radlof W, Hauschulz C, et al. 2022. Morphological and mechanical characterisation of three-dimensional gyroid structures fabricated by electron beam melting for the use as a porous biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 125: 104882. doi: 10.1016/j.jmbbm.2021.104882
    Qi D, Lu Q, He C W, et al. 2019a. Impact energy absorption of functionally graded chiral honeycomb structures. Extreme Mechanics Letters, 32: 100568. doi: 10.1016/j.eml.2019.100568
    Qi D, Yu H, Liu M, et al. 2019b. Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams. International Journal of Mechanical Sciences, 163: 105091. doi: 10.1016/j.ijmecsci.2019.105091
    Quang T D, Nguyen C H P, Choi Y. 2021. Homogenization-based optimum design of additively manufactured Voronoi cellular structures-ScienceDirect. Additive Manufacturing, 45: 102057. doi: 10.1016/j.addma.2021.102057
    Queyreau S, Monnet G, Devince B, et al. 2010. Orowan strengthening and forest hardeningsuperposition examined by dislocation dynamics simulations. Acta Materialia, 58: 5586-5595. doi: 10.1016/j.actamat.2010.06.028
    Rafiee M, Farahani R D, The Rr Iault D. 2020. Multi-material 3D and 4D printing: A survey. Advanced Science, 7: 1902307. doi: 10.1002/advs.201902307
    Raghavendra S, Molinari A, Dallago M, et al. 2021. Uniaxial static mechanical properties of regular, irregular and random additively manufactured cellular materials: Nominal vs. real geometry. Forces in Mechanics, 2: 100007. doi: 10.1016/j.finmec.2020.100007
    Refai K, Brugger C, Montemurro M, et al. 2020. An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM). International Journal of Fatigue, 138: 105623. doi: 10.1016/j.ijfatigue.2020.105623
    Restrepo D, Mankame N, Zavattieri P, et al. 2015. Phase transforming cellular materials. Extreme Mechanics Letters, 4: 52-60. doi: 10.1016/j.eml.2015.08.001
    Roberts A D. 1949. Symposium on internal stresses in metals and alloys. Nature, 164: 420-5. doi: 10.1038/164420a0
    Roters F, Eisenlohr P, Bieler T R, et al. 2010. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. John Wiley & Sons.
    Sajadi S M, Vásárhelyi L, Mousavi R, et al. 2021. Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 7: 5028. doi: 10.1126/sciadv.abc5028
    Saleh B, Jiang J, Fathi R, et al. 2020. 30 Years of functionally graded materials: An overview of manufacturing methods. Applications and Future Challenges. Composites Part B Engineering, 201: 108376. doi: 10.1016/j.compositesb.2020.108376
    Savio G, Rosso S, Curtarello A, et al. 2019. Implications of modeling approaches on the fatigue behavior of cellular solids. Additive Manufacturing, 25: 50-58. doi: 10.1016/j.addma.2018.10.047
    Shyu T C, Damasceno P F, Dodd P M, et al. 2015. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 14: 785-789. doi: 10.1038/nmat4327
    Somera A, Poncelet M, Auffray N, et al. 2022. Quasi-periodic lattices: Pattern matters too. Scripta Materialia, 209: 114378. doi: 10.1016/j.scriptamat.2021.114378
    Suard M, Plancher E, Martin G, et al. 2020. Surface defects sensitivity during the unfolding of corrugated struts made by powder-bed additive manufacturing. Advanced Engineering Materials, 22: 2000315. doi: 10.1002/adem.202000315
    Surjadi J U, Feng X, Zhou W, et al. 2021. Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices. International Journal of Extreme Manufacturing, 3: 025101. doi: 10.1088/2631-7990/abd8e8
    Tamburrino F. 2018, The design process of additively manufactured mesoscale lattice structures: A review. Journal of Computing and Information Science in Engineering, 18: 040801.
    Tancogne-Dejean T, Mohr D. 2018a. Elastically-isotropic elementary cubic lattices composed of tailored hollow beams. Extreme Mechanics Letters, 22: 13-18. doi: 10.1016/j.eml.2018.04.005
    Tancogne-Dejean T, Mohr D. 2018b. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. International Journal of Mechanical Sciences, 141: 101-116. doi: 10.1016/j.ijmecsci.2018.03.027
    Tancogne-Dejean T, Diamantopoulou M, Gorji M B, et al. 2018. 3D Plate-lattices: An emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Advanced Materials, 30: 180334. doi: 10.1002/adma.201803334
    Tankasala H C, Fleck N A. 2019. The crack growth resistance of an elastoplastic lattice. International Journal of Solids and Structures, 188-189: 233-243.
    Tao W, Leu M C. 2016. Design of lattice structure for additive manufacturing. International Symposium on Flexible Automation (ISFA). IEEE, 10: 7790182.
    Taylor C M, Smith C W, Miller W, et al. 2012. Functional grading in hierarchical honeycombs: Density specific elastic performance. Composite Structures, 94: 2296-2305. doi: 10.1016/j.compstruct.2012.01.021
    Taylor C M. 2012. A hierarchical honeycomb formed from a super-and sub-structural honeycombs, both hexagonal cell. Exeter University, 7.
    Torres A M, Trikanad A A, Aubin C A, et al. 2019. Bone-inspired microarchitectures achieve enhanced fatigue life. Proceedings of the National Academy of Sciences, 116: 24457-24462. doi: 10.1073/pnas.1905814116
    Traxel K D, Groden C, Valladares J, et al. 2021, Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V. Materials Science and Engineering A, 809: 140925.
    Vangelatos Z, Komvopoulos K, Grigoropoulos C P. 2020a. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification. Journal of the Mechanics and Physics of Solids, 144: 104112. doi: 10.1016/j.jmps.2020.104112
    Vangelatos Z, Komvopoulos K, Spanos J, et al. 2020b. Anisotropic and curved lattice members enhance the structural integrity and mechanical performance of architected metamaterials. International Journal of Solids and Structures, 193–194: 287-301.
    Vangelatos Z, Melissinaki V, Farsari M, et al. 2019. Intertwined microlattices greatly enhance the performance of mechanical metamaterials. Mathematics and Mechanics of Solids, 24: 2636-2648. doi: 10.1177/1081286519848041
    Vangelatos Z, Sheikh H M, Marcus P S, et. al. 2021. Strength through defects: A novel Bayesian approach for the optimization of architected materials. Science Advances, 7: 2218.
    Wagner M A, Lumpe T S, Chen T, et al. 2019. Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. Extreme Mechanics Letters, 29: 100461. doi: 10.1016/j.eml.2019.100461
    Wang B, Ding Q, Sun Y, et al. 2019. Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic Voronoi substructures. Results in Physics, 12: 1190-1196. doi: 10.1016/j.rinp.2018.12.068
    Wang B, Hao P, Li G, et al. 2014. Optimum design of hierarchical stiffened shells for low imperfection sensitivity. Acta Mechanica Sinica, 30: 391-402. doi: 10.1007/s10409-014-0003-3
    Wang P, Yang F, Ru D H, et al. 2021. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application. Materials & Design, 210: 110116. doi: 10.1016/j.matdes.2021.110116
    Wang Y, Sigmund O. 2020. Quasiperiodic mechanical metamaterials with extreme isotropic stiffness. Extreme Mechanics Letters, 34: 100596. doi: 10.1016/j.eml.2019.100596
    Weeger O. 2021. Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials. International Journal of Solids and Structures, 224: 111037. doi: 10.1016/j.ijsolstr.2021.03.024
    White B C, Garland A, Alberdi R, et al. 2020. Interpenetrating lattices with enhanced mechanical functionality. Additive Manufacturing, 38: 101741.
    Wu Q, Vaziri A, Asl M E, et al. 2019. Lattice materials with pyramidal hierarchy: Systematic analysis and three dimensional failure mechanism maps. Journal of the Mechanics and Physics of Solids, 125: 112-114. doi: 10.1016/j.jmps.2018.12.006
    Wu W, Hu W, Qian G, et al. 2019. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & design, 180: 107950.
    Wu W, Kim S, Ramazani A, et al. 2022. Twin mechanical metamaterials inspired by nano-twin metals: Experimental investigations. Composite Structure, 291: 115580. doi: 10.1016/j.compstruct.2022.115580
    Wu W, Tao Y, Xia Y, et al. 2017. Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mechanics Letters, 16: 18-32. doi: 10.1016/j.eml.2017.08.004
    Wu X, Yang M, Yuan F, et al. 2015. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences of the United States of America, 112: 14501. doi: 10.1073/pnas.1517193112
    Xiao R, Li X, Jia H, et al. 2021. 3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles. Materials & Design, 206: 109767.
    Xiao Z, Howon L, Weisgraber T D, et al. 2014. Ultrastiff mechanical metamaterials. Science, 344: 1373-1377. doi: 10.1126/science.1252291
    Xue R, Cui X, Zhang P, et al. 2020. Mechanical design and energy absorption performances of novel dual scale hybrid plate-lattice mechanical metamaterials. Extreme Mechanics Letters, 100918.
    Xu F, Zhang X, Zhang H. 2018. A review on functionally graded structures and materials for energy absorption. Engineering Structures, 171: 309-325. doi: 10.1016/j.engstruct.2018.05.094
    Xu Y, Zhang H, Avija B, et al. 2019. Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Materials & Design, 162: 143-153.
    Yan D, Chang J, Zhang H, et al. 2020. Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications, 11: 1180. doi: 10.1038/s41467-020-14996-5
    Yang D, Jin L, Martinez R, et al. 2015. Phase-transforming and switchable metamaterials. Extreme Mechanics Letters, 6: 1-9.
    Yang J, Gu D, Lin K, et al. 2021. Laser additive manufacturing of cellular structure with enhanced compressive performance inspired by Al–Si crystalline microstructure. CIRP Journal of Manufacturing Science and Technology, 32: 26-36. doi: 10.1016/j.cirpj.2020.11.003
    Yavari S A, Ahmadi S M, Wauthle R, et al. 2015. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 43: 91-100. doi: 10.1016/j.jmbbm.2014.12.015
    Yin S, Chen H, Yang R, et al. 2020. Tough nature-inspired helicoidal composites with printing-induced voids. Cell Reports Physical Science, 1: 100109. doi: 10.1016/j.xcrp.2020.100109
    Yin S, Guo W, Wang H, et al. 2021. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites. Journal of the Mechanics and Physics of Solids, 149: 104341. doi: 10.1016/j.jmps.2021.104341
    Yu K, Feng Z, Du H, et al. 2021. Photosynthesis-assisted remodeling of three-dimensional printed structures. Proceedings of the National Academy of Sciences, 118: 2016524118. doi: 10.1073/pnas.2016524118
    Yu W, Qing Y, Xia L, et al. 2021. Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures. International Journal of Mechanical Sciences, 213: 106857.
    Yu Z, Yu L, Ying L, et al. 2021. 3D printed self-similar AlSi10Mg alloy hierarchical honeycomb architectures under in-plane large deformation. Thin-Walled Structures, 164: 107795. doi: 10.1016/j.tws.2021.107795
    Yue W, Fei L, Xin Z, et al. 2021. Cell-size graded sandwich enhances additive manufacturing fidelity and energy absorption. International Journal of Mechanical Sciences, 211: 106798. doi: 10.1016/j.ijmecsci.2021.106798
    Zadpoor A A. 2020. On bone fatigue and its relevance for the design of architected materials. Proceedings of the National Academy of Sciences, 117: 6985. doi: 10.1073/pnas.1922857117
    Zargarian A, Esfahanian M, Kadkhodapour J, et al. 2016. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures. Materials Science & Engineering C Materials for Biological Applications, 60: 339-347.
    Zhang J, Lu G, You Z. 2020a. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Composites Part B:Engineering, 201: 108340. doi: 10.1016/j.compositesb.2020.108340
    Zhang J, Song B, Yang L, et al. 2020b. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion. Composites Part B Engineering, 202: 108417. doi: 10.1016/j.compositesb.2020.108417
    Zhang L, Hu Z, Wang Y, et al. 2021. Hierarchical sheet triply periodic minimal surface lattices: design, geometric and mechanical performance. Materials & Design, 209: 109931. doi: 10.1016/j.matdes.2021.109931
    Zhang S, Le C, Gain A L, et al. 2019. Fatigue-based topology optimization with non-proportional loads. Computer Methods in Applied Mechanics and Engineering, 345: 805-825. doi: 10.1016/j.cma.2018.11.015
    Zhang W, Chen J, Li X, et al. 2020. Metamaterials: Liquid metal-polymer microlattice metamaterials with high fracture toughness and damage recoverability. Small, 16: 2070252. doi: 10.1002/smll.202070252
    Zhang X, Jia Y, Bin L, et al. 2018. Three-dimensional high-entropy alloy-polymer composite nanolattices that overcome the strength-recoverability trade-off. Nano Letters, 18: 4247-4256. doi: 10.1021/acs.nanolett.8b01241
    Zhang X, Vyatskikh A, Gao H, et al. 2019. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences, 116: 6665-6672. doi: 10.1073/pnas.1817309116
    Zhang Y, Hsieh M T, Valdevit L. 2021. Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Composite Structures, 263: 113693. doi: 10.1016/j.compstruct.2021.113693
    Zhao S, Li J, Hou W T, et al. 2016. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials, 59: 251-264. doi: 10.1016/j.jmbbm.2016.01.034
    Zhao Z, Yuan C, Lei M, et al. 2019. Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Physical Review Applied, 11: 044074.
    Zheng Q, Fan H. 2021. Equivalent continuum method of plane-stress dominated plate-lattice materials. Thin-Walled Structures, 164: 107865. doi: 10.1016/j.tws.2021.107865
    Zheng X, Smith W, Jackson J, et al. 2016. Multiscale metallic metamaterials. Nature Materials, 15: 1100-1106. doi: 10.1038/nmat4694
    Zian J, Li W. 2019. 3D printing of biomimetic composites with improved fracture toughness. Acta Materialia, 173: 61-73. doi: 10.1016/j.actamat.2019.04.052
    Zok F W. 2019. Integrating latt ice materials science into the traditional processing-structure- properties paradigm. MRS Communications, 9: 1284-1291. doi: 10.1557/mrc.2019.152
    Zok F W, Latture R M, Begley M R. 2016. Periodic truss structures. Journal of the Mechanics & Physics of Solids, 96: 184-203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views (5321) PDF downloads(1344) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return